
Received 4 April 2024, accepted 28 April 2024, date of publication 6 May 2024, date of current version 13 May 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3397536

Energy-Efficient Implementation of YOLOv8,
Instance Segmentation, and Pose
Detection on RISC-V SoC
HANSEN WANG , DONGJU LI, (Member, IEEE), AND TSUYOSHI ISSHIKI , (Member, IEEE)
Department Information and Communications Engineering, Tokyo Institute of Technology, Tokyo 152-8550, Japan

Corresponding author: Hansen Wang (wang.h.aj@m.titech.ac.jp)

This work was supported by the New Energy and Industrial Technology Development Organization (NEDO) under Grant JPNP23015.

ABSTRACT This article introduces a programmable Artificial Intelligence Visual System on Chip
(AIV-SoC), optimized for YOLOv8 end-to-end execution. It operates on input image resolution of 352 ×
352 to perform object detection, instance segmentation, and pose detection, achieving notable Frames per
Second (FPS) of 67.1, 55.2, and 64.9, respectively. The AIV-SoC is founded on the RISC-V architecture
and meticulously crafted utilizing the LLVM-C2RTL toolkit. Neural network layer scheme optimization,
piecewise linear function (PLF) approximation, multi-cycle path, 8-bit fix-point data per-group quantization
and 4-pattern transposed convolution are introduced to enhance its versatility and power efficiency. Notably,
the implemented model exhibits superior power efficiency in comparison to other GPU and FPGA platforms.
This characteristic envisions practical applications across industries. The presented AIV-SoC platform,
with its efficiency, opens up possibilities for deployment in resource-constrained environments such as
healthcare, agriculture, and surveillance. This potential redefines the landscape of object detection, instance
segmentation, and pose detection in real-world scenarios, providing insight into a future where these
technologies play a pivotal role in reshaping how we interact with machines and interpret visual information.

INDEX TERMS Artificial intelligence visual system, application-specific integrated circuit, hard-
ware/software co-design, instance segmentation, object detection, pose detection, RISC-V, YOLOv8.

I. INTRODUCTION
Object detection, a pivotal computer vision technology,
is dedicated to discerning instances of specific semantic
objects within digital images and videos [1]. Its versatile
applications span a spectrum of computer vision tasks,
encompassing image annotation and retrieval, vehicle count-
ing, activity recognition, face detection and video object
co-segmentation. Moreover, object detection plays a pivotal
role in autonomous driving systems [2].

In conjunction with object detection, instance segmen-
tation represents a nuanced extension of this field. Unlike
object detection, which localizes objects with bounding
boxes, instance segmentation delves further into the delin-
eation of object boundaries at the pixel level. In comparison

The associate editor coordinating the review of this manuscript and

approving it for publication was Mario Donato Marino .

to semantic segmentation, the task of instance segmentation
is notably more fine-grained, intricate, and demanding [3].
Noteworthy methodologies, such as Mask R-CNN [4],
initially perform object detection and subsequently assign a
binary label to each pixel within the bounding box. The work
presented in [5] seamlessly integrates with cutting-edge one-
stage detection frameworks, surpassing Mask R-CNN under
the same training schedule and achieving faster processing
times.

The synergistic integration of object detection and instance
segmentation has found applications in various domains,
including scene understanding for robotics [6], medical
image analysis for precise organ delineation [7], [8], video
surveillance, augmented reality [9], and image compression.
This amalgamation enhances the granularity of information
extraction, proving particularly valuable in scenarios where
object boundaries and spatial relationships play a pivotal role.

64050

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 12, 2024

https://orcid.org/0009-0002-4381-0276
https://orcid.org/0009-0003-2034-1742
https://orcid.org/0000-0001-8336-9150

H. Wang et al.: Energy-Efficient Implementation of YOLOv8, Instance Segmentation, and Pose Detection

Pose detection, another key task in computer vision,
involves estimating the spatial arrangement of key body
joints or keypoints within an image or video. This critical
field plays a pivotal role in diverse applications such as
human-computer interaction, surveillance, and augmented
reality. The extracted pose information is instrumental in
tasks ranging from anomaly detection in surveillance systems
to enhancing virtual try-on experiences in e-commerce [10],
[11]. Additionally, pose detection contributes significantly
to sports analytics, facilitating precise motion tracking
for athletes and aiding in skill refinement and training
optimization [12].

In this paper, we introduce the design of the Artificial
Intelligence Visual System on Chip (AIV-SoC) with a
focus on Int8 precision and a 352×352 input resolution.
It introduces an innovative and versatile circuit designed for
new computationally intensive layers in YOLOv8, including
SiLU and softmax. Through software programming, the
AIV-SoC exhibits proficiency in executing the entire end-to-
end process of object detection, instance segmentation, and
pose detection tasks.

The structure of the paper is as follows: Section II
provides an overview of relevant works. Section III delves
into a comprehensive examination of the hardware design
architecture. Section IV discusses the specifics of the
software design. Section V presents the simulation results
and their analysis. Finally, in Section VI, we summarize the
strengths and weaknesses of our AIV-SoC.

II. RELATED WORK
A. YOU ONLY LOOK ONCE MODEL
YOLO, an acronym for ‘‘You Only Look Once,’’ stands out
as a real-time object detection algorithm that partitions the
input image into a grid. It predicts bounding boxes and class
probabilities directly within each grid cell [13]. YOLOv8, the
latest release in the YOLO series by Ultralytics [14], stands
out for its ability to achieve a balance between accuracy and
real-time inference speed, distinguishing itself from earlier
YOLOversions and alternative object detection architectures.
YOLOv8 exhibits competitive performance when evaluated
against other state-of-the-art models such as EfficientDet and
Cascade R-CNN.

YOLOv8 adopts a modified CSPDarknet53 architecture
by replacing C3 (CSP Bottleneck with 3 convolutions) with
C2f (Faster CSP Bottleneck with 3 convolutions). BottleNet
architectures leverage residual connections, inspired by
ResNet structures as shown in Figure 1, to facilitate the
flow of information through the network. These connections
enable the network to efficiently learn and propagate
relevant information while mitigating the risk of vanishing
or exploding gradients during training.

In CSPDarknet53, C3 functions as a module for construct-
ing feature extraction layers [15]. The C2f structure addresses
the challenge of insufficiently fused defect information.
Illustrated in Figure 2, the C2f structure divides the input

FIGURE 1. Structure of ResNet and Bottleneck.

FIGURE 2. Structure of C2f and Bottleneck.

feature map into two segments, processes them through two
branches, and subsequently merges the branch outcomes.
This amplifies feature representation, facilitating information
flow across diverse branches and strengthening the fusion
effect of bearing defect features. Some C2f structures include
shortcuts in the Bottleneck, while others do not. The 2D
convolution employs batch normalization and utilizes the
Sigmoid Linear Unit (SiLU) activation function to introduce
non-linearity.The variable N is dependent on model sizes,
such as YOLOv8n (nano), YOLOv8s (small), YOLOv8m
(medium), YOLOv8l (large), and YOLOv8x (extra-large).

The YOLOv8 architecture incorporates the Spatial Pyra-
mid Pooling Fast (SPPF) from YOLOv5, as introduced by
Glenn Jocher [17]. As illustrated in Figure 3, the original
Spatial Pyramid Pooling (SPP) structure utilizes pooling
kernels of 5 × 5, 9 × 9, and 13 × 13 to extract features
between first convolution and concatenation layer [16],
preserving spatial information while reducing the image
size. In contrast, SPPF performs three consecutive pooling
layers with 5× 5 kernels before concatenation, significantly
enhancing computational efficiency compared to traditional
SPP structures.

YOLOv8 employs classification and regression branches
for its loss computation [21]. The classification branch uti-
lizes Binary Cross-Entropy (BCE) loss, while the regression

VOLUME 12, 2024 64051

H. Wang et al.: Energy-Efficient Implementation of YOLOv8, Instance Segmentation, and Pose Detection

FIGURE 3. Comparism of SPP and SPPF.

FIGURE 4. Structure of integral DFL.

branch in this paper employs the Distribution Focal Loss
(DFL) [22] and Complete IoU (CIoU) loss functions. In the
regression branch, YOLOv8 utilizes the integral module
proposed in [23], illustrated in Figure 4, where C represents
the channel, and the default value for reg_max is set to 16. The
output of DFL comprises only 4 channels, representing the
box’s position (x, y) and dimensions (w, h) before being
located in the grid cell.

YOLOv8 supports dynamic input resizing with image
dimensions represented as Sx × Sy, where both Sx and Sy
must be integer multiples of 32. This improves adaptability
to various object scales during inference.

The PANet, or Path Aggregation Network [18], functions
as the core backbone and head network for YOLOv8,
as illustrated in Figure 5. PANet represents a significant
advancement in instance segmentation, introducing a unique
path aggregation mechanism and contextual awareness
module. The Feature Pyramid Network (FPN) comprises
levels P1 to P5, where the feature map size in layer Pi is
(Sx/2i, Sy/2i). By augmenting the FPN, PANet effectively
tackles the challenges of multi-scale object recognition,
particularly excelling in improving object boundaries and
capturing intricate details.

FIGURE 5. YOLOv8’s backbone and head strucure.

In Figures 6, and 7, YOLOv8 supports multiple computer
vision tasks, including object detection, instance segmen-
tation, and pose estimation, by integrating branch module
networks such as Keypoint, Mask, and prototype above the
Head. Specifically, as depicted in Figure 6, the instance
segmentation model can be regarded as an extension of object
detection. In this paper, we utilize the YOLOv8 small model
from [19]. The three models utilized are ‘yolov8s.pt’ for
object detection, ‘yolov8s-seg.pt’ for instance segmentation,
and ‘yolov8s-pose.pt’ for pose estimation. We decompose
complex backbone and head structures, excluding DFL,
NMS, and MASK, to derive fundamental deep learning
operations, as illustrated in Table 1.

For object detection and instance segmentation tasks, the
COCO dataset [20] defines a class count (nc) of 80. However,
in the context of pose detection within the COCO dataset,
the parameter nc is restricted to 1. It is important to note that
other datasets may exhibit variations in the number of classes
as well. These tasks address distinct objectives and find
applications in various scenarios, making YOLOv8 versatile
for surveillance, autonomous vehicles, and robotics.

B. RISC-V ARCHITECTURE
RISC-V stands as a prominent open and free Instruction Set
Architecture (ISA) in the realm of computer architecture,
originating from the University of California, Berkeley

64052 VOLUME 12, 2024

H. Wang et al.: Energy-Efficient Implementation of YOLOv8, Instance Segmentation, and Pose Detection

FIGURE 6. YOLOv8’s structure for instance segmentation.

FIGURE 7. YOLOv8’s structure for pose detection.

[24]. Diverging from proprietary architectures, RISC-V
distinguishes itself through its open standard, fostering
collaboration and innovation across researchers, developers,
and industries, unburdened by licensing fees. Its paramount
strength lies in its open-source nature, granting unfettered
access to the core’s source intellectual property (IP) without
the constraints of licensing issues.

The traditional method of implementing computer archi-
tecture involves incremental updates to the ISA. RISC-V
diverges from this by adopting a modular approach. Each
RISC-V device’s instruction set includes foundational Integer
ISA modules and optional ISA extension modules. The

TABLE 1. Total number of basic functions(layers).

Extensions field encodes standard extensions, with each letter
representing an instruction set. For instance, ‘‘I’’ designates
RV32I and RV64I basic integer instruction sets, ‘‘A’’ signifies
atomic extension, and ‘‘M’’ is allocated for integer multi-
plication and division. ‘‘S’’ and ‘‘U’’ respectively represent
supervisor-level and user-level extensions.

Scalability is another key forte of RISC-V, accommodating
implementations ranging from simple micro-controllers to
sophisticated multi-core processors. This adaptability, cou-
pled with the open architecture, has cultivated a flourishing
ecosystem of tools, compilers, and software support.

Our prior investigation [25] introduced a re-configurable
deep neural networks accelerating SoC (DNN-AS) using
the RISC-V architecture. This SoC integrates a highly
flexible and adaptable computing engine (CE) based on
a 5-stage RISC-V pipeline, which functions as an Application
Programming Interface (API) for custom instructions in
ResNet and VGG16. Connected via the AXI bus, the CE effi-
ciently transfers weights and feature map data through direct
memory access (DMA) during computations, bypassing the
primary RISC-V core. This approach seamlessly integrates
specialized functionalities directly into the primary processor,
surpassing conventional co-processor methods.

The current study aims to build upon the initial research
by addressing limitations identified in the previous study and
incorporating recent developments in the field.

C. LLVM-C2RTL DESIGN FRAMEWORK
In [26], the authors propose a novel method for directly
describing the RTL (Register Transfer Level) structure
of a pipelined RISC-V processor with cache, memory
management unit (MMU), and AXI bus interface using the
C++ programming language. This processor C++ model
serves as a near cycle-accurate simulation model of the
RISC-V core. Additionally, the authors introduce the C2RTL
framework, which translates the processor C++ model into
cycle-accurate RTL description in Verilog-HDL and an RTL-
equivalent C model.

The unique aspect of their design methodology lies in
the fact that both the simulation model and the RTL model
are derived from the same C++ source, simplifying the
design verification and optimization processes significantly.
The effectiveness of this methodology is demonstrated on a
RISC-V processor, which successfully runs Linux OS on an
field-programmable gate array (FPGA) board.

VOLUME 12, 2024 64053

H. Wang et al.: Energy-Efficient Implementation of YOLOv8, Instance Segmentation, and Pose Detection

Reference [27] use High-Level Synthesis (HLS) tools to
implementat of YOLOv7-tiny network on FPGAs, however,
it can be challenging to control their cycle-level behavior
directly from the software description, often requiring
tool-specific pragma annotations and coding styles. To
address this, the proposed C2RTL framework allows design-
ers to describe the cycle-level behavior of the logic design
in C++ language using a data flow style, while specifying
hardware attributes with GCC-style attribute keywords. This
approach enables fast simulation, design transparency, and
does not involve proprietary languages.

In conclusion, the C2RTL design framework proposed
in the paper offers an efficient and accessible method for
designing complex processors and system components. This
framework is particularly well-suited for IoT devices that
demand flexible and low-power instruction sets. Conse-
quently, the toolkit has been chosen to facilitate the design
of the AIV-SoC for YOLO.

D. ROOFLINE MODEL AND DATA FLOW
The Roofline model is an analytical framework proposed to
establish a correlation between processor performance and
off-chip memory traffic [28]. In the foreseeable future, off-
chip memory bandwidth is expected to be a critical resource
that limits system throughput. To address this concern, the
concept of ‘‘operational intensity’’ is introduced, which
quantifies the number of operations performed per byte of
DRAM traffic. For certain tasks such asmatrix operations and
Fast Fourier Transformation (FFT), the operational intensity
increases with the problem size. The on-chip cache size
and optimizations will also reduce the number of memory
accesses, thereby increasing the operational intensity.

Convolutional Neural Networks (CNNs) predominantly
process data within the chip, and the primary bottleneck in
input-output (IO) operations is associated with weight data.
To address this IO bottleneck, a ping-pong DMA scheme
is proposed in [25], enabling concurrent loading of weight
data and feature map computation. It is noteworthy that
the AXI bit-width of [25] has reached 256 bits. While
higher bit-width can effectively reduce transfer times, it also
imposes more stringent requirements on circuit pins and
packaging. Our work will employ the concept of ‘‘operational
intensity’’ to investigate the necessity of such high bit-width.
Moreover,specifically tailored to YOLOv8, we propose an
optimal bit-width configuration that utilizes the fewest
possible pins while ensuring overall throughput.

E. ACTIVATION FUNCTION
Reference [29] provides a circuit design for configurable
sigmoid and Tanh activation functions using second-order
approximation and deviation compensation. This design
exhibits superior speed and area efficiency compared to tra-
ditional lookup table or polynomial approximation methods.
It also utilize the function to perform the post-processing of
YOLOv3 and reduced about 0.06% of the MAP accuracy.

YOLOv8 also utilize the sigmoid function to calculate
the confidence value. However, YOLOv8 introduces more
non-linear activity function other that signoid such as
the SiLU after convolution, softmax in the DFL layer.
Implementing the second-order approximation in hardware
solely for the sigmoid function does not yield significant
advantages.

Reference [30] presents an enhanced Rectified Linear Unit
(ReLu) segmentation correction activation function, termed
SignReLu. Experimental findings demonstrate that the pro-
posed activation function expedites convergence, effectively
mitigates the gradient vanishing issue, and substantially
enhances the accuracy of neural network identification.
Due to the ease of hardware implementation and versatility
associated with piecewise linear functions (PLFs), we have
devised a strategy employing general PLFs to approximate
the diverse activation functions within YOLOv8.

III. HARDWARE DESIGN
A. RISC-V AND COMPUTING ENGINE
Based on [25], we present the architectural design of the
AIV-SoC system. Specific modifications and enhancements
have been introduced to handle the intricate and multifaceted
YOLOv8. As depicted in Figure 8, the RISC-V module,
initially RV32IMA, has been enhanced to RV32IMASU,
introducing extensions for user and supervisor modes. This
includes the addition of new extensions for both user and
supervisor modes. The 4 data ports, namely the instruction
cache (I-cache), data cache (D-cache), feature map caches
(FMC), and weight, share the same 64-bit AXI4 primary
port. Additionally, we have integrated a memory controller
and a Universal Asynchronous Receiver/Transmitter (UART)
module on the AXI4 bus to streamline execution and
debugging on FPGA.

In Figures 1, 7 and 6, it is evident that YOLOv8 surpasses
traditional ResNet networks in complexity. As a result, our
AIV-SoC is equipped with a more versatile and efficient CE
depicted in Figure 9. Table 2 outlines the implementation of
these novel functions (layers) using reformed CE hardware or
RISC-V software. Subsection II-C elaborates on our C2RTL-
based design methodology, which facilitates easy hardware
modifications. Therefore, even if there are new functionalities
beyond those outlined in Table 2, we can readily implement
them by adapting the hardware design in C++.

Moreover, the frequency of DNN-AS in [25] is diminished
due to the prolonged critical path of the general Multiply-
Accumulate (MAC) tree array. Our YOLOv8 CE tackles
this issue by introducing a multi-cycle path. Concretely,
we allocate the MAC tree array and its associated weight
register to cycle 2, while the remaining calculation and
storage modules are situated in cycle 1.

B. FEATURE MAP CACHE
As shown in Figure 9, we have designed 8 FMC pages,
each composed of 16 32-bit 8192-depth static random-access

64054 VOLUME 12, 2024

H. Wang et al.: Energy-Efficient Implementation of YOLOv8, Instance Segmentation, and Pose Detection

TABLE 2. Implementation of functions(layers).

FIGURE 8. Overall architecture of AIV-SoC.

FIGURE 9. Structure of the CE.

memory (SRAM) cells, providing data widths of 512 bits.
To accommodate different fixed point number precision
requirements, the cache offers two input modes: 32-bit mode
and 8-bit mode. In the 32-bit mode, the input is interpreted as
16 32-bit signed integers, which are commonly used to store
intermediate calculation results that have not been quantized
yet. In the 8-bit mode, the input is processed as 64 8-bit signed
or unsigned integers, depending on a signed bit register.
Typically, it stores the layer’s result after quantization. The
use of two memory modes enables more efficient use of
on-chip memory with minimal loss of accuracy.

Consider the 32-bit mode. For instance, the pixel in the
f channel at position (x, y) will be stored in the f -th cell’s
(y × Nix + x) depth. In this way, a single page can store

FIGURE 10. Carry and stack mechanisms.

a feature map of size 90 × 90. However, due to significant
variations in channel height and width parameters across
different layers in YOLOv8, directly storing data with such a
mapping relationshipmay not be suitable. Therefore, we have
adopted a stacked and carry mechanism to effectively manage
the data in FMC.

Figure 10 illustrates these mechanisms in the 32-bit mode.
The top half picture demonstrates a layer with Nif = 16 and
(Niy × Nix) = 12288, where the overflowing 4096 depth
is carried to the next 16 cells, which resides in the other
FMC page. The bottom half image showcases a layer with
Nif = 32 and (Niy × Nix) = 2048, where the 17th to 32nd
layers are stacked up to the 1st to 16th layers. By adopting
this methodology, the release of the yellow FMC page for
alternative purposes will be facilitated. Given the limitations
imposed by on-chip storage technology, this investigation has
constrained the cache size to 4MB, thereby restricting the
input image resolution of YOLOv8 to a maximum of 352.

While it is possible to concatenate pages to achieve a larger
volume, the calculation process allows only one page to be
selected for input data, and one page for output data storage
at a time.

C. RECONSTRUCTION OF DATA AND ALGORITHMS
Similar to Graphics Processing Units (GPUs), Single Instruc-
tion, Multiple Data (SIMD) plays a pivotal role in the
optimization of large-scale neural networks. Enabling SIMD
necessitates the hardware-level implementation of certain
loops. Numerous established loop optimization methodolo-
gies, including but not limited to loop unrolling, tiling, and
interchange [31], prove to be highly effective in mitigating
these challenges. These strategies involve the decomposition
of the overarching loop into more manageable subsets, with
subsequent unrolling of each subset directly onto the chip.

Reference [25] has compiled a comprehensive list detailing
the convolution design variables of ResNet suitable for
loop unrolling. These variables encompass (Pkx,Pky), Pif ,
(Pox,Poy), and Pof , symbolizing the degree of calculation
parallelism. Constraints for these variables are defined as
1 ≤ P∗ ≤ N ∗, where P∗,N ∗ represent any variable with

VOLUME 12, 2024 64055

H. Wang et al.: Energy-Efficient Implementation of YOLOv8, Instance Segmentation, and Pose Detection

FIGURE 11. Structure of convolution.

FIGURE 12. Structure of matrix multiplication.

a prefix of P, N. YOLOv8 incorporates various operations
beyond convolution, including max-pooling, matrix multipli-
cation, transposed convolution, and up-sampling. Despite the
structural distinctions among these operations, they can be
categorized into four loops based on their alignment with the
addresses of the FMC.

In Figures 11 and 12, we provide pseudo-code representa-
tions of convolution and matrix multiplication, incorporating
32-bit mode FMC as delineated in Table 3. The implementa-
tion of max-pooling can also be inferred from Figure 11. The
symbol N ∗ within the context of FMC signifies its maximal
capacity to hold data along a specific dimension, whereas
P∗ denotes the upper limit of the attainable loop unrolling
coefficient within its input/output bandwidth.

Additionally, data reuse plays a pivotal role in reducing
the number of I/O operations. Two forms of data reuse are
particularly relevant: spatial reuse and temporal reuse [32].
Spatial reuse implies that data is employed by multiple
parallel multipliers, whereas temporal reuse denotes the use
of data for multiple consecutive clock cycles. In convolution,
weight data can be temporally reused in loop 3, input feature
map data can be spatially reused in loop 3 and 4.

In Loop1 of Table 3, numerous unrolling coefficients
extended the FMC limitation, introducing certain challenges.
However, convolution and max-pooling operations rely
on successive sliding windows, resulting in a significant
overlap between adjacent windows. To leverage this crucial

FIGURE 13. Line-buffer and data-core caching scheme.

TABLE 3. Loop dimensions with unrolling variable.

characteristic and enhance the efficiency of external memory
bandwidth, an innovative line-buffer and data-core caching
schemewere introduced by [25] and [33].While [33] involves
two-port RAMs, [25] employs a combination of SRAM and
Register structures. It is noteworthy that such two-port RAMs
entail greater area and power consumption compared to their
single-port counterparts. Consequently, we opt to implement
the sliding window’s caching scheme as proposed by [25].

For a kernel with a square size denoted as (k, k), when
k > 1, data from the FMC is transferred to line-buffer and
data-core caching scheme. Figure 13 illustrates the hardware
resource utilization for a k × k kernel when unrolling loop1.
The existing data from the line-buffer (depicted in dark blue
and yellow) and the new data from the FMC (depicted in
dark green) are then transferred to the data-core register array,
refreshing sliding windows at the next clock cycle.

Max-pooling consumes Pof × k line-buffers and Pof × k2

data-cores, while convolution requires Pif × k line-buffers
and Pif × k2 data-cores. Considering the overall hardware
resources and constraints, in this paper, we establish 24 32-bit
512-depth SRAM line-buffers, supporting a maximum input
feature map size (Nix) of 512. The number of data-cores is
set to 100 to accommodate max-pooling with (5, 5) kernel
size and Pof = 4. Detailed information regarding the P∗

coefficient for various layers in YOLOv8 is presented in
Table 4.

D. GENERAL MULTIPLY-ACCUMULATE TREE ARRAY
To unroll the convolution and matrix multiplication loops 1,
2, and 4, denoted as P∗ in Table 4, we have developed a
versatile MAC tree array comprising 16 independent MAC
tree circuits. These 16 MAC trees share the input feature

64056 VOLUME 12, 2024

H. Wang et al.: Energy-Efficient Implementation of YOLOv8, Instance Segmentation, and Pose Detection

TABLE 4. Unrolling Parameters (P*) of different layers.

FIGURE 14. MAC tree.

map’s data while employing distinct weights. Consequently,
a set of 16 contiguous channels in loop 4 can be computed
concurrently.

Each MAC tree is responsible for the hardware implemen-
tation of loops 1 and 2. Given that the majority of layers in
YOLOv8 utilize traditional 3 × 3 convolutions, we set the
number of MAC operations for each MAC tree as loop1 ×
loop2 = (3 × 3) × 8 = 72. Figure 14 illustrates a MAC
tree, showcasing incorporation of adjusted bias data or partial
sums from the preceding group. The blue square represents a
pixel on the featuremap, while thewhite square indicates zero
padding. Despite introducing some hardware inefficiency,
given the widespread utilization of 3 × 3 convolutions in
YOLOv8, the associated loss is considered negligible.

E. DIRECT MEMORY ACCESS SCHEME
To fully maximize idle clock cycles, we also inherit the
ping-pong scheme from [25]. As shown in Figure 9, Weight
data ‘‘b’’ and ‘‘a’’ are alternately chosen for MAC array

FIGURE 15. Operational intensity and weight loading clocks.

calculations and data loading for the subsequent group
through the AXI4 port. This strategy ensures that calculations
do not idle during the loading of weight data. Given that
weight data can be reused in Loop3 during convolution and
matrixmultiplication, reloadingweight data is only necessary
for different instances of Loop2 and Loop4. The fixed size of
weight ‘‘b’’ and ‘‘a’’ dictates that the data-loading cycles for
each Loop2&4 depend solely on the AXI4 bidwidth. Hence,
the Loop3’s dimension is closed to the concept ‘‘operational
intensity’’ proposed in [28]. Consequently, we have N3 =

(Nox × Noy) or Nrx un-idled clocks to load the weight of
the next loop2&4.

As shown in Figure 9, single weight data is composed
of 288 32-bit registers. Data writing is executed using
unidirectional DMA via AXI port. As depicted in Figure 15,
our AIV-SoC utilizes a 64-bit AXI port, requiring 144 clocks
to load the subsequent weight data. In contrast, our previous
conference proceeding [34] proposed a 256-bit configuration,
resulting in a 36-clock requirement. Notably, the study in [34]
assumes an input image size of 256× 256, with the smallest
feature map represented by the green column as (8, 8). In this
paper, we have expanded the dimensions of the input image
to 352 × 352, and the smallest feature map is identified by
the blue column, sized at (11, 11), where the hatched column
signifies the idle clocks awaiting weight loading. Despite the
assertion in [34] that all layers avoid idle clocks introduced
by weight loading, the incorporation of a 256-bit AXI4 port
poses challenges in terms of packaging. In contrast, our
latest design with a 64-bit configuration strikes a harmonious
balance between idle clock cycles and the number of IO pins.

F. TRANSPOSED CONVOLUTION
Transposed convolution, also known as fractionally strided
convolution or deconvolution, is a technique used in neural
networks for up-sampling or increasing the spatial resolution
of feature maps. Unlike standard convolution layers that per-
form down-sampling through the use of pooling operations,

VOLUME 12, 2024 64057

H. Wang et al.: Energy-Efficient Implementation of YOLOv8, Instance Segmentation, and Pose Detection

transposed convolution layers increase the spatial resolution
of input feature maps. The transposed convolution operation
involves using learnable kernels tomap input pixels to a larger
output space. During the transposed convolution, the kernels
are applied to the input with a specific stride, resulting in the
expansion of the feature map.

This operation is particularly useful in tasks such as image
segmentation and image generation, where the network
needs to learn to generate high-resolution details from low-
resolution inputs [35]. Transposed convolution layers are
often used in decoder parts of neural networks, especially
in architectures like U-Net and various generative models.
In terms of implementation, transposed convolution layers
are typically realized using operations like ‘‘convolution
with fractional input stride’’ in deep learning frameworks.
These layers have learnable parameters (weights) that are
adjusted during training to enable the network to effectively
up-sample and generate detailed information from coarser
representations.

It’s worth noting that the term ‘‘deconvolution’’ in the
context of neural networks is a bit of a misnomer, as it doesn’t
perform true deconvolution in the mathematical sense.
Instead, it refers to the transposed convolution operation,
which has the effect of up-sampling the input.

References [36] and [37] introduces a hardware accel-
eration design transposed convolutions, enabling real-time
execution of segmentation tasks. Given that the majority
of transposed convolution in segmentation model employ
a stride of 2, it implies the necessity to insert zeros
between each datum in the input layer during convolution.
To addresses the computational intensity and inefficiency
issues, [37] introduced a dataflow exploration method by
dividing filters and corresponding input feature maps into
four patterns and applying the Winograd algorithm. Due to
the additional latency and computational overhead introduced
by image scaling, themajority of models tend to favor the first
approach. The YOLOv8 architecture, employed in this study,
also adopts the strategy of utilizing a kernel size divisible
by the stride for its transposed convolutions, where both the
stride and kernel size are set to 2.

Reference [38] highlights another challenge known as
‘‘uneven overlap’’ in transposed convolution, where certain
areas receive more emphasis than others, especially when the
kernel size is not divisible by the stride. This uneven overlap
manifests as a checkerboard-like pattern, which is more
pronounced in two dimensions due to the squared effect. Two
suggested approaches to mitigate these issues include using
a kernel size divisible by the stride (equivalent to ‘‘sub-pixel
convolution’’) and separating up-sampling from convolution
by resizing the image before applying convolution layers.

In light of the overarching constraints and implementation
considerations, we formulated the transposed convolution
with a stride of 2 in CE. This design specifically mandates
a kernel size that is divisible by the given stride. Similar
to the four configurations delineated in [37], we have
also partitioned our transposed convolution kernel into four

FIGURE 16. 4-pattern mode of Transposed Convolution.

TABLE 5. YOLOv8’s transposed convolution N* and P*.

distinct patterns as shown in Figure 16. Each pattern is
equivalent to a traditional convolution with a stride of 1 and
a kernel size of (Nkx2 ,

Nky
2). Implementing this 4-pattern

mode introduces a repetition of loop2, occurring four times.
As shown in Table 5, we listed the P∗,N ∗ for the YOLOv8’s
transposed convolution in both normal and 4-pattern mode.
By computing the expression in (1), where ‘‘Inst’’ denotes
the number of instructions, and Pi,Ni denote the dimensions
or unrolling variables under loop ‘‘i’’, it is discerned that
employing the 4-pattern mode consumes only one-fourth of
the number instruction compared to the normal mode.

Inst =
∏4

1
Ni
Pi

(1)

G. MAXPOOLING CIRCUITS
Thanks to the new SPPF structure, we only need to focus
on max-pooling with a 5 × 5 kernel. Taking into account
register resources, we designate P4 as 4 for the max-
pool5×5 operation, resulting in 4 max-selection circuit trees,
as illustrated in Figure 17.

H. STATISTIC BLOCK FOR DYNAMIC FIX-POINT SCHEME
In circuit design, the execution of floating-point multiplica-
tion operations necessitates the incorporation of numerous
shift circuits, resulting in heightened circuit latency. Con-
sequently, the fixed point scheme is employed as a strategy
to optimize the circuit, as proposed by [25] and [39]. These
researchers introduced a dynamic fixed point (DFP) scheme
tailored for managing feature map and weight data, demon-
strating superior accuracy compared to traditional unified tail
quantization. Nevertheless, the quantization per layer (tensor)
proves insufficiently meticulous for convolution layers with
a substantial number of channels.

Consider a convolution layer composed of Lf = Nof ×
Noy × Nox feature map data. In their approach, a single
public exponent is assigned to each of these data sets,
a practice that may lead to significant truncation errors
when Lf is exceptionally large. To mitigate this issue,
we propose the adoption of per-group quantization. The
number of groups aligns with the FMC’s P∗ under loop4,

64058 VOLUME 12, 2024

H. Wang et al.: Energy-Efficient Implementation of YOLOv8, Instance Segmentation, and Pose Detection

FIGURE 17. Miax-selection circuit tree.

enabling the insertion of a statistic module in CE. The number
of each group’s data will be Gf = 16 × Noy × Nox.
The statistical module tallies the number of highest bits,
representing the absolute values of output results from the
MAC array. Reference [25] also introduced the concept of
a tolerance threshold, allowing for the truncation of certain
pixels. In this paper, we utilize a tolerance threshold of 1/8192
for YOLOv8 following extensive validation. Subsequently,
each group leverages statistical information and the tolerance
threshold to determine its respective exponent. This refined
quantization methodology is designed to mitigate truncation
errors effectively.

Moreover, since unquantized data (32-bit mode) occupies
four times more space than quantized data (8-bit mode), the
implementation of per-group quantization also diminishes the
on-chip cache requirement. As demonstrated in Figure 9,
when the WE signal of the FMC is active, the write data’s
copy is automatically sent to the statistics module.Given that
not all data serves as the final output layer’s result, we have
introduced a double-level register mechanism. The first
register automatically accumulates distribution information
related to the highest bit. Custom instructions are employed
to either accumulate the first register data into the second
register or clean the data in the first register. Upon the
completion of all calculations within the designated group,
the secondary register discerns and generates the optimal
exponent (truncation bit) for the current group.

I. PIECEWISE LINEAR FUNCTION MODULE
The YOLOv8 framework incorporates various non-linear
mapping functions, specifically SiLU, softmax, and sigmoid.

FIGURE 18. PLF approximation scheme.

The softmax function can be deconstructed into its inverse
function and the exponential function. Traditionally, the
exponential function is approximated through the Taylor
series method [40]. However, due to the necessity of
introducing additional multiplication and addition terms
in the Taylor expansion, this significantly amplifies the
overall computational workload. To mitigate this challenge,
we employ the PLF module to approximate the values of the
non-linear functions.

To accommodate the input range of the majority of non-
linear functions, we have divided the interval [−8, 8] into
32 segments with a step size of 0.5. For each segment,
we derived the corresponding slope k and intercept b from
the weight register. Assuming that the frac() function returns
the fractional portion of a tensor, the resulting computation is
expressed as k × frac(|2x|) + b. As illustrated in Figure 18,
a limited number of mantissa bits are adequate for accurately
representing high-precision input. The outputs are quantized
on a per-group basis, following the same procedure as other
operations utilizing the statistics module.

IV. SOFTWARE DESIGN
In this study, we employed the pre-trained YOLOv8s model
from Ultralytics to serve as the neural network running on
the AIV-SoC platform. To optimize the network architecture,
we integrated the batch normalization layers with convolution
layers using the official ‘fuse()’ function.

A. MODEL ADJUSTMENTS AND QUANTIZATION
The YOLOv8’s weights are quantized using the same
quantization scales as feature map data. For example, the
convolution layer’s weight data consists of Lw = Nkx×Nky×
Nif ×Nof data points. The size of Lw becomes prohibitively

VOLUME 12, 2024 64059

H. Wang et al.: Energy-Efficient Implementation of YOLOv8, Instance Segmentation, and Pose Detection

large as the dimensions of Nif and Nof increase in the latter
part of YOLOv8. Consequently, we propose dividing them
into groups to reduces the number of data sharing the same
public exponent. Similar to layer’s per-group quantization,
each group have Gw = Nkx × Nky× Nif × 16 data points.
As this paper primarily concentrates on the hardware

design for model inference, we choose a straightforward
post-training symmetric static quantization of the model.
In the future, incorporating Quantization Aware Training
(QAT) could potentially enhance accuracy further.

Notably, while per-channel quantization achieves accuracy
closest to the original float, it necessitates a substantial
number of exponents. Additionally, given that the coefficients
for the majority of computation layer loop4 are set at 16, per-
channel quantization will result in increased computational
load within the loop. In light of the inherent trade-off between
precision and circuit complexity, we have, therefore, incorpo-
rated per-group quantization into the AIV-SoC framework.

B. CONVOLUTION
Algorithm 1 delineates the configuration of the nested loop
structure governing the convolution operation with a kernel
size of (3, 3). In each iteration, the load_weights() commands
are employed to retrieve the necessary weight data for
the subsequent group. In most cases, the load_weights()
commands occurs seamlessly without disrupting the compu-
tational process, thereby enabling the concurrent execution of
calc_conv3() alongside the weight-loading procedure.

The inner loop, featuring the ni statement, accumulates
the partial sum from 8 adjacent input channels. As a result,
we only need to save the statistics of the final iteration. Hence,
we incorporate the clean_statistics() function to reset the
data in the first register and the save_statistics() function to
accumulate the data from the first register into the second
register. Additionally, to enhance calculation efficiency,
we also implement the zero overhead loop mechanism
from [25] in software design.

Algorithm 1 Convolution3× 3 Loop
1: iteration← sizein× sizein
2: load_weights()
3: wait()
4: for no = 0 to Nof by 16 do
5: load_bias()
6: for ni = 0 to Nif by 8 do
7: set_layer()
8: clean_statistics()
9: load_weights()

10: for zero_over_headloop(iteration) do
11: calc_conv3× 3()
12: end for
13: end for
14: save_statistics()
15: generate_exp()
16: end for

C. TRANSPOSED CONVOLUTION
In Section III-F, our approach involves employing a 4-pattern
mode for transposed convolution. Within YOLOv8’s seg-
mentation model, the transposed convolution is characterized
by a kernel size of 2 and a stride of 2. This operation is
specifically applied to ‘‘up-sample’’ the prototype layer. The
implementation details of this mechanism are elucidated in
Algorithm 2.

Algorithm 2 Transposed Convolution Loop
1: iteration← sizein× sizein
2: load_weights()
3: wait()
4: for no = 0 to Nof by 16 do
5: load_bias()
6: for pattern = 0 to 3 do
7: for ni = 0 to Nif by 64 do
8: clean_statistics()
9: set_layer()
10: load_weights()
11: for zero_over_headloop(iteration) do
12: calc_convtranspose2× 2()
13: end for
14: end for
15: save_statistics()
16: end for
17: generate_exp()
18: end for

D. MATRIX MULTIPLICATION
The segmentation model of YOLOv8 incorporates the task
of object detection. Following the object detection process,
the obtained results necessitate matrix multiplication with
predictions post Non-Max Suppression (NMS) and the
prototype layer. The matrix representing predictions post
NMS is positioned on the left, with its variable Nly denoting
the count of objects remaining after NMS. Conversely,
the prototype layer is situated on the right, assuming
that the input image is of dimensions (imgsx, imgsy). Here,
Nrx = imgsx × imgsy/16, and Nlx = Nry = 32.
To execute the matrix multiplication, predictions after

NMS must initially be retrieved from the CE, followed by
re-composition, and subsequently flushed back as weight
data. A more in-depth understanding of this process is
elucidated in Algorithm 3.

E. MAXPOOL
The spatial pyramid pooling fast (SPPF) in YOLOv8s utilizes
three max-pool layers with a kernel size of 5× 5. According
to Table 3, max-pool5 × 5 is composed of Nof /4 groups.
As the max-pool operation outputs only the maximum pixel
value from sliding windows in the line buffer and data core,
quantization is not required. Algorithm 4 presents the pseudo
code for the max-pool5× 5 operation.

64060 VOLUME 12, 2024

H. Wang et al.: Energy-Efficient Implementation of YOLOv8, Instance Segmentation, and Pose Detection

Algorithm 3Matrix Multiplicatio Loop
1: iteration← Nrx
2: fetch_prediction_after_NMS()
3: reconstruct()
4: load_weights()
5: wait()
6: for no = 0 to Nly by 16 do
7: for ni = 0 to Nlx by 64 do
8: set_layer()
9: load_weights()

10: clean_statistics()
11: for zero_over_headloop(iteration) do
12: calc_convtranspose2× 2()
13: end for
14: end for
15: save_statistics()
16: generate_exp()
17: end for

Algorithm 4Maxpool5× 5 Loop
1: iteration← sizein× sizein
2: for no = 0 to Nof by 8 do
3: set_layer()
4: for zero_over_headloop(iteration) do
5: calc_maxpool5× 5()
6: end for
7: end for

F. CONCAT AND UPSAMPLE
TheConcat andUpsample layers do not perform calculations;
they simply copy the channels of the input layer’s data. The
data-flow for these layers is represented as the ‘‘Copy Inst.’’
shown in Figure 9. Assuming that the first channel of the input
layer will be shifted to the beginning of the output channels
(Bof), the software algorithm is illustrated in Algorithm 5.

Algorithm 5 Pseudo Code for Copy
1: iteration← sizeout× sizeout
2: for no = 0 to Bof by 16 do
3: set_layer()
4: for zero_over_headloop(iteration) do
5: copy()
6: end for
7: end for

G. SHORTCUT CONNECTION (RESIDUAL LAYER)
Some bottlenecks in YOLOv8 involve shortcuts, which entail
an element-wise addition of two layers. Due to the potential
discrepancy in the DFP’s exponents of the two input layers,
we employ the MAC to perform the addition. One layer is
directed to the MAC’s input feature map data, while the
other layer is sent to the partial sum port, where it will be
appropriately shifted to align with the former. In the end,

FIGURE 19. Decomposition of max-shifted softmax.

the sum result also necessitates per-group quantization. The
software data-flow is illustrated in Algorithm 6.

Algorithm 6 Pseudo Code for Addition
1: iteration← sizein× sizein
2: load_weights()
3: wait()
4: for no = 0 to Nof by 16 do
5: set_layer()
6: clean_statistics()
7: for zero_overhead_loop(iteration) do
8: calc_add()
9: end for
10: save_statistics()
11: generate_exp()
12: end for

H. SILU, SIGMOID AND SOFTMAX
YOLOv8 incorporates various non-linear mapping functions,
including SiLU, softmax, and sigmoid. Modifying SiLU
and sigmoid for the required task is as simple as adjusting
parameters k and b within the PLF module’s software.
However, softmax necessitates an custom instruction beyond
PLF, as depicted in Figure 19. To mitigate issues related
to overflow and underflow, we introduce the concept of
max-shifted softmax. This technique entails subtracting the
maximum value from each element before applying the
exponential function, ensuring both numerical stability and
computational efficiency.

I. SWAP MEMORY
After completing each layer, the software will check if the
data can be freed if the following layer does not require them.

VOLUME 12, 2024 64061

H. Wang et al.: Energy-Efficient Implementation of YOLOv8, Instance Segmentation, and Pose Detection

FIGURE 20. Swap memory mechanism.

However, in some layers, there is no available space in the
FMC to be freed, and the remaining memory is insufficient
for the current layer. To address this issue, we have introduced
a swap memory mechanism, similar to the swap memory in
computers. In this context, the swap memory serves as virtual
memory or paging space, which is a specialized memory
area within the computer system used to temporarily store
infrequently accessed feature map data when the physical
on-chip SRAM becomes insufficient.

Assuming the current layer is Layer 6 with Addition
operation, and its inputs are 4 and 5. Layer 2 will be
used later. Layer 6 has 2 space, one the the output result
of 8 bit, the other is 32-bit un-quantized data temporarily
cached. Figure 20 depicts the operational mechanism of
swap memory, involving alternate processes of addition and
quantization. Upon completion of layer6 calculations, the
32-bit cache space is released, allowing Layer 2 to be flushed
back into on-chip SRAM. Given the opportunity to modify
YOLOv8, we would consider adjusting the layer sizes and
structures to mitigate the need for swapping memory. This
adjustment would allow the AIV-SoC to reduce its reliance
on AXI bandwidth.

J. ANCHOR POINT
YOLOv8 employs grid cells as anchors for determining box
positions in an image. To account for this, grid cell bias
information needs to be integrated into the boxes from the
DFL layer. In Figure 6, there are three detect head blocks
with varying layer sizes and corresponding strides: 8, 16, and
32. Consequently, the values of (x, y,w, h) from the DFL are
scaled by 8, 16, or 32, depending on the associated detect
block. The torch.meshgrid() API is then utilized to generate
three feature maps for grid cells, which are subsequently
added to the scaled boxes.

In our AIV-SoC, leveraging the public exponent mecha-
nism allows us to simplify the scale operation by adding an
exponent of 3, 4, or 5. Following this, we create an equivalent

FIGURE 21. Anchor point data flow.

grid cell in the off-chip swap memory. Once a softmax layer
among the three is completed, its corresponding grid cell
layer is transferred to on-chip SRAM. Ultimately, an addition
layer, illustrated in Algorithm 6, is utilized to add the scaled
boxes and grid cell. The complete data flow about anchor
point is illustrated in Figure 21, where the dotted rectangle
denotes off-chip operations.

V. SIMULATION RESULT
A. HARDWARE SIMULATION
The hardware design is implemented using C++ and
compiled using LLVM 11.0.0 and C2RTL 4.2.8 versions.
The C++ code is then converted into an RTL Verilog file.
The Front-End hardware design is synthesized with Synopsys
Design compiler. Initially, we employ the TSMC 28nm
SRAM memory compiler, TSN28HPCPD127SPSRAM_
20120200, to produce 8 individual single port 32-bit
8192-depth SRAM cells. Subsequently, we utilize the com-
piler TSN28HPCPUHDSPSRAM_20120200 to synthesize
the circuit incorporating these memory cells.

The simulation constraint and outcomes for AIV-SoC
in comparison to the basic RISC-V SoC without CE are
illustrated in Table 6. In comparison to [25] and [34],
our enhancements involve the incorporation of a memory
controller and UART module within the AXI4 bus archi-
tecture. Consequently, the area and power consumption of
the base RISC-V design have increased. However, the power
differential between the AIV-SoC and the basic RISC-V SoC
remains nearly constant.

Prior works ([25], [34]) adopt traditional single-cycle path
designs, wherein achieving higher clock frequencies can be
challenging due to the stringent timing requirements imposed
on critical paths. To address this challenge, we employ a
multi-cycle patch design in CE, segmenting the critical paths
across two clock cycles. This approach provides flexibility
in meeting timing constraints and opens the possibility of

64062 VOLUME 12, 2024

H. Wang et al.: Energy-Efficient Implementation of YOLOv8, Instance Segmentation, and Pose Detection

TABLE 6. Hardware resource utilization.

achieving higher clock frequencies. Consequently, the SoC
presented in this paper attains a higher frequency than those
in the referenced works. Furthermore, the flexibility offered
by the multi-cycle path design contributes to improved
design scalability. The segmentation strategy can be readily
adapted to accommodate changes in technology, environ-
ment, or other design constraints.

To underscore the power efficiency of our design, we con-
ducted a comprehensive comparison between our AIV-SoC
and other contemporary platforms. This comparative analysis
centered on the average energy consumption and frame
processing time when handling unprocessed images with
YOLOv8s, featuring a 352-input image size. To show our
AIV-SoC’s compatibility, we listed the results from resnet50.
although throughput is not as good as YOLOv8.

Given the absence of existing literature on FPGA imple-
mentation of YOLOv8, we referred to related models such
as YOLOv2 [33] and YOLOv7-tiny [27]. We also present
the results for the GTX1080Ti (GP102) using the official
PyTorch API function val() from [19]. Its using the default
COCO dataset. The input resolution of the measurement is
352 and the default batch size is 16. Since each platform
deploys different models, we standardized the evaluation
metrics to ensure fairness, utilizing throughput (TOP/s)
and energy consumption per billion operations (Energy per
GOPs) to assess performance. To begin, we utilize the ‘‘thop’’
library to acquire the FLOPs (Floating Point Operations
Per Second) of each model. By encompassing the entire
execution cycle and frequency, we can derive the throughput
of the platform. Subsequently, dividing the power by the
throughput enables us to ascertain the Energy per GOPs.

Due to the absence of chip fabrication and validation,
as well as the cost implications tied to chip production
volume, we are currently unable to estimate the retail price
of our AIV-SoC. As a reference point, we have compared
it with the K230 chip, the latest generation SoC product
in Canaan Technology’s Kendryte series of AIOT chips,It
has 2 CPU with max 800Mhz and 1600hz respectively,
it can deal with many AI model including YOLOv5. In
Table 7 we present the result with int8 yolov5s. The k230
is priced at approximately $50. Therefore, if our design were
to enter commercial production at scale, leveraging the cost
advantages of utilizing the more economical TSMC28nm
process, our production costs would undoubtedly be lower.

As depicted in Table 7, our AIV-SoC achieved a throughput
(TOP/s) equivalent to 13% of the GTX1080Ti. Moreover,
our power efficiency, defined by the Energy per GOPs, was
approximately 160 times superior to that of the GTX1080Ti,
3 times better than K230, and 37 times superior to the
Arria-10 GX1150 FPGA. Compared to FPGA-based designs,
our AIV-SoC has the potential for lower costs on a mass
production scale. With these advantages, Considering these
factors, our AIV-SoC has great potential for applications
in lower-end devices such as autonomous vehicles or
agricultural monitoring systems.

B. COCO OBJECTION DETECTION SIMULATION
Compared to the PLF, Int8 quantization introduces a higher
level of error. In this paper, we are undertaking a com-
parative analysis among three distinct quantization models:
per-tensor, per-group, and per-channel INT8 quantization
models, alongside the original official model in [19]. Table 8
presents a juxtaposition of the mean Average Precision
(mAP) scores at input resolutions of 256, 352, and 640 for
YOLOv8s Object Detection on the COCO [20] val2017
dataset. The simulation results of an exemplary image at an
input resolution of 352 × 352 are presented in Figure 22,
utilizing both the AIV-SoC’s per-group quantization model
and the original floating-point model, visualizing a 0.8%
mAP gap.

C. GLOBAL WHEAT 2000 OBJECTION DETECTION
SIMULATION
The Global Wheat 2000 [42] dataset is pivotal for wheat
genetics and agricultural research. It offers high-resolution
images and detailed annotations, enabling researchers to
develop algorithms for various tasks like wheat variety
identification and disease detection. Additionally, the Global
Wheat Head Dataset is widely used for wheat head detection
tasks, providing diverse images for plant phenotyping and
crop management. These datasets play a crucial role in
advancing wheat production and food security initiatives.

We trained the Global Wheat 2000 object detection
model using the YOLOv8s architecture, employing the
same training methodology as the example program detailed
in [19], with 100 epochs and a default input image size of 640.
In the Global Wheat 2000 dataset, the number of classes (nc)
is 1, which impacts the head detection process. Consequently,
the overall inference time is slightly smaller compared to
the COCO val2017 dataset. However, during our testing, the
time difference on both AIV-SoC and GTX1080ti devices is
negligible. Therefore, we only present the mAP table and a
pair of example image.

While training with an image size of 352 may yield better
precision for inference at 352 resolution, it is noteworthy
that deploying pre-trained generic models tailored to specific
resolutions presents challenges. Hence, we opted to adhere to
the default resolution of 640 for training, aligningwith typical
real-world application scenarios.

VOLUME 12, 2024 64063

H. Wang et al.: Energy-Efficient Implementation of YOLOv8, Instance Segmentation, and Pose Detection

TABLE 7. Comparison of hardware metrics.

TABLE 8. YOLOv8s mAP 0.5-0.95 of objection detection.

TABLE 9. YOLOv8s objection detection mAP in global wheat 2000.

D. COCO INSTANCE SEGMENTATION SIMULATION
In parallel with Table 8, we conducted a comparative
analysis of four distinct quantization models applied to
the YOLOv8 instance segmentation model, as illustrated in
Table 10. The test dataset is COCO-seg [20], an extension
of the COCO dataset. Given the absence of prior research
dedicated to the instance segmentation of YOLO, our power
efficiency comparison is limited to our AIV-SoC and the
1080Ti, as presented in Table 7. Similar to Figure 22,
Figure 24 visualizes the 0.8% mAP loss observed in instance
segmentation when using an image size of 352, attributable
to quantization.

E. ROBOFLOW UNIVERSE CRACK INSTANCE
SEGMENTATION SIMULATION
The Roboflow Universe Crack [43] Segmentation Dataset
emerges as an extensive repository tailored specifically for
professionals engaged in transportation and public safety

FIGURE 22. COCO objection detection mAP loss of quantization.

analyses, comprising a total of 4029 static images captured
from diverse road and wall scenarios. Crack segmentation
holds practical relevance in infrastructure upkeep, facilitating

64064 VOLUME 12, 2024

H. Wang et al.: Energy-Efficient Implementation of YOLOv8, Instance Segmentation, and Pose Detection

FIGURE 23. Global Wheat 2000 objection detection mAP loss of
quantization.

TABLE 10. YOLOv8s instance segmentation mAP 0.5-0.95 in COCO.

TABLE 11. YOLOv8s instance segmentation mAP in Roboflow Universe
Crack.

the detection and evaluation of structural deterioration.
Moreover, it plays a pivotal role in bolstering road safety
by empowering automated systems to identify and address
pavement cracks promptly for timely repairs.

The number of classes (nc) for the Roboflow Universe
Crack instance segmentation model is 1. We trained it
using the same methodology employed for the Global
Wheat 2000 dataset. Additionally, the overall inference time
difference between COCO instance segmentation and our
model is negligible. Furthermore, we present the mean
Average Precision (mAP) table alongside a pair of example
images. Due to the relatively small size of most images in the
Roboflow Universe Crack dataset (often below a resolution

FIGURE 24. COCO instance segmentation mAP loss of quantization.

of 416× 416), employing an image resolution of 352 results
in superior overall precision compared to using 640.

F. COCO POSE DETECTION SIMULATION
In a similar manner, we extended our investigation to
YOLOv8 pose detection. We performed a comparative anal-
ysis involving four distinct quantization models, as portrayed
in Table 12. The test dataset is COCO-Pose [20], a specialized
version of the COCO dataset, designed for pose estimation
tasks. Due to the absence of prior research dedicated to the
pose detection of YOLO, our power efficiency analysis is
singularly focused on a comparative evaluation between our

VOLUME 12, 2024 64065

H. Wang et al.: Energy-Efficient Implementation of YOLOv8, Instance Segmentation, and Pose Detection

FIGURE 25. Roboflow Crack Instance Segmentation mAP loss of
quantization.

FIGURE 26. COCO Pose detection mAP loss of quantization.

AIV-SoC and the 1080Ti, as elucidated in Table 7. Consistent
with Figure 22, Figure 26 illustrates the simulation outcomes
for pose detection across 2 models at an image size of 352.

TABLE 12. YOLOv8s pose detection mAP 0.5-0.95 in COCO.

Notably, there is a certain degree of mAP loss (5.4%) in pose
detection, which may be attributed to its unique key-point
branch. The adoption of Int8 quantization results in a greater
loss of information compared to other fully convolution
networks (FCN). In our future work, we will explore the
feasibility of employing per-group and per-channel hybrid
quantization.

VI. CONCLUSION
Previous researches on RISC-V [25] were confined to
providing support exclusively for convolution, pooling and
fully connected layers. This limitation constrained its utility
to elementary models like VGG and ResNet, restricting its
applicability to a narrow spectrum of models and impeding
its adaptability to contemporary trends in neural network
evolution. Moreover, due to its exclusive consideration of
image classification tasks, the maximum input resolution
was confined to 256 × 256. Additionally, its SoC design
also lacks the inclusion of a memory controller and UART
module, rendering it impractical for debugging scenarios and
real-world industrial applications.

Our prior conference proceeding [34] only support
YOLOv8’s objection detection. In this paper, we introduce
AIV-SoC, which extends support to instance segmentation
and pose detection. Moreover, we have improved the input
image resolution from 256 × 256 to 352 × 352, while
simultaneously reducing the AXI4 bus width from 256 to
64 bits. The achieved FPS for these tasks are 67.1, 55.2, and
64.9, respectively. Despite the mAP experiencing a reduction
for smaller targets, constituting half of the original 640 ×
640 size, themAP for larger targets remains nearly unchanged
from the original 640 × 640 size. The intermediate-sized
accuracy loss is also limited to approximately 9%. It is
noteworthy that the marginal benefits of further increasing
the resolution are diminishing.

In contrast to alternative architectures, our RISC-V archi-
tecture demonstrates the capability to seamlessly execute
various branches of YOLOv8 on-chip, encompassing the
post-processing step. Unlike ASIC or FPGA architectures
tailored for CNNs, which often accommodate only object
detection, our design adeptly manages YOLOv8 Object

64066 VOLUME 12, 2024

H. Wang et al.: Energy-Efficient Implementation of YOLOv8, Instance Segmentation, and Pose Detection

Detection, Instance Segmentation, and Pose Detection. This
signifies a superior level of versatility in comparison to
existing solutions. Additionally, we provide benchmark
results for specific areas, a feature lacking in their designs.
Furthermore, as illustrated in Table 7, our architecture
exhibits outstanding power efficiency compared with other
platforms.

While our architecture may not match the versatility of
GPUs, its primary strength lies in adaptability and scalability,
facilitated by the utilization of the C2RTL design toolkit
and a modular RISC-V platform. These features empowers
us to efficiently design and simulate the hardware. Refer-
ence [2] indicates that YOLO can be enhanced with Swin
Transformer, thus augmenting the environmental perception
capabilities of autonomous vehicles. Hence, we can further
customize instructions to accommodate increasingly intricate
neural networks in the future.

REFERENCES
[1] C. P. Papageorgiou, M. Oren, and T. Poggio, ‘‘A general framework

for object detection,’’ in Proc. 6th Int. Conf. Comput. Vis., Jun. 1998,
pp. 555–562.

[2] Y. Cao, C. Li, Y. Peng, and H. Ru, ‘‘MCS-YOLO: A multiscale object
detection method for autonomous driving road environment recognition,’’
IEEE Access, vol. 11, pp. 22342–22354, 2023.

[3] C. Yin, J. Tang, T. Yuan, Z. Xu, and Y. Wang, ‘‘Bridging the gap
between semantic segmentation and instance segmentation,’’ IEEE Trans.
Multimedia, vol. 24, pp. 4183–4196, 2022.

[4] K. He, G. Gkioxari, P. Dollár, and R. Girshick, ‘‘Mask R-CNN,’’ in Proc.
IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 2980–2988.

[5] H. Chen, K. Sun, Z. Tian, C. Shen, Y. Huang, and Y. Yan, ‘‘Blend-
Mask: Top-down meets bottom-up for instance segmentation,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 8570–8578.

[6] C. Cadena, A. R. Dick, and I. D. Reid, ‘‘Multi-modal auto-encoders as joint
estimators for robotics scene understanding,’’ in IEEE Robot. Automat.
Soc. (RAS), vol. 5. Ann Arbor, MI, USA: Univ. of Michigan, 2016.

[7] Y. Zhou, O. F. Onder, Q. Dou, E. Tsougenis, H. Chen, and P. A. Heng,
‘‘CIA-Net: Robust nuclei instance segmentation with contour-aware
information aggregation,’’ in Proc. 26th Int. Conf. Inf. Process. Med. Imag.
Hong Kong: Springer, Jun. 27, 2019, pp. 682–693.

[8] S. Zhou, D. Nie, E. Adeli, J. Yin, J. Lian, and D. Shen, ‘‘High-resolution
encoder–decoder networks for low-contrast medical image segmentation,’’
IEEE Trans. Image Process., vol. 29, pp. 461–475, 2020.

[9] H. A. Alhaija, S. K. Mustikovela, L. Mescheder, A. Geiger, and C. Rother,
‘‘Augmented reality meets deep learning for car instance segmentation
in urban scenes,’’ in Proc. British Mach. Vis. Conf., 2017, vol. 1, no. 2,
pp. 1–12.

[10] C.-W. Hsieh, C.-Y. Chen, C.-L. Chou, H.-H. Shuai, J. Liu, and
W.-H. Cheng, ‘‘FashionOn: Semantic-guided image-based virtual try-on
with detailed human and clothing information,’’ in Proc. 27th ACM Int.
Conf. Multimedia, Oct. 2019, pp. 275–283.

[11] H. Dong, X. Liang, X. Shen, B. Wang, H. Lai, J. Zhu, Z. Hu, and J. Yin,
‘‘Towards multi-pose guided virtual try-on network,’’ in Proc. IEEE/CVF
Int. Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 9025–9034.

[12] C. Wang, Y. Wang, and A. L. Yuille, ‘‘An approach to pose-based
action recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2013, pp. 915–922.

[13] J. Terven and D. Cordova-Esparza, ‘‘A comprehensive review of YOLO
architectures in computer vision: From YOLOv1 to YOLOv8 and YOLO-
NAS,’’ 2023, arXiv:2304.00501.

[14] M. Sohan, T. S. Ram, R. Reddy, and C. Venkata, ‘‘A review on YOLOv8
and its advancements,’’ in Proc. Int. Conf. Data Intell. Cogn. Inform.,
Singapore. Springer, 2024, pp. 529–545.

[15] Y. Zhao, B. Chen, B. Liu, C. Yu, L. Wang, and S. Wang, ‘‘GRP-YOLOv5:
An improved bearing defect detection algorithm based on YOLOv5,’’
Sensors, vol. 23, no. 17, p. 7437, 2023.

[16] P. Yan, Q. Sun, N. Yin, L. Hua, S. Shang, and C. Zhang, ‘‘Detection of
coal and gangue based on improved YOLOv5.1 which embedded scSE
module,’’Measurement, vol. 188, Jan. 2022, Art. no. 110530.

[17] M. Qiu, L. Huang, and B.-H. Tang, ‘‘ASFF-YOLOv5: Multielement
detection method for road traffic in UAV images based on multiscale
feature fusion,’’ Remote Sens., vol. 14, no. 14, p. 3498, Jul. 2022.

[18] K. Wang, J. H. Liew, Y. Zou, D. Zhou, and J. Feng, ‘‘PANet: Few-
shot image semantic segmentation with prototype alignment,’’ in Proc.
IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 9196–9205.

[19] Ultralytics YOLOv8 Docs. Accessed: Mar. 24, 2024. [Online]. Available:
https://docs.ultralytics.com/

[20] T. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollšr,
and C. L. Zitnick, ‘‘Microsoft COCO: Common objects in context,’’ in
Proc. Eur. Conf. Comput. Vis. Zurich, Switzerland: Springer, Sep. 2014,
pp. 740–755.

[21] X. Wang, H. Gao, Z. Jia, and Z. Li, ‘‘BL-YOLOv8: An improved road
defect detection model based on YOLOv8,’’ Sensors, vol. 23, no. 20,
p. 8361, Oct. 2023.

[22] X. Li, W. Wang, L. Wu, S. Chen, X. Hu, J. Li, J. Tang, and J. Yang,
‘‘Generalized focal loss: Learning qualified and distributed bounding
boxes for dense object detection,’’ in Proc. Adv. Neural Inf. Process. Syst.,
2020, vol. 33, no. 2020, pp. 21002–21012.

[23] X. Li, C. Lv, W. Wang, G. Li, L. Yang, and J. Yang, ‘‘Generalized focal
loss: Towards efficient representation learning for dense object detection,’’
IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 3, pp. 3139–3153,
Mar. 2023.

[24] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovic,
‘‘The RISC-V instruction set manual, volume I: User-level ISA,
version 2.0,’’ Dept. EECS Dept., Univ. California, Berkeley, CA, USA,
Tech. Rep. UCB/EECS-2014-54, 2014.

[25] H. Wang, D. Li, and T. Isshiki, ‘‘Reconfigurable CNN accelerator
embedded in instruction extended RISC-V core,’’ in Proc. 6th Int. Conf.
Electron. Technol. (ICET), May 2023, pp. 945–954.

[26] T. Sadasue and T. Isshiki, ‘‘LLVM-C2RTL: C/C++ based system level RTL
design framework using LLVM compiler infrastructure,’’ IPSJ Trans. Syst.
LSI Design Methodol., vol. 16, pp. 12–26, Jan. 2023.

[27] A. Hosseiny and H. Jahanirad, ‘‘Hardware acceleration of YOLOv7-tiny
using high-level synthesis tools,’’ J. Real-Time Image Process., vol. 20,
no. 4, p. 75, Aug. 2023.

[28] S. Williams, A. Waterman, and D. Patterson, ‘‘Roofline: An insightful
visual performance model for multicore architectures,’’ Commun. ACM,
vol. 52, no. 4, pp. 65–76, 2009.

[29] F. Liu, B. Zhang, G. Chen, G. Gong, H. Lu, and W. Li, ‘‘A novel
configurable high-precision and low-cost circuit design of sigmoid and
tanh activation function,’’ inProc. IEEE Int. Conf. Integr. Circuits, Technol.
Appl. (ICTA), Nov. 2021, pp. 222–223.

[30] G. Lin and W. Shen, ‘‘Research on convolutional neural network based on
improved relu piecewise activation function,’’ Proc. Comput. Sci., vol. 131,
pp. 977–984, Jan. 2018.

[31] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, ‘‘Optimizing
FPGA-based accelerator design for deep convolutional neural networks,’’
in Proc. ACM/SIGDA Int. Symp. Field-Program. Gate Arrays, Feb. 2015,
pp. 161–170.

[32] Y. Ma, Y. Cao, S. Vrudhula, and J.-S. Seo, ‘‘Optimizing the convolution
operation to accelerate deep neural networks on FPGA,’’ IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 26, no. 7, pp. 1354–1367, Jul. 2018.

[33] Z. Wang, K. Xu, S. Wu, L. Liu, L. Liu, and D. Wang, ‘‘Sparse-YOLO:
Hardware/software co-design of an FPGA accelerator for YOLOv2,’’ IEEE
Access, vol. 8, pp. 116569–116585, 2020.

[34] H. Wang, D. Li, and T. Isshiki, ‘‘A power-efficient end-to-end imple-
mentation of YOLOv8 based on RISC-V,’’ in Proc. 4th Int. Conf.
Comput. Artif. Intell. Technol. (CAIT), Dec. 2023, pp. 217–225, doi:
10.1109/cait59945.2023.10469637.

[35] A. Litvin, K. Nasrollahi, S. Escalera, C. Ozcinar, T. B. Moeslund, and
G. Anbarjafari, ‘‘A novel deep network architecture for reconstructing
RGB facial images from thermal for face recognition,’’ Multimedia Tools
Appl., vol. 78, no. 18, pp. 25259–25271, Sep. 2019.

[36] K.-W. Chang and T.-S. Chang, ‘‘Efficient accelerator for dilated and
transposed convolution with decomposition,’’ in Proc. IEEE Int. Symp.
Circuits Syst. (ISCAS), Oct. 2020, pp. 1–5.

[37] X. Di, H.-G. Yang, Y. Jia, Z. Huang, and N. Mao, ‘‘Exploring efficient
acceleration architecture for winograd-transformed transposed convolution
of GANs on FPGAs,’’ Electronics, vol. 9, no. 2, p. 286, Feb. 2020.

VOLUME 12, 2024 64067

http://dx.doi.org/10.1109/cait59945.2023.10469637

H. Wang et al.: Energy-Efficient Implementation of YOLOv8, Instance Segmentation, and Pose Detection

[38] A. Odena, V. Dumoulin, and C. Olah, ‘‘Deconvolution and checkerboard
artifacts,’’ Distill, vol. 1, no. 10, p. e3, Oct. 2016.

[39] S. Li, C. Yu, T. Xie, and W. Feng, ‘‘A power-efficient optimizing
framework FPGA accelerator for YOLO,’’ in Proc. 15th Int. Congr. Image
Signal Process., BioMed. Eng. Inform., Nov. 2022, pp. 1–6.

[40] P. Bader, S. Blanes, and F. Casas, ‘‘Computing the matrix exponential
with an optimized Taylor polynomial approximation,’’Mathematics, vol. 7,
no. 12, p. 1174, Dec. 2019.

[41] Canaan, Kendryte K230 Docs. Accessed: Mar. 31, 2024. [Online].
Available: https://developer.canaan-creative.com/

[42] E. David, S. Madec, P. Sadeghi-Tehran, H. Aasen, B. Zheng, S. Liu,
N. Kirchgessner, G. Ishikawa, K. Nagasawa, M. A. Badhon, C. Pozniak,
B. de Solan, A. Hund, S. C. Chapman, F. Baret, I. Stavness, and W. Guo,
‘‘Global wheat head detection (GWHD) dataset: A large and diverse
dataset of high-resolution RGB-labelled images to develop and benchmark
wheat head detection methods,’’ Plant Phenomics, vol. 2020, pp. 1–12,
Jan. 2020.

[43] Roboflow Universe. (2022). Crack Dataset. Accessed: Mar. 24, 2024.
[Online]. Available: https://universe.roboflow.com/university-bswxt/
crack-bphdr/

HANSEN WANG received the B.E. degree in
information science and electronic engineering
from Zhejiang University, China, in 2019, and the
M.E. degree in information and communications
engineering from Tokyo Institute of Technology,
Japan, in 2021, where he is currently pursuing
the Ph.D. degree with the Department of Infor-
mation and Communications Engineering. His
research interests include RISC-V architectures,
application-specific processors, artificial intelli-

gence visual systems, and deep neural networks.

DONGJU LI (Member, IEEE) received the Ph.D.
degree in electrical and electronics from Tokyo
Institute of Technology, in 1998. Currently, she
is an Assistant Professor with the Department
of Information and Communications Engineering,
Tokyo Institute of Technology. Her research inter-
ests include embedded systems and solutions for
fingerprint authentication and architecture design
for system-on-chip. She has been a member of
IEEE CAS and IEICE, since 1998.

TSUYOSHI ISSHIKI (Member, IEEE) received
the B.E. and M.E. degrees in electrical and
electronics engineering from Tokyo Institute of
Technology, in 1990 and 1992, respectively, and
the Ph.D. degree in computer engineering from
the University of California, Santa Cruz, in 1996.
He is currently a Professor with the Department
of Information and Communications Engineer-
ing, Tokyo Institute of Technology. His research
interests include designmethodologies for system-

on-chip architectures, application-specific processors, image processing
systems, MPSoC, and fingerprint authentication algorithms. He is a member
of IEEE CAS, IPSJ, and IEICE.

64068 VOLUME 12, 2024

