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ABSTRACT Road extraction plays a crucial role in various sectors, including transportation systems,
disaster relief distribution, and urban planning, necessitating a more efficient method than the current labor-
intensive approach. The conventional process, reliant on operator efforts, proves costly, time-consuming,
and energy intensive. To address this, the employment of deep learning models such as DeepLab V3+ are
done, leveraging encoders like ResNet 50, ResNet 101, and MobileNet V2, known for their effectiveness
in deep learning applications. Although Deep Learning has demonstrated faster and more automated road
extraction, the bottleneck persists in the manual creation of training data through road annotations by
operators. Our research focuses on accelerating road extraction by incorporating enhanced annotations from
Object-Based Image Analysis (OBIA) along with organic annotations into the training data to expedite
dataset creation while ensuring extraction model accuracy. Specifically, we investigate the optimal ratio
of synthetic to organic annotations that yields the highest road extraction accuracy. Moreover, we enhance
OBIA-derived road annotations and regulate their integration into the training data. Our findings reveal an
optimal composition of 25% for OBIA annotations and 50% for improved OBIA annotations, as exceeding
these numbers results in diminished model performance. Significantly, the further improvement of OBIA
annotations substantially boosts model performance metrics exemplified in the use of 100% composition in
training data. On average, each model produces Pixel Accuracy of 0.942, IoUr of 0.012, mean IoU of 0.477,
and Dice Score of 0.495 for every use of 100% OBIA annotations in the training data. Improvement in
model performance evaluation metrics occurs when using 100% improved OBIA annotations in the training
data where on average each model produces Pixel Accuracy values of 0.954, IoUr of 0.433, mean IoU
of 0.692, and Dice Score of 0.771. The experimental results demonstrate the advantages of our proposed
method, indicating a reduction in the time required to prepare Deep Learning datasets, reducing the number
of organic annotations required to as little as 50%while maintainingmodel performance by leveraging OBIA
road annotations as training data.

INDEX TERMS Deep learning, object-based image analysis, deeplab v3+, pixel accuracy, mean IoU.
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I. INTRODUCTION
Road extraction has emerged as a preeminent concern within
the realm of remote sensing investigation over the past ten
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years [1], [2], [3] primarily due to its extensive utiliza-
tion in various aspects of daily existence, including but not
limited to, intelligent transportation system path determi-
nation, disaster navigation, cartography, goods distribution,
and urban planning [4], [5], [6]. Nonetheless, the process
of road extraction frequently relies on manual methods,
requiring operators to directly delineate roads by visually
examining orthophotos and in instances of complications
must physically visit the location, introducing inefficien-
cies and time constraints to the road extraction process [7],
[8], [9]. Therefore, researchers are conducting various stud-
ies to speed up the process of making road extractions
[10], [11].

The choice of employing semiautomatic or automatic
techniques with Deep Learning (DL) has been favored in
the pursuit of expedited road extraction in the realm of
research. Various investigations have explored the employ-
ment of semi-automatic methods in road extraction. For
instance, Jiguang Dai devised a multiscale line segment
orientation histogram (MLSOH) to accentuate road curva-
ture [12], [13]. You Wu employed the Clustering Point
Process (CPP) algorithm [14], while Jinming Zhan uti-
lized graph theory to connect edges and nodes for road
extraction. [15]. Some research studies have investigated
the application of deep learning techniques, such as
VNet [16], Dual-Attention Network-RoadNet (DA-Roadnet)
[17], Direction-Aware Residual Network (DiResNet) [18],
Multiple Parameter Guided Squeeze and Excitation Inte-
grated D-LinkNet (MPGSE-D-LinkNet) [19], DeepLab V3+
[20], and Fully Convolutional Network (FCN) [21]. Semi-
automated methodologies encounter limitations in road
extraction, as human intervention is still required to set algo-
rithmic parameters, and the applicability is constrained to
specific study locations, limiting generalization [22], [23],
[24]. In contrast, deep learning (DL) excels in road extraction
generation; however, it mandates road annotations during
training, a task performed manually by operators, demand-
ing significant time and labor resources for the provision of
essential training data [25], [26], [27], [28].
In our investigation, we observed road extraction results

from the DeepLab V3+ model trained with data derived
from both operator annotations and annotations gener-
ated through semi-automated methods with the primary
objective of streamlining the provision of training data
through the incorporation of synthetic data while pre-
serving the precision of the road extraction model’s per-
formance. Our study holds significant utility, potentially
reducing training data provision time by operators by
25-50%. We opt for the semi-automated approach of Object-
Based Image Analysis (OBIA), leveraging its proficiency
in delineating objects on very high-resolution orthophotos
based on color proximity and object distance [29]. Fur-
thermore, we enhance the annotations of OBIA results
through morphology image processing to obtain optimal road

annotations for effective integration into the model training
process.

The novelty of our research encompasses several key
aspects, including:

1) The novelty inherent in our research is multifaceted.
Firstly, we distinguish ourselves by utilizing a dataset
not readily accessible through open-access channels.
While prevalent studies on road extraction com-
monly leverage datasets like Massachusetts and Deep
Globe, we diverge by employing an intricately detailed
orthophoto of Cimahi City, Indonesia. This unique
dataset not only boasts higher resolution but also serves
as a representation of a developing nation within South-
east Asia. In contrast to the developed counterparts
prevalent in the latter datasets, the heightened intricacy
of road extraction challenges in developing countries
introduces an additional layer of complexity to our
research.

2) our research extends to the training data employed
for the DeepLab V3+ model. Departing from conven-
tional methodologies reliant solely on annotations by
human operators, we integrate road annotations derived
from Object-Based Image Analysis (OBIA). Further-
more, we introduce additional annotations obtained
through a meticulous refinement of the original OBIA
annotations. Striking a delicate balance, we carefully
adjust the composition of both OBIA annotations and
improved OBIA annotations to optimize the creation of
a highly accurate road extraction model.

3) To augment the quality of OBIA annotations,
we employ morphology image processing techniques
to fill road pixel gaps in the OBIA annotations, thus
obtaining road annotations that closely align with the
true values of the road. Moreover, we then trained two
different models, one trained on fully organic annota-
tions, and one trained on a mixture of OBIA-annotated
and human-annotated dataset. The road extraction
results of both models are then compared, showcasing
the performance of each model.

We organize this document systematically into four distinct
sections. The introduction section functions as an introduc-
tion, providing a comprehensive overview of the contextual
background, research objectives, and the unique aspects of
the investigation. Subsequently, the Methodology section
delves into intricate details concerning the dataset, Object-
Based Image Analysis (OBIA), enhancement of OBIA
annotations, the implementation of DeepLab V3+, and the
subsequent evaluation of model performance. Following this,
the third section meticulously outlines the various experi-
ments conducted and presents the corresponding outcomes
of these experiments. The last section comprises an in-depth
analysis of the research’s conclusions, complemented by sug-
gestions for future research initiatives aimed at advancing the
current study.
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II. METHODOLOGY
Our research, centered on Deep Learning (DL), aimed to
expedite the creation of accurate road extraction models,
is conducted as outlined in Figure 1. The road annota-
tions for training the model are retrieved from a variety
of sources, including human operator, Object-Based Image
Analysis (OBIA) annotations, and refined OBIA annotations,
each of which we observed for their impact. The utilization
of OBIA for annotation purposes is implemented to expe-
dite the furnishing of training data; however, the results of
road annotation remain imperfect, necessitating the need for
enhancements.

To train the road extraction models, the aforementioned
very high-resolution orthophotos and their road annotations
are employed as training data. The VHR orthophoto and
manual annotation are utilized as test data to assess the perfor-
mance of the model by means of Pixel Accuracy (PA), mean
Intersection Over Union (mIoU), IoU Road (IoUR), and Dice
Score. This methodology section is subdivided into detailed
discussions covering the dataset, OBIA, the refinement of
OBIA annotations, DeepLab V3+, and the assessment of
model performance.

FIGURE 1. Overall research methodology.

A. DATASET
The dataset employed in the investigation consists of
orthophotos, which are photographs captured perpendicular
to the earth’s surface, possessing an exceptionally high res-
olution, with a spatial resolution value of 0.05 meters. The
utilization of orthophotos with such high resolution enables
the clear and detailed depiction of objects, thereby contribut-
ing to the complexities encountered in the realm of road
extraction research [30], [31].

The investigation focuses on the urban landscape of
Cimahi City, a municipality situated in Indonesia with coor-
dinates latitude -6.899541 and longitude 107.533867. Cimahi
is characterized by its densely populated residential areas,
industrial zones, rivers, vacant land, and extensive rice fields
and tree-covered expanses. Notably, several geometric enti-
ties within the Cimahi dataset share similar coloration with
roads, including building rooftops, rivers, and cross-sections
of rice fields. This similarity poses an additional layer of

complexity in the challenges encountered during the road
extraction study.

The datasets employed in each research scenario amounted
to a total of 4400 images with dimension size of 1008×1008,
comprising orthophotos and corresponding road annotations.
The allocation of training, validation, and test data followed
a distribution ratio of 8:1:1. The selection of this tiling size in
particular was made to conform with the parameter settings
for segmentation in the process of OBIA annotations gener-
ation while ensuring enough quantity of images for model
training. A larger area will be encompassed given larger
dimension; however, the quantity of training images would
be even lower than 4400.

The orthophoto employed are RGB (Red-Green-Blue)
images. The preference for RGB datasets is also as evidenced
in various studies, showed them to be more favorable for
land use and land cover classification (LULC) in comparison
to alternative band combinations like short-wave infrared
(SWIR) and color-infrared (CI). The presence of RGB bands
within the visible spectrum renders them a desirable option as
they offer adequate data to differentiate between diverse land
cover categories [32]. The resulting road annotations encom-
passed manual annotations performed by an operator, road
annotations derived from OBIA (Object-Based Image Anal-
ysis), and enhancements made to road annotations derived
from OBIA. The composition of operator annotations, OBIA
annotations, and improved OBIA annotations as road annota-
tions within the dataset was adjusted in accordance with the
research scenario, with test data consisting of only manual
annotations.

The software and hardware employed in this study
included Global Mapper 22.0, QGIS Desktop 3.24.1, and
NVIDIAGeForce RTX 3090 Ti. The tiling of the Cimahi City
orthophoto was executed using Global Mapper 22.0, while
the training process to generate the road extraction model was
carried out using the NVIDIA GeForce RTX 3090 Ti. QGIS
Desktop 3.24.1 played a role in converting the orthophoto
dataset into RGB bands for OBIA.

B. OJECT-BASED IMAGE ANALYSIS
Object-Based Image Analysis (OBIA), a semi-automated
method we utilized to generate street annotations serving as
train data for the training and validation stages of the Deep
Learningmodel.Within the OBIA framework, two distinctive
processes, segmentation and classification [33], [34], [35],
contribute to the production of road annotations. The segmen-
tation stage is particularly critical in determining the quality
of OBIA’s road annotations. Therefore, it is crucial to appro-
priately configure the segmentation parameters of OBIA to
achieve accurate segmentation [36], [37], [38]. Figure 2 pro-
vides a visual representation of the OBIA architecture.

To achieve this, we employ a segmentation algorithm
known as Simple Linear Iterative Clustering (SLIC) for
the segmentation part. SLIC, a K-means Clustering-based
algorithm, generates multiple clusters by grouping pixels
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with similar color and position [39], [40]. The application
of the SLIC algorithm makes OBIA well-suited for process-
ing high-resolution orthophotos. Nonetheless, the quality of
OBIA’s road annotations is significantly influenced by the
meticulous configuration of the SLIC algorithm parameters.

FIGURE 2. Architecture of OBIA.

We establish the parameters of the SLIC algorithm, includ-
ing the number of segments, compactness, maximum number
of iterations, connectivity enforcement, and the minimum
and maximum size factors. The configuration of the SLIC
algorithm’s segmentation parameters is iteratively performed
to obtain the optimal parameters that yield road annotations
closely aligned with the ground truth value, while keeping
undesired noise minimal. The optimal parameter settings for
the SLIC algorithm we use in this study entails 2000 seg-
ments, a compactness value of 0.1, 50 iterations, a minimum
size factor of 0.6, a maximum size factor of 3, and the
enforcement of connectivity being set to true.

The classification phase within the Object-Based Image
Analysis (OBIA) process employs the Histogram Gradient
Boostingmodel. This classification process involves road and
background classes. Initially, labels are randomly assigned
to road and background areas in the orthophoto. The road
labelling results derived from the orthophotos, and segmen-
tation process are integrated into the classification phase,
producing road annotations through the OBIA process result-
ing in annotations.

C. REFINEMENT OF OBIA ANNOTATION
The refinement of annotations obtained through Object-
Based Image Analysis (OBIA) is imperative to ensure the
generation of road annotations closely aligned with the actual
ground truth. Objects such as vehicles, trees, or buildings
obstructing the roads often introduce noise into OBIA annota-
tions, leading to unconnected road segmentation. As a result,
the road annotationsmay appear fragmented and deviate from
a straight path. Tomitigate this issue, we employMorphology
Image Processing, specifically utilizing the dilation opera-
tion, as expressed in the following equation,

S ⊕ T =
{
Z |

[
(Yz) ∩ S

]
⊆ S

}
(1)

where S represents the image, T denotes the kernel, Z signi-
fies the number of pixels in the image, and Y represents the
symmetry of T.

Dilation is a process that expands the boundaries of
objects within the image [41] by configuring the kernel [42].
In our approach, a 3 × 3 kernel is employed for dilation
to enhance the OBIA annotation. This dilation procedure
involves 20 iterations, leading to the addition of extra pixels
to the boundaries of road objects. Consequently, the gaps
between pixels are filled, resulting in connected road seg-
ments. Figure 3 provides a visual comparison between the
improved OBIA annotation, the original OBIA annotation,
and the ground truth derived from the manually annotated
orthophoto.

FIGURE 3. Comparison of OBIA Annotation Refinement and OBIA
annotation with ground truth of an orthophoto.

D. DeepLab V3+

The road extraction process was executed using the Deeplab
V3+ model, consisting of two fundamental components: the
encoder and the decoder [43], [44]. The architectural con-
figuration of the model employed is illustrated in Figure 4.
We incorporate ResNet 50, ResNet 101, and MobileNetV2
as encoders of the model and compare the evaluation perfor-
mance of each encoder.

The encoder in Deeplab V3+ employs the concept
of atrous convolution and atrous spatial pyramid pooling
(ASPP), resulting in improved image classification [45].
While traditional filters typically apply convolution con-
tinuously to the input [46], leading to significant time
consumption when filtering a larger area [47], atrous con-
volution addresses this challenge by implementing a skip
filter [44].

ASPP, also known as dilated convolution [48], was initially
introduced by George [49] to acquire multiscale informa-
tion [45], [50]. ASPP employsmultiple atrous convolutions in
parallel with various sampling rates of 6, 12, and 18 [51]. The
extracted features from themultiple atrous convolutions in the
encoder are combined and subsequently bilinearly upsampled
by a factor of 4. The Deeplab V3+ decoder incorporates
a 1 × 1 convolution before merging with encoder feature
results. Following the merging process, the features undergo
a 3 × 3 convolution and are bilinearly upsampled by a factor
of 4 to produce the road extraction.

The residual network (ResNet) model is one of the suit-
able models for training deep data, mitigating the Vanishing
Gradient Problem frequently encountered in deep neural
networks [52]. Several studies have shown the superior accu-
racy of ResNet in object classification tasks in comparison
to VGG16, VGG19, Random Forest, and GoogleNet [32].
ResNet enables gradient flow through skip connections and
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FIGURE 4. Deeplab V3+ architecture used in the research.

facilitates backpropagation in the nearest layer. The nomen-
clature of the ResNet model corresponds to its layer count,
such as ResNet 50 with 50 layers and ResNet 101 with
101 layers. Greater layer numbers allow ResNet to extract
deeper features.

MobileNetV2, an evolution of MobileNetV1, integrates
inverted residuals to preserve information [53], [54].
MobileNetV2 aims to facilitate deep learning training on
resource-constrained devices. Achieved through Depth-wise
Separable Convolution and Linear Bottleneck, it reduces
parameters and computational operations without compro-
mising model performance.

E. MODEL’S PERFORMANCE EVALUATION
We assess the performance of the model using evaluation
metrics such as Pixel Accuracy (PA), mean Intersection Over
Union (mean IoU), IoU of the road class (IoUr), and Dice
Score. Higher values on these metrics signify a robust pre-
dictive capability, whereas lower values suggest suboptimal
performance. These evaluation metrics are instrumental in
establishing thresholds for determining the quantity of train-
ing data utilizing the vanilla OBIA or the enhanced OBIA
annotations, ensuring the performance of the trained model.
PA, which measures the model’s overall ability to predict
correct pixels serves as a pivotal indicator of model per-
formance [55], [56], [57]. Recognizing PA’s limitations in
accurately measuring accuracy amidst data imbalance, par-
ticularly in the context of road extraction, we conducted
additional evaluations for this specific problem. PA is deter-
mined through the following equation.

PA =
Numbers of Correctly Classified Pixels

Total Numbers of Pixels
(2)

PA =
TP + TN

TP + TN + FP + FN
(3)

IoU describes the conformity of the road extraction results
with the ground truth, that is a heightened IoU value indicates

enhanced model performance [5], [58]. Mean IoU, derived
from the average IoU across all classes during the segmen-
tation process [59], represents the average of both road IoU
and background IoU in our study. The Mean IoU calculation
is expressed by the following equation:

meanIoU =
IoURoad + IoUBackground

2
(4)

Road IoU represents the ratio between the intersection of
the road and the combination of road, which indicates the
accuracy of road prediction outcomes relative to the actual
road in the ground truth. Road IoU is computed by comparing
the True Positive value to the sum of True Positive (TP),
False Negative (FN), and False Positive (FP). True positive
in terms of IoU road signifies that the model’s predictions
accurately depict the road, aligning with the ground truth.
False negative in IoU road indicates that themodel incorrectly
categorizes the background, despite the presence of the road
in the ground truth. False positive in IoU road clarifies that
the model’s prediction erroneously represents the road when
the background is instead present in the ground truth.

The IoU background serves as a metric to evaluate the
congruence between the predicted background and the back-
ground present in the ground truth. It quantifies the extent
of agreement between the two backgrounds. The IoU back-
ground value is determined by comparing the True Positive
value with the sum of True Positive (TP), False Negative
(FN), and False Positive (FP). True positive in IoU back-
ground signifies that both the model’s predicted results and
the ground truth correctly indicate the presence of back-
ground. False negative in IoU background occurs when the
model incorrectly identifies the road as background based
on the ground truth. False positive in IoU background arises
when the model correctly identifies the background, but the
ground truth indicates the presence of the road. The calcula-
tion of both road IoU and Background IoU values adheres to
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the provided equation.

IoURoad/Background =
TP

TP + FP + FN
(5)

Dice score is used to evaluate the performance of the model
which indicates the conformity of the prediction results with
the ground truth [3], [60], [61]. It is derived from the ratio of
double the intersection size to the total area, where the total
area comprises the sum of the predicted area and the ground
truth area. Dice score is calculated using the equation below.

DiceScore =
2xIntersection
TotalArea

(6)

III. EXPERIMENT AND RESULT
We divide this section into three subsections. Subsection A
offers a comprehensive portrayal of the experimental scenario
and its relation to the research objectives. Subsection B pro-
vides a visual representation of the results, featuring graphs to
illustrate the evaluation metrics used to measure the model’s
performance. Finally, subsection C delves into an in-depth
analysis and discussion regarding the outcomes presented in
the previous subsections.

A. EXPERIMENT
The incorporation of OBIA annotations in the training data
was set with varying percentages of 0%, 25%, 50%, 75%, and
100%. In instances where OBIA annotations did not consti-
tute 100% of the training data, the remaining portion of the
training data incorporated manually annotated data. A similar
approach was taken for the enhanced OBIA annotations in the
training data, resulting in a total of nine training iterations
for each encoder deployed in DeepLab V3+ model. The
encoders employed in the model include ResNet 50, ResNet
101, and MobileNetV2, resulting in a total of twenty-seven
training sessions. The model utilizing 100% manual anno-
tations underwent a single iteration for each DeepLab V3+
model, as the scenario utilizing 0% OBIA annotations is
identical to that of 0% enhanced OBIA annotations. Table 1
succinctly outlines the research scenario.

The road prediction outcomes of each model were visu-
ally assessed and subjected to comparative analysis. Ten
orthophotos depicting road conditions in rice fields, vacant
land, and densely populated residential areas were utilized.
These ten orthophotos feature objects of similar or distinct
colors to the road. Performance evaluation metrics of all
models are presented in graphs, with four graphs displaying
the performance metrics of each individual model.

B. EXPERIMENT RESULT
The results of road extraction utilizing the DeepLab V3+
model using ResNet 50 as encoder, trained with various com-
binations of Object-Based Image Analysis (OBIA) training
data, are depicted in Figure 5. The road extraction perfor-
mance of the model was encouraging when trained with
100% or 75% (and 25% annotations from OBIA) manu-
ally annotated training data from annotations. Interestingly,

TABLE 1. Research scenario.

when the model was trained with 25% training data from
OBIA annotations, orthophoto 10, featuring road conditions
akin to the color of surrounding building roofs, displayed a
more accurate road extraction compared to the model trained
with 100% operator annotations. The visualization of road
extraction results from the model trained with 50% synthetic
training data showed disjointed and blurred road extractions;
models trained with 75% and 100% training data from OBIA
annotations did not yield any road extractions.

Figure 6 showcases the road extraction achieved by the
DeepLab V3+ encoder ResNet 50 model trained using train-
ing data derived from enhanced OBIA annotations. Models
trainedwith 0%, 25%, and 50% compositions of the enhanced
OBIA annotations exhibited satisfactory road extraction.
However, similar to the former results, models trained with
datasets from the improved OBIA annotations with 75% and
100% compositions yielded indistinct and fragmented road
extractions. Notably, the model trained with a composition of
25% and 50% of the refined OBIA annotations demonstrated
superior road extraction for orthophoto 10 compared to the
model trained using entirely manual annotations.

The road extraction outcomes produced by the DeepLab
V3+ model utilizing ResNet 101 as encoder, trained using
the OBIA annotated dataset, are illustrated in Figure 7.
The clarity of the resulting road extraction diminishes with
an increasing proportion of OBIA annotated data. Models
trained with 75% and 100% OBIA annotation datasets did
not yield any road extractions, while those trained with
50% OBIA annotations exhibited indistinct and discontinu-
ous road extractions. Similar to the above, the road extraction
of orthophoto 10 from model trained with 25% OBIA anno-
tations showed superior results when using the compared to
using 100% human-annotated annotations.

The road extraction results generated by the DeepLab
V3+ model utilizing ResNet 101 as encoder, trained using
the enhanced OBIA annotations, are illustrated in Figure 8.
It can be seen that the clarity and road connectivity of the
extraction result plummeted when utilizing models trained
with dataset comprised of 75% and 100% enhanced OBIA
annotations. Nevertheless, the model trained with improved
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OBIA annotation demonstrates superior road extraction on
orthophoto 10 compared to the model trained with an entirely
manually annotated dataset.

FIGURE 5. Visualisation of road extraction from DeepLab V3+ encoder
ResNet 50 model using various compositions of OBIA annotations as
training data.

The road extraction results produced by the DeepLab V3+
encoder MobileNetV2 model are presented in Figures 9
and 10. Figure 9 displays the road extraction results from
the model trained using OBIA annotations, while Figure 10
showcases the road extraction results from the model trained
using enhanced OBIA annotations. Similar to the DeepLab
V3+ with ResNet model variants, the DeepLab V3+ model
withMobileNetV2 encoder trained using the improved OBIA
dataset exhibits road extraction for all training data compo-
sitions. This contrasts with the model trained using vanilla
OBIA annotations, where road extraction is only evident in
models trained using 0% and 25% training data. Also similar
to the above, the road extraction results from orthophoto
10 were superior for models trained using both OBIA annota-
tions and refined OBIA annotations when compared to those
trained using human-annotated data.

The performance evaluation outcomes of each model are
showcased in Figure 11. Furthermore, to offer a more pro-
found insight into the efficacy of eachmodel, the mean values

FIGURE 6. Visualisation of road extraction from DeepLab V3+ encoder
ResNet 50 model using various compositions Refinement of OBIA
Annotation as training data.

of the assessment criteria for each configuration, utilizing
both OBIA annotations and improved OBIA annotations,
have also been computed and succinctly outlined in Table 2.
The Pixel Accuracy (PA) values of models trained with
improved Object-Based Image Analysis (OBIA) annota-
tions demonstrate a higher performance compared to models
trained with standard OBIA annotations. Figure 10 provides
a visual comparison of PA values across models trained
with different compositions of training data derived from
OBIA and its refined version as annotations. The model that
undergoes training using fully organic annotations showcases
the most significant PA, boasting an average of 0.966. Con-
versely, the model trained with OBIA annotations achieves
its peak PA when the composition of improved OBIA anno-
tations amounts to 25% of all training data, reaching an
average value of 0.961. Notably, the model trained with train-
ing data derived from refined OBIA annotations attains the
highest PA value of 0.963, when the composition of improved
OBIA annotations constitutes 25% of all training data. The
utilization of enhanced OBIA annotations presents a signif-
icant increase in PA compared to using OBIA only. Models
trained with training data comprising 75% and 100% OBIA
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annotations exhibit PA values of 0.947 and 0.942,
respectively. On the other hand, models trained with training
data comprising 75% and 100% improved OBIA annotations
showcase PA values of 0.957 and 0.954, respectively.

FIGURE 7. Visualisation of road extraction from DeepLab V3+ encoder
ResNet 101 model using various compositions of OBIA Annotation as
training data.

The models trained exclusively with human-made anno-
tations as the training data exhibit the highest IoU Road
value, averaging 0.625, while the smallest IoU Road value
is observed when each model is trained using 100% OBIA
annotations, yielding an average value of 0.011. In the con-
text of models trained with standard OBIA annotations, the
highest Road IoU is obtained from the model trained with
25% synthetic annotation composition, achieving an aver-
age value of 0.480. Models trained with improved OBIA
annotations also achieve their highest Road IoU value at
25% composition ratio of the training data, averaging at
0.530. Additionally, at 50% composition, the models trained
with improved OBIA annotations produce IoU Road with an
average value of 0.516, which is comparatively similar to
25% composition, even at a lesser amount of organic training
annotations. Moreover, models trained with refined OBIA
annotations consistently show increased Road IoU values
compared to models trained with standard OBIA annotations

for each composition of the training data. Notably, a substan-
tial increase in IoU Road values is evident in models trained
with 75% and 100% improved OBIA annotations in the
training data, achieving average values of 0.450 and 0.432,
respectively, as compared to original OBIA annotations.

FIGURE 8. Visualisation of road extraction from DeepLab V3+ encoder
ResNet 101 model using various compositions Refinement of OBIA
Annotation as training data.

Similarly, the highest mIoU is also achieved by mod-
els trained exclusively with 100% human-annotated training
dataset, resulting in an average value of 0.794. Conversely,
the lowest mIoU is obtained when the model is trained using
both 100% OBIA annotations and improved OBIA anno-
tations, yielding averages of 0.467 and 0.672, respectively.
Analogous to previous results, each model demonstrates an
increase in mIoU value when trained with enhanced OBIA
annotations as compared to the vanilla ones, with the most
significant increase in mIoU value is observed when each
model is trained with 100% enhanced OBIA annotations,
resulting in an average mean IoU increase of 0.215 compared
to models trained with 100% OBIA annotations as the train-
ing dataset.

The highest Dice Score is also achieved by models trained
exclusively with 100% human-annotated training dataset,
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FIGURE 9. Visualisation of road extraction from DeepLab V3+ encoder
MobileNetV2 model using various compositions of OBIA Annotation as
training data.

yielding an average value of 0.859, with the lowest Dice
Score is observed when each model is trained using both
100% OBIA annotations and 100% improved OBIA annota-
tions, resulting in average Dice Scores of 0.494 and 0.770,
respectively. Increases in Dice Scores are also evident in
models trained with refined OBIA annotations as compared
to vanilla OBIA, with the most substantial increase occurring
when themodel is trainedwith 100% improvedOBIA annota-
tions, leading to a 0.276 increase from the average Dice Score
of the model trained with 100% vanilla OBIA annotated
dataset. The complete model performance evaluation results
for each model can be found in Figure 11, and the average
values of the model performance evaluation metrics for each
composition using OBIA annotations its refined version are
presented in Table 2.

C. ANALYSIS AND DISCUSSION
The clarity of road extraction visualizations diminishes as the
ratio of standard OBIA annotations utilized in the training
data increases. This degradation is attributed to the noise

FIGURE 10. Visualisation of road extraction from DeepLab V3+ encoder
MobileNetV2 model using various compositions Refinement of OBIA
Annotation as training data.

present in OBIA annotations, resulting in more interference
to the model weights during training, and, subsequently, the
quality of road extraction as the amount of OBIA annota-
tions in the training data rises. In contrast, models trained
with improved OBIA annotations exhibit consistent road
extractions across various composition variations. This is
attributed to the lesser amount of noise in the OBIA anno-
tations, as some obvious incorrect segmentations are cleared
and disjointed road nodes are connected, resulting in more
robust road extractions compared to models trained with
standard OBIA annotations. Furthermore, each model trained
with improved OBIA annotations consistently outperforms
its counterpart trained solely with OBIA annotations, indi-
cating superior road extraction capabilities as compared to
the former.

To analyze variations in model performance and establish
a threshold for the utilization of OBIA annotations and its
refined annotations in the training data, trendlines were con-
structed for each model’s performance evaluation score. The
trendlines for all metrics measured for the models trained
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TABLE 2. Average performance metrics of models for each composition in the training data.

FIGURE 11. Model performance evaluation metric.

with synthetic (vanilla OBIA and refined OBIA) annotations
are illustrated in Figure 12. Overall, there is a decline inmodel
performance evaluation metrics with the increasing ratio of

OBIA annotations and its enhanced counterpart in the train-
ing data. However, a significant drop in performance does
not occur until the composition of OBIA annotations exceeds
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FIGURE 12. Trendline of each model’s performance evaluation metrics.

25% of the training data. In a similar fashion, a notice-
able decrease in the performance of the model trained with
improved OBIA annotations occurs when the composition of
improved OBIA annotations surpasses 50% of the training
data.

Models trained with either OBIA annotations or improved
OBIA annotations demonstrate suitability for generating road
extractions in densely populated areas where the color of
the roofs closely resembles that of the roads. This is due
to OBIA’s capacity to produce detailed annotations based
on color variations, making it effective in scenarios such as
orthophoto 10, where models trained with OBIA annotations
or improved OBIA annotations consistently outperformmod-
els trained with manually annotated images comprising the
dataset.

IV. CONCLUSION
The dataset provisioning time for the training process
can be significantly reduced by incorporating both road
annotations obtained from Object-Based Image Analysis
(OBIA) and enhanced OBIA annotations. The recommended
upper limit for including OBIA annotations in the training
data is 25%, while for improved OBIA annotations, it is
50%. This ensures that road extraction remains effective
with satisfactory visualization and high model performance
evaluation metrics. Consequently, the use of OBIA anno-
tations and improved OBIA annotations results in a 25%
to 50% reduction in dataset provisioning time compared
to obtaining training data solely from operator annota-
tions. Moreover, the integration of annotations derived
from OBIA and improved OBIA outcomes enhances the
model’s performance in generating accurate road extrac-
tions, particularly in areas with high-resolution photos
that exhibit color similarities with road colors. In future
investigations, alternative semi-automatic methods can be
explored to provide training data for road extraction in deep
learning.

The time required to prepare the road extraction dataset
for training can be reduced by employing synthetic road
annotations, such as those obtained fromOBIA and enhanced
OBIA annotations. In this study, we determined an upper limit
of 25% and 50%, respectively, for the percentage of OBIA
annotations and improved OBIA annotations in the training
data. Empirically, we show the stated amount ensures that
road extraction is still achieved with satisfactory quality and
boasts a high model performance evaluation metrics score.
This decrease in the amount of needed organic data, conse-
quently, also decreases the dataset provisioning time by 25%
to 50% compared to the time taken by human annotators to
prepare the training data. Furthermore, the implementation of
annotations derived fromOBIA and improved OBIA can also
enhance the model’s performance in generating road extrac-
tions, particularly in areas that exhibit color similarities with
road colors. We encourage future studies to investigate how
other semi-automatic methods can be employed to supply
synthetic training data in a timely manner with only a slight
effect in model’s performance for road extraction using deep
learning. In addition, we also encourage future investigations
to further analyze the effect of different band visible layers to
extraction results.
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