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ABSTRACT Agaricus bisporus grows in complex environments and suffers from adhesion and occlu-
sion problems. In this study, we propose a lightweight recognition model for Agaricus bisporus—
FES-YOLOv5s—based on YOLOv5s. Our aim was to quickly and accurately detect Agaricus bisporus
specimens. First, a FasterNet lightweight network was used in the backbone layer to reduce the computation
of the model. An ECAmechanism was then introduced to enhance the interaction between multiple channels
and improve the detection accuracy. Finally, a Soft-NMS module was used to replace the NMS module
in YOLOv5s to resolve the missed detection of adherent and occluded Agaricus bisporus specimens. The
improved model was named FES-YOLOv5s; F, E, and S represent the FasterNet, ECA, and Soft-NMS
features, respectively. The FES-YOLOv5smodel increased themAP 0.5:0.95 by 2.4% and the FPS by 19.4%.
It decreased the computation by 42.7% compared with the YOLOv5s model. The results of a comparison test
revealed that the FES-YOLOv5s model demonstrated advantages in detection accuracy and speed compared
with other target detection models. The FES-YOLOv5s model was deployed on an Agaricus-bisporus-
picking robot; the detection success rate was greater than 90%, indicating that the improved model could
detect Agaricus bisporus quickly and accurately in complex environments.

INDEX TERMS Agaricus bisporus, lightweight model, target detection, YOLOv5.

I. INTRODUCTION
Agaricus bisporus is globally acknowledged to be an edi-
ble fungus. It has numerous advantages such as a pleasant
flavor, rich nutritional profile, and substantial economic
value [1]. The burgeoning cultivation of Agaricus bisporus
has accentuated the challenges linked to labor-intensive and
inefficient traditional manual picking. This underscores the
urgent requirement for better Agaricus bisporus harvesting
techniques. Although target detection methods for common
fruit and vegetables such as tomatoes, apples, and cucumbers
have garnered extensive research attention [2], [3], [4], there
has been relatively little focus on the development of target
detection approaches specifically for Agaricus bisporus. The
intricacies of the mushroom cultivation environment pose
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significant challenges, including variations in light intensity,
discerning substrates and mushrooms, dense growth pat-
terns, and shading issues [5]. These challenges significantly
increase the complexity of the detection methods required.
The development of efficient, accurate, and swift Agaricus
bisporus detection methods is of importance because such
methodologies could provide pivotal technical support for
the deployment of intelligent robotic picking systems. This
would lead to enhanced picking efficiency, reduced picking
costs, and the facilitation of large-scale, standardized Agari-
cus bisporus cultivation.

Target detection algorithms can be categorized into two
groups. The first group relies on candidate region-based
detection algorithms, including R-CNN [6], Fast R-CNN [7],
Faster R-CNN [8], and SPPNet [9]. The other group consists
of regression-based detection algorithms such as the YOLO
series [10], [11], [12], [13] and SSD [14]. Chen et al. [15]
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proposed a YOLOv5s-CBAM mushroom-recognition
algorithm that improved the detection accuracy and
robustness of the original algorithm using mosaic image
enhancement technology. An RGB-D depth camera and an
SSD convolutional neural network were used in [16] to
locate precise positions based on binocular and structured
light-depth images to accurately recognize shiitake mush-
rooms. Li et al. [17] proposed a YOLO-ACN detection
model that improved the detection accuracy of YOLOv3 for
small and occluded objects by adding CIOU, Soft-NMS,
and depthwise-separable convolutions. McCool et al. [18]
proposed a sweet-pepper field detection system that first per-
formed pixel-by-pixel segmentation, then performed region
detection, and finally used a local binarymode (LBP) for crop
segmentation to accurately recognize highly occluded sweet
peppers in the field. Dyrmann et al. [19] proposed a method
for the automatic detection of weeds using color images
with a large amount of leaf occlusion to automatically detect
individual instances of weeds in grain fields, even in the
presence of severe leaf occlusion. Zheng et al. [20] presented
further advances in target detection with the introduction
of R-CSPDarknet53, a novel backbone network designed
to improve the detection accuracy of small targets (fruit)
over extended distances. Li et al. [21] proposed a multi-
modal attention fusion network to enhance the detection
accuracy of small targets, specifically distant fruit. Their
model adjustments included altering the number of detection
layers, introducing a weighted bidirectional feature pyramid
network (BiFPN)module, and implementing depth-separable
convolution and ghost modules to streamline the subsequent
mobile deployment. Wang et al. [22] introduced a detailed
semantic enhancement (DSE) module for the detection of
small fruit. This module employed point-by-point convolu-
tion and extended convolution to extract detailed semantic
features in both horizontal and vertical dimensions. They
also developed exponentially enhanced bifurcation entropy
(EBCE) and doubly enhanced mean square error (DEMSE)
loss functions to bolster the recognition accuracy of small
target objects.

Many scholars have contributed to advancing the concept
of model lightweighting by focusing on minimizing param-
eters, computations, and the overall model size for optimal
deployment on mobile platforms. Cong et al. [23] devised
a specialized lightweight model for mushroom detection by
leveraging YOLOv3 as the foundational framework. Their
approach involved crafting a lightweight GhostNet16 net-
work as the backbone network and integrating an adaptive
spatial feature pyramid network (ASA-FPN) into the neck
network to increase the accuracy of the entire network.
Lin et al. [24] introduced a novel underwater treasure detec-
tion method based on an enhanced version of YOLOv5.
Their approach involved augmenting the recognition accu-
racy whilst concurrently reducing the network parameters
by incorporating attention mechanisms and host modules
into the architecture. Wang et al. [25] reduced network
parameters and enhanced detection speeds by employing

pruning operations that effectively trimmed their model’s
complexity whilst maintaining performance. Shang et al. [26]
presented a method for apple-blossom detection based on
YOLOv5s deep learning. Their comprehensive comparison
revealed that the YOLOv5 model exhibited superior accu-
racy and faster speeds in detection tasks. Gong et al. [27]
refined the lightweight capabilities of theYOLOv5smodel by
integrating C3HB and cross-attention modules. This substan-
tially streamlined the model, resulting in optimal lightweight
deployment whilst maintaining performance standards.
Ugural and Burgan [28] used EVA technology to evaluate
the performance of a project model.

These studies have presented various algorithms designed
to be applied to agricultural harvesting and have achieved
significant progress in fruit and vegetable recognition.
Limited attention has been paid to target-recognitionmethods
specifically tailored to Agaricus bisporus. During the growth
process of Agaricus bisporus, there are problems of adhe-
sion, occlusion, and density. The existing models have low
accuracy and high computational complexity in identifying
densely occluded targets, making it difficult to accurately
identify Agaricus bisporus, resulting in false positives and
missed detections. In this study, we investigated target detec-
tion models specifically tailored to Agaricus bisporus by
addressing the inadequacies observed in existing target detec-
tion models (such as low accuracy, excessive parameters, and
high computational demands). The primary objectives of this
study were as follows:

1. To improve the backbone network of YOLOv5s to
reduce the computational cost;

2. To improve the detection accuracy of occluded and
adhered Agaricus bisporus specimens.

II. MATERIALS AND METHODS
A. DATASET
Agaricus bisporus images were obtained at Luoyang Song-
tian Agricultural Development Co. Ltd. in March–April
2022 using an industrial camera (MV-CC-050, Hikvision,

FIGURE 1. Agaricus bisporus bed.
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FIGURE 2. Agaricus bisporus growth scenarios.

TABLE 1. Details of the acquired images.

China) with a resolution of 2448 × 2048 pixels. Vertical
overhead shooting was used as the image sample collection
method. The camera was installed at a height of 50 ± 5 cm
from the mushroom bed, as demonstrated in Figure 1.

Each area of the mushroom bed at the time of the image
acquisition was categorized as dim or bright, according
to the light intensity. Bright indicated that the proportion
of the number of pixel points with a gray value lower than

40 in the grayscale image map exceeded 70%. Dim indi-
cated that the proportion of the number of pixel points with
a gray value higher than 40 in the grayscale image map
exceeded 70%.

The number of Agaricus bisporus specimens in the
camera’s field of view (in the image) was counted. The
images were then divided into sparse, medium, and dense
categories, based on the number of specimens (sparse,
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FIGURE 3. YOLOv5s network structure.

0–10 specimens; medium, 11–25 specimens; and dense,
26 or more specimens). Based on the number of occluded
mushrooms, the dataset was divided into not occluded (0),
slightly occluded (1)–(5), and heavily occluded (5 or more).
In total, 914 images were collected (Figure 2). The specific
quantities used are listed in Table 1.
It was essential to expand the dataset to enhance the dataset

generalization and to prevent overfitting, so a number of
images were randomly selected from the 914 original images.
Comic Enhancer Pro (v2.49, Jian m, China) software was
then used for brightness enhancement and weakening, con-
trast enhancement and weakening, and sharpening of the
selected images. This resulted in 80 images with 25% and
35% brightness enhancement, 80 images with 25% and 35%
brightness reduction, 80 images with 25% and 35% contrast
enhancement, 80 images with 25% and 35% contrast reduc-
tion, 80 images with 25% and 35% contrast reduction, and
80 images with level 1 and level 2 sharpening. Thus, the
dataset increased to 1874 images after the expansion process.

As the original images had a resolution of
2448 × 2048 pixels, the image resolution was scaled to
640 × 640 pixels as the input of the model for training to
reduce the training time and hardware consumption. Each
Agaricus bisporus specimen in the image samples was man-
ually labeled with a small rectangular box using LabelMe
software (v5.3.1, MIT CSAIL, USA) and the labeled images

were partitioned into distinct sets at a ratio of 7:2:1. The train-
ing set comprised 1311 images, the validation set comprised
374 images, and the test set comprised 189 images.

B. FES-YOLOv5s NETWORK
The YOLOv5s model presents distinct advantages such as
a low complexity and high operational speed that render
it particularly suitable for mobile deployment scenarios.
It delineates four fundamental segments within its conven-
tional network architecture: the input, the backbone, the neck,
and the head. The input segment plays a critical role in image
preprocessing by undertaking pivotal tasks such as image
scaling, normalization, and other pertinent operations. In the
context of feature extraction, the backbone network lever-
ages CSPDarknet53 and Focus structures to adeptly diminish
the model parameters whilst significantly augmenting the
feature-extraction capabilities. Complementing this, the neck
structure amalgamates FPN [29] and PAN [30] networks;
this results in a holistic enrichment of the extracted features.
The head module orchestrates the inference procedures and
provides outputs detailing the predicted targets. This delin-
eates the classical architecture of the YOLOv5s network,
as presented in Figure 3.
In this study, we developed an enhanced YOLOv5s

model—FES-YOLOv5s—to improve the detection of Agari-
cus bisporus specimens. We optimized the backbone network
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FIGURE 4. FES-YOLOv5s network structure.

of the original YOLOv5smodel by adopting the FasterNet-T0
network structure to streamline the model complexity and
enhance the floating-point operation speed. Simultaneously,
we retained the SPPF module from the original YOLOv5s
model to augment the feature-extraction capacity of the
model. An efficient channel attention (ECA) module was
introduced to compensate for the accuracy decline caused
by the lightweighting. This was inserted into the C3 mod-
ule in the backbone network and neck network. Finally,
we enhanced the NMS module by employing Soft-NMS to
suppress the candidate frames within YOLOv5s. This modifi-
cation increased the recognition accuracy of the occluded and
adherent instances of Agaricus bisporus. Figure 4 illustrates
the revised network structure of the enhanced FES-YOLOv5s
model.

C. FASTERNET LIGHTWEIGHT NETWORK
Chen et al. [31] introduced the FasterNet network in
2023 as a lightweight convolutional neural network model.
It strategically reduces floating-point operations by integrat-
ing a partial convolution (PConv) module and a pointwise
convolution (PWConv) module. This amalgamation opti-
mizes the network’s efficiency at identifying floating-point
operations per second, thus ensuring its lightweight
nature.

The FasterNet architecture comprises six variations: T0,
T1, T2, S, M, and L. Each variation shares a fundamental
design but they differ in their network depth. We chose the
FasterNet-T0 configuration for our study because it is known
for its minimal parameter count (outlined in Table 2). This
configuration was built using multiple layers of FasterNet-
Block, as presented in Figure 5. Each FasterNet-Block

TABLE 2. Structure of FasterNet-T0.

FIGURE 5. FasterNet-Block structure.

layer commenced with an embedding or merging layer that
was strategically incorporated for spatial downsampling and
channel-number expansion.
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D. ECA ATTENTION MODULE
The ECA mechanism [32] enhances the SE attention mech-
anism [33] by evading dimensionality reduction, effectively
capturing interchannel connections andmaintaining a concise
parameter count. Our ECA structure operated on input feature
maps with dimensions h × w × C, as illustrated in Figure 6.
These maps were processed using a global average pooling
(GAP) layer to acquire 1× 1×C featuremaps. Subsequently,
rapid one-dimensional convolution occurred with a kernel
size of k. This was followed by the application of the sigmoid
activation function to derive the feature-map weights. Finally,
the input feature mapwasmultiplied by these weights to yield
a weighted feature map.

FIGURE 6. ECA structure diagram.

The ECAmodulewas integrated into themodel’s backbone
and neck networks in our research, specifically after the C3
module. This integration formed the C3ECA module. Our
aim was to bolster the model’s feature-extraction capabilities
whilst preserving a lightweight network design (Figure 4).

E. SOFT-NMS MODULE
The branch reset function of traditional NMS is as follows:

si =

{
si, iou (M , bi) < Nt
0, iou (M , bi) ≥ Nt

(1)

where si is the candidate frame score value, M is the highest
score candidate box, bi is the candidate box, Nt is the IOU
threshold.

When two detection frames are too close to each other in
traditional non-maximum suppression (NMS), the detection
frame with the lower score is deleted because of the high
overlapping area in the detection frame with the higher score.
The growth of Agaricus bisporus is characterized by adhesion
and mutual occlusion. If the traditional NMS method is used
for the suppression of detection frames, it may lead to detec-
tion frames beingmistakenly deleted because of the excessive
proximity of adhesive and mutually occluding Agaricus bis-
porus detection frames. This could affect the detection results.

The branch reset function of Soft-NMS is as follows:

si =

{
si, iou (M , bi) < Nt
si (1 − iou (M , bi)) , iou (M , bi) ≥ Nt

(2)

Compared with traditional NMS, Soft-NMS [34] does not
directly delete the lower-scoring detection frames during can-
didate frame suppression, but reduces their scores and then
deletes these detection frames when the score is lower than

the suppression threshold. Thus, candidate frames with lower
scores may participate in the next round of suppression. This
reduces the number of incorrectly deleted candidate frames.
Hence, Soft-NMS has a better detection accuracy in dense
target detection tasks.

In this study, Soft-NMS was used to optimize and improve
the original NMS aspect of YOLOv5s to reduce the phe-
nomenon of incorrectly suppressing candidate frames in the
suppression phase. Our aim was to improve the detection of
Agaricus bisporus in dense, sticky, and occluded scenes.

III. RESULTS
A. EXPERIMENTAL ENVIRONMENT
The models in this study were all trained using a
Windows 11 operating system comprising an Intel i5-12400f
CPU, an NVIDIA GeForce RTX3060 GPU graphics card
with 12 GB of video memory, 32 GB of host memory, CUDA
version 11.8, Cudnn version 8.2.1, Python version 3.11,
and a Pytorch deep learning framework (torch version
2.0.1+cu118, torchaudio version 2.0.2+cu118, and torchvi-
sion version 0.15.2+cu118).

An SGD optimizer with a training cycle epoch of 300,
batch size of 16, and initial learning rate of 0.01 was used
for the optimization. The cosine annealing function was used
to dynamically reduce the learning rate and weight decay
to 0.0005

B. EVALUATION METRICS
Precision (P), recall (R), weighted average (F1), mean aver-
age precision (mAP), GFLOPs, and frames per second (FPS)
were chosen to evaluate the model using the following
formula:

P =
TP

TP + FP
× 100% (3)

R =
TP

TP + FN
× 100% (4)

AP =

∫ 1

0
P (R) dR (5)

mAP =
1
N

N∑
i=1

APi (6)

F1 =
2PR
P+ R

(7)

TP is the correct detection count of Agaricus bisporus,
whereas FP is the incorrect detection count. FN represents
undetected instances of Agaricus bisporus. The variable P
reflects the ratio of accurately predicted targets out of the
total predicted targets by the model, whereas R is the pro-
portion of correctly predicted real targets out of all the real
targets predicted by the model. mAP is the average preci-
sion value across classifications; as there was only one class
(Agaricus bisporus) in this study, N = 1. F1 combines
the weighted average of precision P and recall R. GFLOPs
signifies the total number of computations in each net-
work layer, measured in billions of floating-point operations.
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TABLE 3. Comparison of different backbones.

TABLE 4. Ablation test result.

Finally, FPS represents the throughput of the model when
detecting images per second.

C. COMPARISON OF DIFFERENT BACKBONES
ShuffleNetV2, GhostNet, ResNet, and MobileNetV3 were
selected to replace the backbone network of YOLOv5s to
compare the performance differences between different back-
bone networks. The comparative experimental results are
presented in Table 3.

FasterNet produced the highest mAP and F1 values, but
was slightly lower than ShuffleNetV2 for FPS and ranked sec-
ond. ShuffleNetV2’s mAP was much lower than FasterNet’s.
FasterNet demonstrated better overall performance compared
with the other backbone networks.

D. ABLATION TESTS
Ablation tests were designed and conducted to verify the
improved performance of the different modules for the orig-
inal YOLOv5s model. The results are presented in Table 4.
The integration of the FasterNet model into the backbone

network resulted in nuanced trade-offs. A 0.3% decrease in
the F1 value and a 0.8% drop in the mAP were revealed.
Concurrently, a reduction in the computational load of
6.8 GFLOPs was demonstrated, coupled with a 30.2 increase
in FPS. Our analysis attributed these effects to FasterNet’s use
of partial convolutions, minimization of convolutional opera-
tions, and optimization of memory access. This reduction in
network complexity significantly enhanced the unit operation
speed but diminished the network’s feature-extraction ability,
unavoidably lowering both the mAP and F1 values.

The subsequent integration of the ECA mechanism
enhanced the model’s mAP and F1 values. This augmentation
stemmed from the capacity of the ECA mechanism to ele-
vate the multichannel information interaction, incrementally
improving the model’s feature-extraction ability. The overall
network computation remained largely unchanged because of
the inherently low parameter count of the ECA.

The incorporation of the Soft-NMS module notably
improved the recall of the model but led to a decrease in FPS.
Soft-NMS minimizes suppression errors in closely situated
targets, thereby reducing leakage in the detected targets and
augmenting the model recall. However, this technique retains
candidate frames; this potentially leads to their repeated par-
ticipation in subsequent calculations, marginally increasing
the NMS time and prolonging the single-image processing
time. This may have caused the decreased FPS values in our
study.

Figure 7 illustrates the variation curves of the training
process for the mAP, precision (P), recall (R), and loss.

We randomly selected a bright and a dim image from
the test set to facilitate a more intuitive comparison of the
model performance pre- and post-improvement. The two
images were detected using both the original and enhanced
models. The results are presented in Figures 8 and 9; the
missed Agaricus bisporus specimens are marked using green
shapes. The improved FES-YOLOv5s model successfully
detected all Agaricus bisporus targets. In contrast, the original
YOLOv5s model missed five and four occluded Agaricus
bisporus instances. This suggests that the enhanced FES-
YOLOv5s model exhibited superior detection capabilities,
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FIGURE 7. Variation curve.

FIGURE 8. Comparison of recognition effects of different models in bright environment.

particularly for instances with densely occluded Agaricus
bisporus.

A comprehensive ablation test that optimized all the
model parameters was performed following the integra-
tion of FasterNet, ECA, and Soft-NMS. This enhanced
model reduced the computational load by 6.8 GFLOPs
and improved the FPS by 18.7 compared with the original
YOLOv5s network. TheF1 andmAPmetrics of the enhanced
model were 98.0% and 93.6%, respectively, surpassing the
original YOLOv5s model by 1.2% and 2.4%, respectively.

This enhancement ensured model lightweighting without
compromising the detection accuracy.

IV. DISCUSSIONS
A. COMPARISON OF DIFFERENT MODELS
Experimental comparisons were conducted between the
FES-YOLOv5s model and various target detection network
models, including SSD, YOLOv4, YOLOv7, and YOLOv8s.
Table 5 presents the comparative results.
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FIGURE 9. Comparison of recognition effects of different models in dim environment.

TABLE 5. Comparison test results of different models.

The FES-YOLOv5s model demonstrated superior per-
formance across multiple metrics compared with the other
models. Notably, its mAP was 93.6% (17.8% higher than the
lowest-performing YOLOv4 model). This demonstrated the
exceptional average detection precision of FES-YOLOv5s
and its robust capability of identifying Agaricus bisporus
specimens. The F1 score reached 98.0%, reflecting the
model’s optimal balance between precision and recall. This
comprehensive identification capability significantly reduced
erroneous and missed detections, ensuring the accurate
identification of Agaricus bisporus specimens. The FES-
YOLOv5s model operated at a mere 9.1 GFLOPs. This
was significantly lower than any other model, indicating a
remarkably low computational overhead. For context, the
model with the highest computational overhead (SSD) oper-
ated at 284.74 GFLOPs, approximately 31 times greater than
FES-YOLOv5s. The FES-YOLOv5s model achieved an FPS
rate of 114.9, 92.5 FPS higher than the lowest-performing
(SSD). This comparison emphasized our model’s real-time
detection capabilities; it swiftly identified all Agaricus bis-
porus instances in the images. This aligned well with the
real-time demand of intelligent Agaricus-bisporus-picking
robots. In summary, the FES-YOLOv5s model outperformed
other target detection models across all metrics. Its notably
low computational requirements, coupled with the highest
real-time detection frame rate, position it as an optimal
choice for the swift and accurate detection of Agaricus bis-
porus, meeting the demands of intelligent picking robots.
The trade-offs between accuracy and speed are presented in
Figure 10.

FIGURE 10. Trade-offs between accuracy and speed.

B. ANALYSIS OF CENTER POSITIONING AND DIAMETER
MEASURING
We evaluated the center-positioning and diameter-
measurement accuracy of different algorithms to characterize
the recognition and positioning accuracy of the models.
We randomly selected an image of Agaricus bisporus from
the test set, as presented in Figure 11. First, we manually
marked the boundary rectangle and center point for each
Agaricus bisporus specimen (excluding Agaricus bisporus
specimens with an incomplete boundary display). The center
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FIGURE 11. Manually annotated images of Agaricus bisporus.

point was defined as the diagonal intersection point of the
rectangle box.We identified the longer side of the rectangular
box as the diameter of each Agaricus bisporus specimen.

We introduced a two-dimensional coordinate deviation rate
(CDR) to evaluate the accuracy of the center positioning with
greater precision. The formula is as follows:

CDR =

(∣∣∣∣Xr − Xm
s

∣∣∣∣ +

∣∣∣∣Yr − Ym
t

∣∣∣∣) × 100% (8)

where Xr and Yr represent the manually annotated center-
point coordinates, Xm and Ym represent the center-point
coordinates obtained by the algorithm, and s = 640 and
t = 640 represent the width and height of the overall image,
respectively.

The spatial resolution [35] was used to calculate the
actual diameter (in mm) of the Agaricus bisporus specimens.
The spatial resolution indicates the number of independent
pixels per millimeter; this was 4 pixels/mm in our study.
We introduced a formula for the relative error of the diameter
measurement, as follows:

RE =
|ED− AD|

AD
× 100% (9)

where RE is the relative error of measurement, ED is the
diameter measured by the algorithm, and AD is the actual
diameter.

We introduced IOU [36] to evaluate the recognition accu-
racy of the algorithm for Agaricus bisporus specimens. First,
we calculated the IOU value for each Agaricus bisporus
specimen as a graph and then calculated the average IOU.

The center positioning, diameter measurement, and IOU
calculation results for SSD, FES-YOLOv5s, YOLOv4,
YOLOv7, and YOLOv8s are presented in Table 6.

Compared with the other models, FES-YOLOv5s pro-
duced the lowest CDR and RE values as well as the highest

TABLE 6. Center positioning and diameter measurement results.

IOU value, thus ensuring a better identification and localiza-
tion of Agaricus bisporus specimens.

C. DETECTION RESULTS OF DIFFERENT MODELS
The detection results for Agaricus bisporus specimens
using different target detection models are presented in
Figures 12 and 13. Agaricus bisporus, located at the edge of
the images, was not counted in the analysis of the results.

The SSD model had a high confidence level, fewer cases
of misdetection and omission, and high detection accuracy.
However, an analysis of the detection frames revealed that
most of the prediction frames were not tangent to the edges
of the Agaricus bisporus specimens and there were gaps
that did not accurately wrap around the Agaricus bisporus
specimens. This phenomenon was particularly obvious when
identifying densely occluded Agaricus bisporus specimens.
There were cases when the background was recognized as
Agaricus bisporus in a few images and there were examples
of the phenomenon of missed detection. This affected the
localization accuracy of Agaricus bisporus specimens, which
would, in turn, affect the accuracy of the picking robot at
the next step. The confidence level of the YOLOv4 network
model was generally poor and the prediction frame had the
poorest effect of wrapping the Agaricus bisporus specimens.
It did not completely recognize all Agaricus bisporus spec-
imens in the images and there were serious misdetections.
YOLOv7 and YOLOv8s had higher confidence levels, but
there was the phenomenon of missed detection in certain
occluded Agaricus bisporus samples.

In summary, the recognition effect of the improved FES-
YOLOv5s model for Agaricus bisporus specimens under
different light and growth conditions was better than other
target detection models. It accurately identified the location
of Agaricus bisporus specimens with high confidence and
the prediction frame could successfully wrap the Agaricus
bisporus specimens as well as identify occluded Agaricus bis-
porus specimens. There were no misdetections or omissions.

D. MODEL DEPLOYMENT
The enhanced FES-YOLOv5s model was deployed on an
Agaricus-bisporus-picking robot. The robot comprised a
truss-type mechanism with X, Y, and Z three-axis configu-
rations; a 270 degree servo; a flexible picking manipulator;
an industrial camera; and associated components. The
pneumatic-controlled flexible picking manipulator con-
tracted upon the application of negative pressure, allowing
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FIGURE 12. Recognition effect of Agaricus bisporus in dim environment.

FIGURE 13. Recognition effect of Agaricus bisporus in bright environment.

it to securely grip Agaricus bisporus specimens. Conversely,
the manipulator opened and released the selected Agaricus
bisporus specimen under positive pressure. The industrial
camera was located in a fixed position alongside the flexible
picking robot, enabling the transformation of the Agaricus
bisporus positions in the captured images into the basic
coordinate system of the robot. Figure 14 depicts the setup
of the Agaricus-bisporus-picking robot.

Several rounds of trials were conducted after deploying
FES-YOLOv5s to the Agaricus-bisporus-picking robot. The
picking robot first scanned the picking area line-by-line
whilst the industrial camera continuously captured the
images. After the area scanning was complete, the host
computer processed the captured Agaricus bisporus images,
recognized the positions of all Agaricus bisporusmushrooms,
converted the pixel positions to real positions using a coor-
dinate system conversion, and controlled the manipulator
to perform the picking. The experimental results revealed

FIGURE 14. Agaricus bisporus picking robot.

that the Agaricus-bisporus-picking robot deployed with the
FES-YOLOv5s algorithm had a recognition accuracy greater
than 90%. This verified the effectiveness of the model. The
experimental results are presented in Table 7.
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TABLE 7. Identification results of Agaricus bisporus picking robot.

V. CONCLUSION
In this study, we enhanced the YOLOv5s target detection
model by refining its backbone layer, integrating an ECA
mechanism, and incorporating a Soft-NMS module. This
optimization significantly reduced the number of parame-
ters and computational load, increasing the adaptability of
the model for mobile deployment. Several conclusions were
drawn through ablation and comparative tests using other
detection models.

1. By replacing the YOLOv5s backbone with the Faster-
Net lightweight model and integrating the ECA mechanism
and Soft-NMS module, the enhanced FES-YOLOv5s model
decreased the computation by 6.8 GFLOPs and increased
the FPS by 19.4%. It achieved precision and mean average
accuracy results of 98.3% and 93.6%, respectively, surpassing
the original YOLOv5s model by 1.2% and 2.4%, respec-
tively. This indicates a high recognition accuracy alongside
a lightweight design.

2. The FES-YOLOv5s model outperformed the YOLOv5s,
SSD, YOLOv4, YOLOv7, and YOLOv8s models. The mAP
values increased by 2.4%, 8.9%, 17.8%, 0.9%, and 0.4%,
respectively. The FPS increased by 18.7, 92.5, 87.8, 87.2, and
43.0, respectively.

3. The enhanced FES-YOLOv5s model proved to be effec-
tive at detecting Agaricus bisporus. Upon deployment on
the Agaricus-bisporus-picking robot, it achieved a detection
accuracy greater than 90% and accurately identified obscured
and overlapped mushrooms. It exhibited rapid real-time
detection capabilities, thus meeting the demands of rapid
detection.

This model has conducted relevant application research
on the detection of Agaricus bisporus. Due to the growth
characteristics of Agaricus bisporus (such as density
and occlusion), the FES-YOLOv5s model has potential
application value in dense and occluded target detection
scenarios. We will continue to explore the application of
FES-YOLOv5s in a wider range of detection scenarios in the
future.
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