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ABSTRACT Ultra-wide Band (UWB) technology has emerged as a pivotal tool for human motion detection,
finding applications in diverse areas ranging from smart homes to automotive safety. This paper presents
a comprehensive survey of methodologies employed in UWB-based motion detection, elucidating their
strengths, challenges, and performance metrics. While several methods, including Convolutional Neural
Network (CNN) approaches, have been explored, challenges such as motion state overlaps, the necessity
for enhanced spatial resolution, and background noise interference persist. Among the various methods
analyzed, the SGWO-based RMDL technique emerges as a frontrunner, offering superior accuracy, reduced
mean squared error, and impressive true negative and positive rates. Moreover, its computational efficiency
sets a precedent in human motion detection. This paper provides insights into the state-of-the-art Through
the wall imaging and human vital signs observation for future research and realtime applications.

INDEX TERMS Ultra-wide band (UWB), human motion detection, CNN, SGWO-based RMDL, motion
classification, accuracy, TPR, TNR, MSE, deep learning.

I. INTRODUCTION
Integrating Through-the-Wall Radar (TWR) technology with
Impulse Radio Ultra-Wideband (IR-UWB) signaling repre-
sents a notable advancement in remote sensing, particularly
in scenarios requiring the detection and localization of objects
or individuals behind obstacles. IR-UWB RADAR, char-
acterized by its extensive bandwidth and unique signaling
characteristics, has been reinvigorated in the technological
landscape following its legalization by the Federal Commu-
nications Commission (FCC) in 2002 [11].

IR-UWB RADAR is primarily known for its Impulse
Radio UWB (IR-UWB) signalling, which leverages very
short baseband pulses, typically in the nanosecond range,
to occupy a vast bandwidth in the frequency domain. The
simplicity of IR-UWB transmitters, which often do not
require intricate RF circuitry for up-conversion or filtering,
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and their innate ability to generate short pulses has been a
driving factor behind their adoption [10].
One of the most significant applications of IR-UWB

RADAR lies in TWR technology. These radars utilize
the penetrating capabilities of low-frequency electromag-
netic waves, which are inherent in the UWB technol-
ogy, to detect human targets behind walls. This feature
is invaluable in urban combat, anti-terrorism operations,
disaster rescues, criminal investigations, and search and
rescue operations [1]. The intense penetration capabilities
of UWB, coupled with its high-range resolution, position
it as an ideal tool for these critical applications. The
broader frequency range of the transferred impulse in
UWB can even mitigate radar blind spots, enhancing its
efficacy [40].

Figure 1 illustrates the experiment conducted by
Pardhu and Kumar [45], [46] on through-the-wall imaging,
demonstrating the process of identifying objects concealed
behind a wall.
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FIGURE 1. (a) Through the wall imaging experimental setup with 1 wall (b) Result of the particular experiment.

Moreover, IR-UWB RADARs offer non-invasive monitor-
ing solutions, a significant advantage in a world increasingly
concerned with privacy. Their ability to detect and categorize
human motion behind walls without compromising individ-
ual privacy sets them apart from other technologies like
infrared, visible light, and acoustics [13], [40]. This has led to
their use in post-disaster rescues, non-contact life monitoring,
anti-terrorism operations, and even smart home applications,
where their integration can lead to more responsive and
intuitive living environments [40].
Figure 2 depicts the real-time experiment conducted by

Thottempudi and Kumar [42], showcasing the use of SFCW
RADAR to identify human targets and detect vital signs
behind walls.

Figure 2(b) showcases the outcome of a real-time exper-
iment aimed at identifying human targets concealed by a
wall, utilizing SFCW (Stepped Frequency Continuous Wave)
RADAR technology. The image depicted in Figure 2(b)
represents the processed radar returns, where distinct patterns
can be observed as a result of human movement behind the
obstruction.

In the radar image, the human being signal is characterized
by a series of concentrated, high-intensity reflections that
stand out against the background noise and static reflections
from the wall. These reflections are a result of the radar waves
being bounced back from the moving human target, capturing
dynamic changes over time.

A. KEY FEATURES OF THE HUMAN SIGNAL
• Location and Movement: The position of the human
target is indicated by the aggregation of bright spots,
which correspond to the radar cross-section enhance-
ments caused by human motion. The trajectory or
movement pattern of the person can be inferred from
the variation in these bright spots over sequential radar
scans.

• Signal Characteristics:Compared to static objects, the
human being signal exhibits a dynamic nature, with

fluctuations in intensity and position reflecting different
motion states such as walking, waving, or other gestures.

• Signal-to-Noise Ratio (SNR): The human being signal
is discernible from the background primarily due to
the higher SNR in areas of motion. This contrast is
achieved through advanced signal processing techniques
that suppress background clutter and enhance themotion
signal.

The integration of Artificial Intelligence (AI) and Machine
Learning (ML) has improved the capabilities of IR-UWB
RADAR tremendously. The best performance for target
identification through the wall has been found via Convo-
lutional Neural Network (CNN) using data from IR-UWB
RADAR [29], [40]. Machine learning techniques such as
support vector machines (SVM) and deep learningmodels are
widely known to be the best for handling sophisticated data
environments [1], [2], [3], [4], [5], [6], [7], [8], [9]. Genetic
Algorithm (GA) and Particle Swarm Optimization (PSO) are
conceived as competent methods applied for the optimization
of complexities in tracking human motion through the
wall [15]. Identifying and classifying human motion through
the wall using IR-UWB RADAR is the focus of the current
research. Pardhu and Kumar [41] proposed that this approach
will involve a new human motion classification through
wall problem formulation as a hybrid optimization algorithm
development using training on a Random Multimodal Deep
Learning Classifier. This method combines the features of
UWB Signals and novel AI Algorithms to achieve better
accuracy and lower computational time in classifying human
motion through the wall. This research has diverse applica-
tions in smart home development, defense applications, and
disaster management [47]. Figure 3 illustrates the real-time
experiment conducted by Pardhu and Kumar [41] to classify
human movements through a wall.

The IR-UWB RADAR utilizes advanced computing tech-
nology and possesses distinctive attributes, making it a
pioneering force in revolutionizing the identification and
analysis of human movement through the wall. The outlined
process is vital in the evolution of technology as it enables
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FIGURE 2. (a) Human target identification experiment setup in real-time Concealed by the wall, (b) Experiment’s outcome.

FIGURE 3. (a) Realtime experiment, (b) Reconstruction of human structure from the snapshot received during the motion.

the shift from state-of-the-art technological solutions to those
applied in the realtime [1], [6], [10], [11], [13], [15], [29],
[40], [47].

II. LITERATURE ANALYSIS OF HUMAN MOTION
ANALYSIS BEHIND WALL
A. HUMAN MOTION ANALYSIS USING MACHINE
LEARNING ALGORITHMS
Integrating state-of-the-art radar technologies with artificial
intelligence constitutes a significant step forward. Such a
progression fundamentally lies far away from high frequen-
cies and closer to low frequencies - between 1 and 3 GHz,
influenced by the critical research of V.C. Chen [68], [71].
As described in [68], [69], [78], [79], [80], and [81], this
frequency band selection option avoids necessarily occurring
signal attenuation and distortion during the propagation
across various constructional materials. Implementing a radar
system based on an ultra-wideband (UWB) within 400 MHz
to 4.4 GHz is an explicit advancement. This system exhibits
an outstanding range and resolution characteristics, essential
for offering precise and exemplary surveillance by elderly
care applications.

An ultra-wideband (UWB) radar system is characterized
by a unique time-dependent signal function, s(t), which
presents excellent resolution essential for correct motion
detection. The key to this system is how Robust Principal
Component Analysis (RPCA) is ingrained within it for signal
processing purposes. Whereas the RPCA method accurately
decomposes X into a low-rank matrix L and a sparse
matrix S by X = L + S. There exist several works in
the envisaged area [71], [72], [73], [74], [75], [76], [77],
[82] on this decomposition technique. Further, the UWB
radar system uses a new technique, the Range-Max Time-
Frequency Representation (R- max TFR), for outputs of
signal enhancement purposes.In their study, Gao et al. [47]
developed an innovative approach by integrating Through-
the-wall radar (TWR) with a multilink auto-encoding neural
network, creating the TWR-MCAE technique. This technique
aimed to refine the accuracy of human motion detection,
particularly in scenarios where walls act as obstructions. The
TWR-MCAE model was modified to improve the detection
of sparse motion features prevalent in human movements and
eliminate interference fromwall debris, which typically led to
inaccurate motion detection. Although this model made great
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efforts to find motion sparsity features, it ultimately imposed
limitations on them. One significant deficiency was the
absence of optimization techniques, which have the potential
to improve the performance of the model significantly.

Mathematically, the R-max TFR is given as
R-max TFR(t, f ) = maxτ (|S(t, τ, f )|). This enhancement
method significantly enhances signal clarity in environments
with more complex data [68], [69]. Kiliç et al. [1] take it to
the next level by classifying human postures. It uses Convolu-
tional Neural Networks (CNN) along with Through-the-Wall
Radar (TWR), where it uses Stepped Frequency Continuous
Wave (SFCW) radar. The mathematical expression for the
SFCW radar is given by s(t) =

∑N
n=1 e

j2π (f0+n1f )t , where
f0 is the initial frequency, 1f represents the frequency
increment, and N denotes the total number of frequency
increments. CNNs are represented mathematically as a series
of convolution operations F (l)

= σ (W (l)
∗ X + b(l)).

They improve the system’s ability to differentiate between
individuals’ spatial locations and orientations, even when
obstructed by walls [1].

The Impulse Radio Ultra-wideband (IR-UWB) tech-
nology, pivotal in both civil and military sectors for
its ability to penetrate non-metallic and non-transparent
barriers, is defined by a broad frequency spectrum (3.1 to
10.6 GHz) and a signal comprised of short pulses (s(t) =∑

∞

n=−∞
p(t−nTf )). This technology is ideal for applications

such as post-disaster rescue [84], counter-terrorism [32], [85],
and non-contact life monitoring [39], [86], outperforming
visible light and infrared technologies in adaptability and
privacy [13]. Advances in AI have greatly enhanced
UWB radar’s target detection accuracy, with machine
learning techniques like Support Vector Machines (SVM),
formulated as an optimization problem (min 1

2∥w∥
2 subject

to yi(w · xi + b) ≥ 1) [87], playing a crucial role.
Additional methods include multiscale residual attention
networks [88] and feature extraction techniques like discrete
wavelet transform (X (a, b) =

∫
x(t) 1

√
aψ

( t−b
a

)
dt) [89],

[90], [91]. Techniques such as PCA for data dimension-
ality reduction [92], CARTFR, and MHHT for activity
recognition [26], [93], and segmented convolutional gated
recurrent neural networks for human activity recogni-
tion [94] further demonstrate the sophistication of these
systems. Despite advancements, challenges like limited
radar target datasets [95] persist, addressed through transfer
learning [96], [97] and small sample learning [98], [99].
Zhengliang et al.’s development of an IR-UWB dataset for
human motion states [40] marks a significant step, albeit with
limitations in low-frequency human data capture, indicating
potential areas for future enhancements in security and smart
environment
applications.

B. MIMO RADAR BASED HUMAN MOTION DETECTION
Modern radar systems have experienced significant evo-
lution, particularly with the advent of Synthetic Aperture

Radar (SAR) and Multi-Input-Multi-Output (MIMO) tech-
nologies, which have substantially surpassed traditional
monostatic radar capabilities in generating high-resolution
2D and 3D imagery for a variety of applications. Using a
single transmitting and receiving antenna, SAR achieves high
azimuth resolution. This attribute has proven beneficial for
applications such as ground penetrating radar (GPR) and
various vehicular and airborne operations [100], [101], [102],
[103]. The principle underlying SAR can be mathematically
described by the radar equation for SAR, which is:

SAR(x, y) =

∫ ∫
s(t, α) e−j

4πR(x,y,α)
λ dt dα (1)

where s(t, α) represents the signal at time t and antenna
position α, and R(x, y, α) denotes the range from the antenna
to the point (x, y) on the ground.
In contrast, MIMO technology, which utilizes multiple

antennas for transmitting and receiving, provides enhanced
resolution. However, this setup results in delayed data
acquisition, a challenge particularly observable in applica-
tions like breast cancer diagnosis and concealed weapon
detection [104], [105], [106], [107], [108], [109], [110],
[111], [112], [113], [114]. The mathematical representation
of a MIMO radar system can be expressed as:

MIMO(t, r) =

Nt∑
i=1

Nr∑
j=1

sij(t) e−j2π fij(t)r (2)

where Nt and Nr are the numbers of transmitting and
receiving antennas respectively, sij(t) is the signal transmitted
by the i-th transmitter and received by the j-th receiver, and
fij(t) is the corresponding frequency.

S-band UWB switched-antenna-array radar with superior
performance has also been proposed to reduce the complexity
and cost brought in by MIMO systems through scaling down
from a 13-Tx/8-Rx to a 1-Tx/5-Rx structure [115], [116],
[117], [118]. It is specifically designed to detect human
positions behind concrete walls, and therefore, the system is
best suited to critical applications such as hostage rescue. The
operating procedure of this system transmits UWB signals
and captures the reflected signals, which are subsequently
subjected to preprocessing and transformed from 3D arrays
to 2D arrays by statistical variance analysis. Subsequently,
the image is reconstructed by back-projection employing a
Sinc filter.

Mathematically reconstructed through a back-projected
algorithmic, the process can be represented as follows:

Image(x, y) =

N∑
n=1

Sinc
(√

(x − xn)2 + (y− yn)2
)
Vn (3)

where N is the number of antenna elements, (xn, yn) are
the coordinates of the n-th element, and Vn is the variance
analyzed signal at that element.

Complementing these developments, Rittiplang and
Phasukkit [27] introduced a through-wall S-band UWB
radar with a switched antenna array, focusing on detecting
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stationary subjects via respiration analysis. Despite its
effectiveness, this system lacks specific functionalities
required for comprehensive rescue operations in disaster
scenarios, highlighting the potential for further advancements
in emergency response technologies.Zhang et al. [48]
proposed an innovative way through the development
of TwSense to develop an innovative Through-the-wall
detection system with a commercial Wi-Fi device. It had
features different from traditional means and concentrated
on alleviating the efficiency and robustness of detection.
TwSense had been unique for this system in that its lesser
processing time and increased robustness were likely to
make it highly suitable for real-time applications. Despite its
extensive features, the system had a significant drawback: it
required including the Fresnel zone model in its through-the-
wall detection methodology.

This omission means that TwSense, while effective in
certain aspects, needs a comprehensive theoretical framework
that fully integrates the dynamics of human activity with
wireless signal behavior. The absence of such a model indi-
cates potential areas for further development and refinement
in the system. This suggests additional research could lead
to a more holistic and theoretically grounded approach to
through-the-wall detection technology.

Recent advancements in radar technology have been
significantly influenced by Narayanan et al. [23], who devel-
oped a multi-frequency radar model specifically designed
for human detection and activity classification, focusing on
short-range applications. This model, particularly adept in
through-wall detection scenarios, operates within the S-Band
frequency spectrum and utilizes two distinct waveforms,
selected through specific switching mechanisms and incor-
porating wide-band noise waveforms. Despite its innovative
approach, the model faces limitations in detecting certain
human activities, revealing opportunities for enhancement to
ensure more comprehensive detection, crucial for security,
surveillance, and rescue operations. The importance of such
technology is underlined in military and law enforcement
contexts, where detecting human targets and movements
through walls and light foliage is increasingly vital [23]. For
example, low-frequency microwave signals (less than 5 GHz)
can penetrate building walls with relatively low loss, and
at short ranges (typically 6–10 feet), portable antennas
with wider beamwidths can isolate a single human. The
antenna beamwidth θ of a circular aperture antenna is
given by θ =

1.27λ
D for a single-way beamwidth [119],

where λ is the wavelength and D is the antenna size.
Considering the two-way beamwidth needed for radar
applications, θ becomes θ =

1.27λ
D

√
2
[119]. For instance, at

a 3 GHz frequency in the S-Band (2–4 GHz), corresponding
to a wavelength of 10 cm, and with a 6-inch antenna, the
two-way beamwidth is about 34.2 degrees. The azimuth or
cross range resolution1RCR for a real-aperture radar is given
by 1RCR = Rθ [119], which at a range of 2 meters yields an
adequate resolution of approximately 1.1 meters for isolating

a single human. Moreover, the down-range resolution1RDR,
determined by the transmit bandwidth B, is expressed as
1RDR =

c
2B [120], [121], where c is the speed of light.

These mathematical analyses demonstrate the capability of
radar systems to adapt to various operational requirements,
highlighting the potential for future enhancements in human
detection through barriers.

Recent advancements in radar technology, particularly in
human motion detection, have been notably propelled by
the work of Wang et al. [36], who introduced a significant
innovation with their residual subspace projection method.
Utilizing compressed sensing techniques, this method effi-
ciently collects Ultra-Wideband (UWB) radar data and has
shown effectiveness in detecting various human motion
states. Within the S-Band frequency spectrum, up to 3.5 GHz,
UWB radar is recognized for penetration capabilities through
common obstructions like walls, making it ideal for through-
wall security, rescue, and surveillance applications. Despite
its effectiveness, Wang et al.’s method revealed a critical
limitation in accurately classifying specific types of human
movements. Addressing this gap by refining the classification
process could substantially improve the method’s accuracy,
enhancing its utility in a wider range of applications [9], [12],
[16], [31], [122], [123], [124].
A key aspect of these advancements is the mathematical

processing of radar signals. The Fourier transform, for
instance, plays a crucial role and is mathematically expressed
as F(ω) =

∫
∞

−∞
f (t)e−jωtdt , which transforms time-domain

signals into their frequency domain representations [125],
[126]. Additionally, singular value decomposition, instru-
mental in processing compressed UWB data, involves
decomposing a matrix A into its constituent matrices,
formulated as A = U6V ∗, with V ∗ being the conjugate
transpose of V [20], [127], [128], [129], [130]. These
mathematical techniques are pivotal in enhancing the radar’s
capability to detect and classify human movements, even
through barriers, making significant contributions to security
and emergency response.

Recent ultrawideband (UWB) radar technology advance-
ments have significantly enhanced the ability to detect
obscured human activities in complex environments, such
as through walls or underground [131]. A prominent area
of focus is identifying vital signs and movements of human
targets, where techniques like the fast Fourier transform
(FFT) and S-transform have been instrumental. Li et al. [20]
employed these methods to extract respiration frequencies
and locate static human targets. In contrast, Wang et al. [34]
focused on imaging moving targets, where the complexity
of the task increases due to environmental interference and
the coupling of movement with vital signs. The time-domain
finite element method (TDFEM) has been proposed to
simulate radar data for moving humans, categorizing human
movements into long-range and periodic motions like respi-
ration. In this context, the mathematical formulation for radar
signal processing, particularly for movement, can involve
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models like x(t) = A(t) cos(2π fct + φ(t)), where x(t) is the
radar signal, A(t) the amplitude, fc the carrier frequency, and
φ(t) the phase shift caused by movement [132].

In signal processing, the UWB single-input multiple-
outputs (SIMO) radar system was used to reconstruct paths
and associate this to vital signs in the radar images. Methods
like empirical mode decomposition (EMD) and multivariate
empirical mode decomposition (MEMD) [132], [133], [134]
have been used for the processing of SIMO radar data for
extracting vital signs from multi-channel, complex signals.
For example, the MEMD decomposes a multichannel signal
into a set of intrinsic mode functions (IMFs) which can
be mathematically expressed as Xi(t) =

∑n
j=1 IMFij(t),

where Xi(t) is the ith channel signal and IMFij(t) the jth
IMF of that channel. This decomposition aids in isolating
vital signs from other signal components. On the other hand,
Wei and Zhang et al. [37] used TDFEM to mimic radar data
akin to those produced by human respiration while making
background removal techniques for better analysis of the data
required more empirical validation before determining its
efficacy in real-world applications. This gap underscores the
need for tests in actual life to prove the level of reliability
these advanced radar models make in executing some of
these critical applications, such as security and emergency
response.

Saeed et al. [28] have taken a commendable step ahead in
human behavior detection radar technology by ingeniously
combining Convolutional Neural Networks (CNN) with the
Kalman filter (KF). This approach aims to generate accurate
feature maps and use radar data in privacy-preserving ways
across various scenarios. Despite the innovation in design, the
method needs more optimization in learning from each con-
volution layer’s kernel, which is a shortfall that presents an
opportunity for enhancing the learning mechanism towards a
better version for detection and classification accuracy. This
work is put in a broader research context about monitoring
human behaviors through radar sensors. UWB systems have
been studied for their intrinsic capabilities for other scenarios,
such as anomaly detection [135], [136], [137], [138], [139],
[140]. Long-distance detection capabilities and penetration
potential of UWB radar sensors make them particularly
suitable for this whenever an area needs human motion
detection and identification in any weather conditions and
at any time conditions [141], [142], [143], [144], [145].
Such systems often utilize micro-Doppler (MD) signatures,
which mathematically can be described by the Doppler
shift formula 1f =

2v
c f0 where 1f is frequency shift,

v is the target’s velocity, c is the speed of light, and f0
is the original transmitted frequency. This Doppler shift is
crucial for classifying and recognizing moving objects [12],
[13]. With KF and CNN fused, which reached a detection
rate of 98.7% even in complex scenarios with barriers,
Saeed et al.’s approach shows enormous promise in practical
applicability yet points to further empirical validation and
optimization [28].

C. HYBRID OPTIMIZATION ALGORITHMS-BASED HUMAN
MOTION CLASSIFICATION
Pardhu and Kumar [41] have made efforts in the direction of
improving human motion detection by proposing the use of
the Spotted Grey Wolf Optimizer (SGWO) as a novel hybrid
algorithm that synergistically combines both the Spotted
Hyena and the Grey Wolf Optimizer. In this work, the
SGWO has been used to improve the performance of the
Random Multimodal Deep Learning (RMDL) Classifier in
human motion classification, such as walking and standing,
with great accuracy, especially in complex background
conditions such as presence detection behind walls. The
SGWO algorithm, inspired by the intricate social hierarchy
and collaborative hunting strategies of hyenas and grey
wolves, is adept at solving various complex optimization
challenges encountered in motion detection. Mathematically,
the SGWO algorithm can be expressed as an expression that
models the agents’ behavior and position updates (hyenas and
wolves). The new agent position is then obtained from the
updating position formula as xnew = xold + A · D, where
xold and xnew represent the old and new positions of the
agent, respectively, and A represents the coefficient matrix
that describes both the direction and magnitude of step.

In contrast, D represents the calculated distance vector
between the agent and the prey or target. This distance vector
D is usually computed as D = |C · xprey − xold|, where
xprey represents the prey position, and again, C is another
coefficient matrix acting to define better the encircling
behavior the agents adopt [41]. The application of SGWO
in enhancing the effectiveness of the RMDL Classifier
leverages the intense penetration and high range-resolution
capabilities of UWB radar [6], [13], [32], [40]. UWB radar
signal processing expertise of advanced methods such as
the fast Fourier transform (FFT) [20], [37] for analyzing
signals, and the back projection techniques [35], [37] for
reconstructing an image from the radar data. Hence, a fusion
of these advanced signal processing techniques into the
SGWO-based RMDL Classifier avails accurate classification
of the human movement required for various applications in
security surveillance systems, search and rescue operations,
and the development of intelligent home technologies [41].

Figure 4 presents a concise framework demonstrating
the application of the Hybrid Spotted Grey Wolf Opti-
mizer (SGWO) based Random Multimodal Deep Learning
(RMDL) technique for detecting and classifying human
motion behindwalls. This framework details the process from
the initial detection phase, utilizing SGWO’s optimization,
to the intricate classification phase achieved through RMDL’s
deep learning algorithms.

Ultrawideband (UWB) through-the-wall radar (TWR)
systems, crucial in urban combat and search and rescue
operations [147], confront challenges in human motion
recognition due to wall-induced signal distortions such as
attenuation and multipath effects [148]. These challenges
necessitate enhanced data processing strategies for accurate

VOLUME 12, 2024 89823



T. Pardhu et al.: Advancements in UWB-Based Human Motion Detection Through Wall

FIGURE 4. Framework for human motion classification based on SGWO based RMDL technique.

motion recognition. Initially reliant on classical signal
processing methods for feature extraction and statistical
classification [147], [148], [149], [150], [151], TWR systems
have evolved to incorporate intelligent signal processing
techniques. These include support vector machines (SVM)
[152], time delay estimation methods [153], and orthog-
onal matching pursuit algorithms [154]. Despite improve-
ments, these methods often struggle with complex motion
data [2], [155]. Recent advancements leverage neural network
approaches, such as convolutional neural networks (CNNs)
[157] and autoencoder networks [156], offering superior
feature extraction but at the cost of increased training time.

D. HUMAN MOTION ANALYSIS USING DEEP LEARNING
ALGORITHMS
Addressing these limitations, a novel data augmentation
method, the multilink convolutional autoencoding neural
network (TWR-MCAE) [53], has been introduced. TWR-
MCAE combines multiscale information in 2-D images
with sparse and low-rank physical properties to enhance
motion feature extraction in range-time and Doppler-time
maps. Central to TWR-MCAE is the convolution operation,
mathematically formulated as Fij =

∑
m

∑
n Im,n · Ki−m,j−n

[53], where Fij is the feature map, I the input, and K the
kernel. This method significantly improves the classifiers’
recognition accuracy and training efficiency, contributing
to the advancement of UWB TWR technology in complex
human motion detection scenarios.

In recent years, Ultrawideband (UWB) through-the-wall
radar (TWR) technology has emerged as a key tool in
indoor human monitoring, notably for applications like
elderly care and gait recognition, owing to its non-contact
nature and privacy preservation [157], [158]. Challenges
in TWR, especially in through-wall detection, stem from
signal distortions caused by wall interactions, leading
to weakened micro-Doppler features [159]. Traditional
enhancement methods like the Cross Ambiguity Function
(CAF) generate micro-Doppler spectrograms by selecting

columns with Doppler peaks from range-Doppler maps over
time [83], [160], [161], [162], mathematically represented
as Rmax(t, f ) = max(R(t, f )), where R(t, f ) indicates
range values for each time-frequency bin. Addressing
further complexities such as interference from live con-
ductive wires in walls, deep neural network approaches
like conditional Generative Adversarial Networks (cGANs)
have been adapted [163], [164], [165]. These networks
transform wire-corrupted spectrograms into de-wired ones,
as seen in the advancements by Wang, S., et al. with the
Cycle-Consistent Generative Adversarial Network (Cycle
GAN) incorporating identity loss for improved realism in
spectrogram reconstructions [51]. However, integrating these
advanced signal processing methods with various lightweight
classifiers for enhanced efficacy in diverse detection scenar-
ios remains a promising area for future exploration.

An et al. [51] utilized Robust Principal Component
Analysis (RPCA) to eliminate stationary clutters from raw
range slow-timemaps. This method was particularly effective
in reducing the multipath effects that often complicate
time-frequency map analyses. The use of RPCA in this
context marked a significant step in enhancing the clarity
and accuracy of radar signal processing. However, a key
challenge with this technique was its computational demand.
The approach required many iterations to produce accurate
results, translating to higher computational loads and longer
processing times. While the method showed considerable
promise in dealing with complex signal interferences, the
need for a more efficient computational process indicates an
area for potential improvement. Streamlining the RPCA pro-
cess could lead to a more practical and faster implementation,
making it more viable for real-time applications where rapid
processing is crucial.

In the last two decades, the use of Ultrawideband
(UWB) through-the-wall radar (TWR) for indoor human
monitoring has become increasingly prevalent in fields
such as counter-terrorism and law enforcement, especially
in urban environments [166], [167], [168], [169], [170].
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While optical and infrared sensors require a direct line of
sight and are effective only in unobstructed areas, radar
sensors exploit the ability of electromagnetic signals to
penetrate walls, enabling the detection of humans within
buildings [171], [172], [173], [174]. Though effective, active
radar systems, utilizing wideband signals like impulse or
Frequency Modulated Continuous Wave (FMCW) are often
hindered by high costs and complexity [166], [167], [168],
[169], [170]. In contrast, passive radar systems, which use
existing signals from sources like WiFi networks, offer a
more cost-effective and discreet alternative [175]. These
systems, exemplified by Wi-Vi [176] and WiSee [177], have
shown promise in detecting human motions through walls
using WiFi signals. The Signal-to-Noise Ratio (SNR) of
these detections, particularly for minor motions such as
typing or breathing, can exceed 20dB after appropriate signal
processing [162], [176], [177], [178], [179], [180], [181],
[182], [183], [184], [185]. Mathematical analysis in passive
radar often involves Doppler processing, where the Doppler
shift 1f = 2v/λ (with v being the velocity of the target and
λ the wavelength of the WiFi signal) is crucial for detecting
motion. Recent advancements have focused on enhancing
the Doppler resolution using techniques like the Iterative
Adaptive Approach (IAA) instead of traditional Fast Fourier
Transform (FFT), allowing for better discrimination ofmicro-
Doppler signatures [24]. Sun et al. [50] further developed
WiFi passive radar models, optimizing deployment strategies
to enhance surveillance capabilities. However, these models
require refinement for more consistent performance across
various scenarios.

In urban environments, particularly for counterterrorism
and disaster rescue, detecting and locating concealed indi-
viduals, such as enemy personnel or victims behind obsta-
cles, is crucial. Electromagnetic wave detection, especially
ultrawideband (UWB) low-frequency signals, stands out due
to its ability to penetrate different materials and maintain
privacy [186], [187], [188]. While millimeter wave radar
offers high distance resolution, symbolized by its fine range
resolution 1R =

c
2B (where c is the speed of light and B is

the bandwidth of the signal), it has limited penetration [189].
This leads to a focus on UWB low-frequency signals in
TWR-based human action recognition. Advanced imaging
techniques in TWR, such as the backprojection algorithm, are
mathematically represented as I (x, y) =

∫
S(t)δ(t −

2R
c )dt ,

where I (x, y) is the image intensity, S(t) the received signal,
and R the range, have shown progress [34], [190], [191],
[192], [193], [194], [195], [196]. However, these methods
often require significant computational resources. In contrast,
though suitable for real-time applications, parameter domain
methods have limitations in scope [197], [198]. Addressing
these, this paper introduces a network for simultaneous
people counting, motion recognition, and static human
localization, aiming to expand the practical applications
of TWR. Lin et al. [52]’s development of the Multiscale
Spatial and Channel Attention Module (MSCAM) marks a
significant advancement, yet further enhancement is needed

in static human localization to harness its surveillance
potential fully.

Table 1 titled ‘‘Literature Analysis of Various Methods
by Different Researchers’’ is likely a comparative Analysis
of diverse research methodologies. This table elucidates the
progression and novel contributions in the discipline while
identifying gaps and prospects for enhancement, providing a
roadmap for future research endeavors.

III. CHALLENGES IN HUMAN MOTION DETECTION
TECHNIQUES
Human motion Analysis through the wall using RADAR
Systems is the contemporary field of research. However,
despite their advancements, several techniques confront
significant limitations that hinder optimal performance.

1) CNN-based Motion Detection ( [40]): A CNN-based
approach was developed for detecting human motion,
which relied heavily on describing features using a
time-domain range profile. A critical limitation of this
approach is its dependence on the length of time. If the
length of time is considerable, two motion states might
overlap, degrading the recognition efficiency.

2) Synthetic Aperture Radar Integration ( [1]): While
the various human motion detection techniques
reported lacked the integration of Synthetic Aperture
Radar (SAR) for efficient dataset creation. The
integration of SAR could provide enhanced spatial
resolution, which is crucial for motion detection.

3) Noise and Clutter in Detection Platforms ( [39]):
Detecting human motion in automotive applications
is becoming increasingly significant. However, distin-
guishing humans from noisy and cluttered backgrounds
remains a formidable challenge.

4) KF and CNN-based Motion Detection ( [28]): This
study combined the Kalman Filter (KF) and CNN
for human motion detection. However, the method
did not encompass learning various data types, such
as amplitude and frequency, which are essential for
classifier support.

5) Backscattered Signals from Static Targets ( [39]):
Large static targets, like walls, produce backscattered
signals with higher signal strength than human targets.
Mitigating these strong backscattered signals is crucial
to enhance detection accuracy.

6) TwSense Model Limitations ( [48]): The TwSense
model, while innovative, required a comprehensive
validation of the through-the-wall condition to discern
human body breathing patterns. This posed a signifi-
cant challenge in distinguishing between stationary and
unoccupied states of individuals.

7) MSCAM’s Lightweight Network Requirement
( [52]): The MSCAM approach did not account for
scenarios involving more than two individuals. For
practical deployment and broader applicability, there’s
a pressing need for a lightweight network model to
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TABLE 1. Literature analysis.

diminish parameter count and floating-point operations
further.

8) Recognition Algorithm in Triple-Link Fusion Deci-
sionModel ( [53]): The model showed promise in real-
world applications. However, it needed to incorporate
recognition algorithms tailored for multi-dimensional
through-the-wall radar, posing a significant limitation.

9) Cycle GAN’s Comparison Limitation ( [54]): The
Cycle GAN did not offer a robust comparison with the
cGAN model, lacking an effective live wire modeling
method. This omission could have helped validate
Cycle GAN’s efficiency.

10) Wall Effects on Human Motion Recognition: The
challenges introduced by walls, including attenuation,
refraction, and multipath effects, profoundly distort
the echo signal. These effects not only compromise
recognition accuracy but also inflate computational
time.

In light of these challenges, there’s an imperative need
for novel methodologies and optimizations that address these
issues, ensuring robust and accurate human motion detection
and classification.

IV. DISCUSSION
Ultra-wideband (UWB) technology, especially for human
motion detection, has been the focus of numerous studies,

each employing diverse methodologies and metrics for
evaluation. While many methods have made substantial
advancements, challenges must be addressed for optimal
performance.

The convolutional neural network (CNN) has been
employed in various studies ( [1], [28], [40]) for motion
detection. While they provide high accuracy rates, their
reliance on specific parameters, such as the length of time in
feature description, can lead to potential overlapping motion
states, thus decreasing efficiency.

Specific techniques, like the one described in [1], have
yet to integrate advanced radar techniques like Synthetic
Aperture Radar (SAR), which could provide enhanced
spatial resolution. Furthermore, issues like noisy clutter
backgrounds in automotive applications [39], the inability to
learn varied data types like amplitude and frequency [28], and
backscattered solid signals from static targets like walls [39]
further compound the challenges faced in this domain.

Despite these challenges, the proposed SGWO-based
RMDL method has showcased promising results across
multiple metrics, such as accuracy, MSE, TNR, and TPR.
Notably, its performance in terms of computational time, both
for training and testing, has been superior compared to other
classical methods.

Table 2 compares the various methods based on Various
metrics.
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TABLE 2. Comparison of different methods.

V. ALGORITHMIC FRAMEWORK
A. ALGORITHMIC OVERVIEW
This section introduces the Spotted Grey Wolf Optimizer
(SGWO) and the Random Multimodal Deep Learning
(RMDL) algorithms used for classifying human motion
through walls using Ultra-Wideband (UWB) technology.
These methods have been selected for their robustness and
adaptability in handling complex data patterns typical of
through-wall human motion detection.

B. DETAILED ALGORITHMIC STEPS
1) SGWO ALGORITHM

1) Initialization: Begin by generating an initial pop-
ulation of grey wolf agents. Each agent’s position
represents a potential solution in the multidimensional
search space of our classification problem.

2) Fitness Evaluation: Each agent’s position is evaluated
using a fitness function that measures the classification
accuracy on a validation set derived from UWB radar
data.

3) Position Update Mechanism: Update the positions of
agents using the following mathematical formulas:

A = 2a · rand() − a,

C = 2 · rand(),

D = |C · Xprey − Xcurrent|,

Xnew = Xprey−A · D.

where Xprey is the position of the best solution found
so far (the prey), Xcurrent is the current position of the
agent, rand() is a random number between 0 and 1,
and a decreases linearly from 2 to 0 over the course
of iterations.

4) Termination: The algorithm terminates when a max-
imum number of iterations is reached or when the
improvement between successive iterations falls below
a predetermined threshold.

2) RMDL TECHNIQUE
• Configuration: Set up multiple deep learning archi-
tectures, including Convolutional Neural Networks
(CNNs), Recurrent Neural Networks (RNNs), and Deep
Neural Networks (DNNs), to run in parallel, each

optimized to capture different aspects of the motion
detection task.

• Training: Each model is trained independently on
segmented UWB radar data, which includes a variety of
human motion scenarios behind walls.

• Integration and Final Classification: Outputs of all
models are integrated using a majority voting or other
decision fusion techniques to improve reliability and
accuracy of the motion classification.

VI. EMPIRICAL EVIDENCE SUPPORTING SGWO-BASED
RMDL SUPERIORITY

The SGWO-based RMDL method has been identified
as a frontrunner in UWB-based human motion detection
methodologies due to its superior accuracy and computational
efficiency. This section elaborates on the empirical evidence
supporting these claims, offering a transparent view of its
performance merits.
A. ACCURACY ENHANCEMENT
1) EMPIRICAL DATA
In a comparative study involving various UWB-based motion
detection methods, the SGWO-based RMDL consistently
demonstrated higher detection accuracy across multiple
scenarios, including through-wall detection in different envi-
ronmental settings. For instance, compared to conventional
CNN-based approaches, the SGWO-based RMDL improved
in accuracy by approximately 5% in cluttered environments.

2) MECHANISM OF IMPROVEMENT
The accuracy enhancement can be attributed to the SGWO
algorithm’s capability to optimize the feature selection pro-
cess effectively, allowing the RMDL framework to leverage
a more relevant subset of features for motion detection. Addi-
tionally, the hybrid nature of the RMDL, which combines
multiple deep learning architectures, contributes to a more
robust classification mechanism capable of handling diverse
motion patterns with higher precision.

B. COMPUTATIONAL EFFICIENCY
1) BENCHMARKING RESULTS
Computational efficiency benchmarks reveal that the
SGWO-based RMDL method reduces the model training
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time by up to 30% compared to traditional deep learning
models. Moreover, the inference time, crucial for real-time
motion detection applications, was significantly improved,
showcasing the SGWO-based RMDL’s suitability for
deployment in time-sensitive contexts.

2) UNDERLYING FACTORS
The improvement in computational efficiency stems from
the SGWO algorithm’s streamlined search process for
optimal network parameters, reducing the computational
overhead associated with model training and optimization.
Furthermore, the modular design of the RMDL framework
allows for parallel processing of features, enhancing the
overall speed of motion classification.

The SGWO-based RMDL method’s superior accuracy
and computational efficiency performance are supported by
empirical evidence from comparative studies and bench-
marks. The method’s innovative integration of the SGWO
optimization algorithm with a multimodal deep learning
framework addresses challenges in UWB-based motion
detection, setting a new standard for future research and
application.

Figure 5, Figure6 Explains the comparison of various
methods based on Accuracy, TPR, MSE, TNR, and Compu-
tational Times.

VII. INTEGRATION OF UWB TECHNOLOGY WITH OTHER
SENSING MODALITIES
Integrating Ultra-Wideband (UWB) technology with other
sensingmodalities, such as LiDAR and infrared (IR), presents
an innovative approach to enhance detection capabilities in
complex environments. This integration aims to leverage the
unique advantages of each technology, offering improved
accuracy, reliability, and versatility for motion detection
applications.

A. ENHANCED DETECTION ACCURACY
The combination of UWB’s ability to penetrate through
obstacles with LiDAR’s high spatial resolution can sig-
nificantly improve the accuracy of detecting and mapping
objects or movements in cluttered or visually obstructed
environments.

B. COMPLEMENTARY STRENGTHS FOR IMPROVED
RELIABILITY
UWB and IR sensors can complement each other by
providing redundant and supplementary data. In conditions
where UWB might be affected by material properties or
multipath effects, IR sensing can offer additional information
based on heat signatures, ensuring consistent detection
performance under diverse circumstances.

C. INCREASED VERSATILITY ACROSS APPLICATIONS
This integrated approach expands the utility of detec-
tion systems, making them adaptable to a broader array
of applications—from enhanced surveillance and security

systems capable of operating in various visibility conditions
to autonomous navigation systems that require accurate
real-time data in complex urban landscapes.

D. CHALLENGES IN INTEGRATION
Despite the promising benefits, integrating UWB with
LiDAR and IR technologies involves challenges such as
the development of sophisticated data fusion algorithms,
ensuring system interoperability, and managing the increased
complexity and cost implications of multi-modal systems.

E. ALGORITHMIC CONTRIBUTIONS AND IMPACT
Implementing the Spotted Grey Wolf Optimizer (SGWO)
to enhance the deep learning processes within the Random
Multimodal Deep Learning (RMDL) framework represents a
notable advancement in human motion detection technology.
SGWO significantly reduces training times and boosts the
model’s ability to generalize across unseen data, critical in
practical applications where varied human motion patterns
are encountered. The RMDL framework itself, by integrating
multiple deep learning architectures, offers a robust and
adaptable solution, effectively capturing the complex dynam-
ics of human motion through Ultra-Wideband (UWB) radars.
This hybrid approach improves accuracy and ensures the
system’s adaptability to different environmental conditions
and motion types.

F. FUTURE RESEARCH DIRECTIONS
While the SGWO-RMDL framework has achieved sig-
nificant success, it also presents several challenges. The
framework’s sensitivity to hyperparameter settings and its
heavy reliance on extensive labeled datasets for training
are notable obstacles. However, the future holds promise as
research will delve into the automation of hyperparameter
tuning to enhance system efficiency and the incorporation
of semi-supervised learning frameworks to better utilize
unlabeled data, which are abundant in real-world settings.

Moreover, combining UWB with other modalities, such
as LiDAR and infrared (IR) sensors, and integrating sensor
fusion techniques could greatly enhance detection capa-
bilities in environments with complex obstructions. This
sensor fusion approach promises to create more robust and
versatile motion detection systems by leveraging the unique
advantages of each sensing technology.

Addressing these technical challenges will necessitate
focused research efforts aimed at refining data fusion
techniques, optimizing sensor configurations for specific
applications, and evaluating the trade-offs between system
complexity and performance enhancements. However, it’s not
just about the technology. Given the potential deployment of
these advanced detection systems in sensitive environments,
it is crucial to consider the ethical and privacy implications.
Ensuring the responsible use of technology in public or
private spaces will be pivotal for societal acceptance and
regulatory compliance.
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FIGURE 5. Comparison of various methods for human Motion classification.

FIGURE 6. Comparison of various techniques based on computational time.

This comprehensive exploration of the SGWO-RMDL
framework and the potential of sensor fusion underscores a
promising area for future research and technological develop-
ment in motion detection. The continued advancement in this
field will enhance the capabilities of surveillance and security
systems and open new avenues for innovation in smart home
technologies, disaster response, and healthcare monitoring.

VIII. STANDARDS AND REGULATORY COMPLIANCE FOR
UWB TECHNOLOGY
A. FEDERAL COMMUNICATIONS COMMISSION (FCC)
GUIDELINES
The FCC has established guidelines for UWB device
operation to minimize interference with existing radio
services. According to the Report and Order FCC 02-48,
UWB devices must adhere to specified emission limits
and operate within designated frequency bands. Ensuring
compliance with these guidelines is crucial for the safe and
effective deployment of UWB technology inmotion detection
applications.

B. IEEE 802.15.4A STANDARD
The IEEE 802.15.4a standard specifies low-rate wireless
personal area networks (LR-WPANs) incorporating UWB
technologies. This standard outlines data communication
and ranging parameters, ensuring device interoperability
and consistent performance. Adherence to IEEE standards
facilitates the development of reliable and compatible UWB
devices across various applications.

C. SPECIFIC ABSORPTION RATE (SAR) COMPLIANCE
For UWB devices intended for use in proximity to humans,
compliance with SAR limits is essential to ensure safety. SAR
measures the rate at which the body absorbs RF energy, and
regulatory bodies have established limits to protect against
potential health risks. In the U.S., the SAR limit for the
general public is 1.6 W/kg, averaging over 1 gram of tissue,
whereas in the EU, it is 2.0W/kg, averaging over 10 grams of
tissue. Manufacturers and developers of UWB-based motion
detection systems must rigorously test their devices to ensure
they meet these safety standards.
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D. ADDRESSING PRIVACY CONCERNS
The deployment of UWB technology in homes and healthcare
facilities raises significant privacy concerns. Stringent data
protection measures, including data encryption and secure
transmission protocols, must be implemented. Compliance
with privacy regulations such as the General Data Protection
Regulation (GDPR) in the EU and the Health Insurance
Portability and Accountability Act (HIPAA) in the U.S.
is crucial for protecting sensitive information and ensuring
the ethical use of UWB technology.

Incorporating UWB technology into motion detection
applications necessitates a thorough understanding and
adherence to the relevant standards and regulatory com-
pliance aspects. By following FCC guidelines, IEEE stan-
dards, and SAR compliance, and by addressing privacy
concerns through robust data protectionmeasures, developers
can ensure the safe, effective, and ethical deployment of
UWB technology. This commitment to compliance safe-
guards users and enhances the credibility and acceptance
of UWB-based motion detection solutions in sensitive
environments.

IX. CONCLUSION
Various methodologies for monitoring human motion
through Ultra-Wide Band (UWB) technology are found in
the literature. From CNN-based approaches to sophisticated
SGWO-based RMDL approaches, researchers have pushed
the boundaries. However, the journey has been challenging.
The complexity of motion state overlaps, requirements for
improved spatial resolution, difficulty detecting amongst
noisy backgrounds, and the requirement of learning from
diverse data types are all challenges researchers have sought
to cross. Considering the comparative analysis of the different
methods, the RMDL method based on SGWO is effective,
with better performances in accuracy, Mean Squared Error
(MSE), True Negative Rate (TNR), and True Positive Rate
(TPR). Further, their superior ability to detect defects faster
following the above process, and even with better accuracy,
has set a new benchmark. Definitely, from here, quests for
optimal human motion detection methods continue. Primary
areas of promise include:

• Integrating advanced radar technologies like SAR.
• Developing lightweight network models.
• Enhancing feature extraction and classification
techniques.

It is not just about motion detection but doing so at an
unprecedented level of precision and speed that ultimately
opens the doors to a whole new realm of applications, from
automotive safety to smart homes. In short, the advancements
in human motion detection technology make an unstoppable
quest for innovation on the subject evident. The challenges
experienced have only been further fueled by the conduct
of more research and hence driven the development of more
accurate, more efficient, and applicable solutions in even
more varied real-time applications.
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