
Received 16 April 2024, accepted 29 April 2024, date of publication 6 May 2024, date of current version 13 May 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3397512

UASDAC: An Unsupervised Adaptive Scalable
DDoS Attack Classification in Large-Scale
IoT Network Under Concept Drift
SARAVANAN SELVAM 1 AND
UMA MAHESWARI BALASUBRAMANIAN 2, (Senior Member, IEEE)
1Department of Computer Science and Engineering, Amrita School of Computing, Amrita Vishwa Vidyapeetham, Chennai 601103, India
2Department of Computer Science and Engineering, Amrita School of Computing, Amrita Vishwa Vidyapeetham, Bengaluru 560035, India

Corresponding author: Saravanan Selvam (s_saravanan@ch.amrita.edu)

ABSTRACT Day by day, the number of devices in IoT networks is increasing, and concurrently, the
size of botnets in IoT networks is also expanding. Currently, attackers prefer IoT-based botnets to launch
DDoS attacks, as IoT devices offer a vast attack surface. Many researchers have proposed machine and
deep learning-based classifiers to classify DDoS and benign network traffic in online streams from IoT
devices. However, the performance of the traditionalmachine and deep learning algorithms deteriorates when
sudden concept or data drift occurs in the online streams and the volume and velocity of IoT network traffic
increases. To address these challenges, we proposeUASDAC, an adaptive and scalable data pipeline designed
specifically to handle concept drift and detect DDoS traffic in real-time in massive online streams originating
from IoT devices. UASDAC incorporates three key components: an online network stream collector for data
collection, an online network stream analyzer with an unsupervised drift detector for detecting drift and
DDoS traffic, and an online network stream repository for storing streams for future analytics. UASDAC
leverages big data technologies to implement all the three components to achieve scalability. Additionally,
UASDAC introduces an effective and efficient retraining technique to adapt to novel patterns in online
streams in the presence of concept drift. We evaluated the performance of UASDAC in different concept drift
scenarios using the benchmark dataset NSL-KDD and the latest IoT dataset IoT23. Our results demonstrate
that UASDAC effectively identifies DDoS traffic in the presence of concept drift, achieving an accuracy
range of 99.7% to 99.9%.

INDEX TERMS Attacks, big data, botnet, concept drift, DDoS, IoT, machine learning, network, online
streams.

I. INTRODUCTION
IoT-based botnet is a collection of infected IoT devices that
can be used to launch large-scale DDoS attacks [1], [2], [3].
The size of IoT-based botnets keeps increasing every day.
Consequently, the volume of botnet traffic is also increasing.
For example, Nokia’s threat intelligence report 2023 men-
tions that the number of IoT devices (bots) engaged in
botnet-driven DDoS attacks rose from around 200,000 a year
ago to approximately 1 million devices [4]. The main reason
for using IoT devices to form a botnet is that IoT devices are
generally insecure and can be compromised easily [5]. There

The associate editor coordinating the review of this manuscript and

approving it for publication was Renato Ferrero .

are a couple of challenges in detecting DDoS traffic in
the massive streaming network traffic of IoT devices. The
first challenge is the limitations of IoT devices in terms of
memory and processing capacity [6]. Due to these limitations,
installing DDoS traffic detection tools locally in IoT devices
is not feasible. Hence, the service providers of large-scale
IoT networks need to move the network traffic from IoT
devices to the cloud for analytics [7]. It demands a scalable
data pipeline to collect, analyze, and store the ever-growing
network traffic streams from geographically distributed IoT
devices [8].
The second challenge is that the supervised machine

learning algorithms that detect DDoS network traffic dete-
riorate performance when concept drift occurs in the online

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 64701

https://orcid.org/0000-0003-2351-4357
https://orcid.org/0000-0002-7858-6860
https://orcid.org/0000-0003-4459-4843

S. Selvam, U. M. Balasubramanian: UASDAC: An Unsupervised Adaptive Scalable DDoS Attack Classification

network streams [9]. Concept drift refers to the unpredictable
changes in the statistical distribution of training and test
instances [10], [11]. Generally, the network traffic originating
from the IoT network is ever-changing as the IoT environ-
ment is non-stationary and dynamic [12], [13]. Due to this,
the supervisedmachine learning algorithm trained on training
instances may result in poor performance when applied to
incoming online streams with concept drift. For example,
in IoT based patient respiratory monitoring system, the IoT
device can be considered a DDoS attack launcher if the
number of messages originating from that device is above
20 per second. However, during the COVID-19 pandemic,
the benign IoT device that monitors the patient’s respiration
might generate more than 20 messages per second if the
patient is infectedwith COVID-19. Then, in this scenario, this
benign device will be classified as a DDoS device. As a result,
the model’s False Positive Rate (FPR) increases [14], [15].
Many cybersecurity researchers have identified the impor-

tance of concept drift detection in IoT networks and pro-
posed several techniques to find the drift in online network
streams [16], [17]. Existing drift detection techniques can be
grouped into supervised and unsupervised [18], [19], [20].
Supervised drift detection techniques require true labels of
streaming test instances to detect the drift. Meanwhile, unsu-
pervised techniques can detect drifts without knowing the
true labels of incoming test instances. In real-life scenarios,
class labels of incoming test instances are not known. Hence,
supervised techniques are not suitable for detecting drifts in
real-life scenarios.

When concept drift occurs, the DDoS traffic classification
system must adapt to the novel patterns in the incoming
online network streams. Retraining is one of the methods to
adapt the DDoS attack classifier to the novel patterns. In the
retraining method, existing techniques typically retrain the
classifier using either the entire set of streaming test instances
that caused the drift or a combination of these instances and
the entire old training dataset. When retraining uses only the
entire set of streaming test instances causing the drift, the
retrained classifier may not recognize the old instances, i.e.,
old concepts. As a remedy to this, if we retrain with a com-
bination of the entire set of streaming test instances causing
the drift and old concepts, the retraining time will increase.

To address the first challenge, many researchers have pro-
posed scalable data pipelines [21], [22], [23]. However, these
solutions primarily focus on handling massive streaming IoT
traffic and often neglect to consider concept drift. Hence,
we propose a scalable and adaptive data pipeline that offers
both scalability and adaptability to detect DDoS traffic in
the massive streaming IoT traffic in the presence of con-
cept drift. Our proposed data pipeline consists of three key
components: an online network stream collector for data col-
lection from IoT devices, an online network stream analyzer
with an unsupervised drift detection and a novel adaptation
technique, and an online network stream repository for stor-
ing streams for future analytics. The proposed data pipeline
leverages big data technologies such as Apache Kafka to

collect online network streams originating from geographi-
cally distributed IoT devices, Apache Structured Streaming
to process the massive ingested online IoT network streams,
and MongoDB to store the online network streams for future
analytics.

To address the second challenge, many researchers have
adopted unsupervised and retraining techniques for concept
drift detection and adaptation respectively. We adopt a simple
yet efficient unsupervised drift detection technique based
on the Kolmogorov-Smirnov (KS) test and apply it on pre-
diction probabilities of training instances and incoming test
instances and calculate the p-value. If the p-value is less
than 0.05, we conclude that there is a drift in the incoming
test instances and trigger the drift adaptation component to
retrain the classifier. We choose KS test for its simplicity,
ease of implementation, non-parametric nature, and suitabil-
ity for continuous data. After detecting the drift, we employ
a novel, effective and efficient retraining technique to make
the classifier adaptable to concept drift. Our novel retraining
mechanism prepares a retraining dataset using a calculation
method that selects an optimal number of instances for every
class label from the set of streaming test instances that caused
the drift and the old training dataset. This calculation method
ensures that the retraining dataset encompasses sufficient
examples for each class from the new and old concepts,
allowing the classifier to adapt effectively to the evolving
data distribution. Further, it reduces the retraining time as
it retrains with only the optimal number of instances. This
research presents the following significant contributions.

• Developing an unsupervised concept drift detection
method based on Kolmogorov-Smirnov test.

• Proposing an efficient and effective retraining mech-
anism that uses a simple calculation to prepare the
retraining dataset for retraining when concept drift
occurs.

• Designing and conducting experiments to study the per-
formance of the proposed system in different concept
drift scenarios.

• Evaluating the proposed system on the benchmark
dataset NSL-KDD [24] and the latest publicly available
IoT23 dataset [25].

• Comparing the proposed system with a state-of-the-art
existing system, Optimized Adaptive and Sliding Win-
dowing (OASW) [26].

The remainder of this article is organized as follows.
Section II discusses the related works. Section III intro-
duces the proposed system in detail. Section IV elaborates
the experiments conducted and discusses the evaluations in
detail. Section V concludes the article.

II. RELATED WORK
In the preceding section, we identified two key challenges
in detecting DDoS traffic from the streaming network traffic
of large-scale IoT network in the presence of concept drift.
In this section, we present the existing research works in these
key challenges.

64702 VOLUME 12, 2024

S. Selvam, U. M. Balasubramanian: UASDAC: An Unsupervised Adaptive Scalable DDoS Attack Classification

A. HANDLING OF VAST AMOUNTS OF STREAMING IOT
TRAFFIC
In this subsection, we review the latest research articles that
mainly focus on using data pipelines to detect DDoS traffic
in massive streaming IoT traffic.

Zhou et al. [27] developed a system that consists of three
parts namely, collector, messaging system and stream pro-
cessor. The three parts are implemented with Jpcap, Apache
Kafka and Spark Streaming respectively. They compared the
performance of three machine learning algorithms in detect-
ing three DDoS attacks – TCP, UDP and ICMP flooding.

Patil et al. [28] presented a novel Spark Streaming and
Kafka-based distributed classification system, named by
SSK-DDoS, for classifying different types of DDoS attacks
and legitimate network flows in real-time. They evaluated
SSK-DDoS on CICDDoS2019 dataset and obtained the clas-
sification accuracy of 89.05%.

Shih et al. [29] built a Cloudera based big data platform
with tools such as Kafka, Spark Streaming, HBase, Hive,
and Impala to classify DDoS attacks. They used deep neural
network as their classifier and achieved accuracy of 94%.

Shi et al. [30] used Long Short-Term Memory to detect
abnormal traffic in CICIDS2017 dataset. They utilized big
data processing tools like Apache Kafka, Spark Streaming
for online network traffic collection and processing. The
detection accuracy reached upto 99%.

Abid et al. [31] introduced a real-time, distributed, fault-
tolerant and scalable system for detecting DDoS attacks in
Edge-IIoT dataset by leveraging data fusion and big data tech-
nologies such as Kafka and Spark Streaming. They achieved
the high accuracy of 99.97% and 99.98% in binary and mul-
ticlass classification respectively when multilayer perceptron
is used.

Alghamdi and Bellaiche [32] introduced a scalable intru-
sion detection system utilizing multi-staged binary andmulti-
class classifiers, employing simple and ensemble-based deep
learning techniques. They leveraged the Lambda architecture
to enhance efficiency by training classifiers at the batch layer
and analyzing real-time IoT traffic in the low-latency speed
layer. Results show that the ensemble approach gives the high
accuracy of over 99.93% for IoT23 dataset.

Yahyaoui et al. [33] designed a data pipeline that col-
lects data from IoT sensors using Kafka and feeds it to
Spark Streaming and Apache Flink for processing to detect
the intrusions. They used Apache Cassandra to store the
results. They compared the performance of Spark Streaming
and Apache Flink on KDDCUP99 and N-BaIoT datasets.
Their results show that Apache Flink achieved considerable
throughput and high detection accuracy.

The modern IoT traffic is ever-growing and ever-changing.
The above existing methods proposed scalable data pipeline
to handle ever-growing characteristic of streaming IoT traffic.
However, they do not address the ever-changing characteristic
of the streaming IoT traffic by implementing concept drift
detection and adaptation.

B. DETECTION OF CONCEPT DRIFT IN STREAMING IoT
TRAFFIC
In this subsection, we review the latest research articles that
primarily focus on concept drift detection and adaptation
in the domain of security attack classification in stream-
ing IoT traffic. In our review, we highlight the working of
concept drift detection and adaptation process, whether old
instances are considered or not for retraining and whether the
experimentations are conducted for detecting drift in different
scenarios.

L. Yang and A. Shami [26] presented an Optimized Adap-
tive and Sliding Window (OASW) algorithm to counter
concept drifts in IoT streaming network traffic. OASWmain-
tains two windows. The size of the windows is determined
based on experiments. When a test instance arrives, both
windows slide, and the accuracy of the current window is
compared with the accuracy of the previous window. If the
accuracy drops below a certain threshold, they conclude drift
exists and retrain the classifier. This method works only when
the class label of the incoming test instances is known imme-
diately. This work did not consider old concepts for retraining
and did not test concept drift detection method in different
concept drift scenarios. In the development of the classifier,
the authors of [26] chose to employ LightGBM, an ensemble
algorithm. LightGBM offers superior generalizability and
robustness compared to many other ML algorithms, partic-
ularly when dealing with non-linear and high-dimensional
data.

Jain and Kaur [34] proposed a drift detection system that
declares the drift in the incoming test instances if the pre-
diction accuracy of the model is less than 90% and the False
Positive Rate (FPR) is above 10%.When the drift is detected,
they retrain the model by replacing the old instances with new
instances causing the drift. They employed stacking ensemble
technique for classifying attacks. Their ensemble technique
involves two levels: Level 0 and Level 1. Level 0 consists
of two base learners such as Random Forest and Logistic
Regression. The output of Level 0 base learners is combined
and given as an input for Support Vector Machine, a Level 1
classifier. The authors of [34] did not design different concept
drift scenarios and study the performance of their proposed
drift detection mechanism.

Shao et al. [35] utilized Adaptive Windowing (ADWIN)
to detect drift in IoT botnet detection problems. Two differ-
ent configurations are used to explore the effectiveness of
adaptive learning strategy in IoT botnet detection: Hoeffding
Adaptive Tree and Adaptive Random Forest. They achieved
the high accuracy of 99.95% when Adaptive Random Forest
is used. They studied the performance of their proposed
system for data streams with unbalanced data.

Yang et al. [36] utilized Drift Detection Method
(DDM) and ADWIN to detect drift. They proposed the
Performance-Weighted Probability Averaging Ensemble
technique to adapt to the drifts. The prediction probability of
4 base learners, ARF-ADWIN, ARF-DDM, SRP-ADWIN,

VOLUME 12, 2024 64703

S. Selvam, U. M. Balasubramanian: UASDAC: An Unsupervised Adaptive Scalable DDoS Attack Classification

and SRP-DDM, are multiplied with those base learners’
weights for attack and benign class labels separately. The sum
of (prediction probability∗weights) is calculated separately
for attack and benign class. If the sum of the attack class label
is above the benign class label, then the instance is classified
into attack. The authors did not design different concept drift
scenarios for evaluating the proposed system. However, their
proposed system considers old concepts while retraining.

Schwengber et al. [37] proposed a system that assigns class
label ‘0’ to the training instances and class label ‘1’ to the
test instances. Then, the decision tree is used as a classifier.
If the decision tree correctly classifies old and new data as
two distinct classes, then it is declared that drift occurred.
After drift detection, hierarchical agglomerative clustering
distinguishes botnet flow from benign flow. The authors did
not evaluate the proposed system in different concept drift
scenarios and mention about drift adaptation.

Yang and Shami [38] detected drift using ADWIN and
Early Drift Detection Method (EDDM). 6 base learners are
used for retraining when drift occurs. 2 of them are leader
models. 2 other models are selected from the remaining
four models based on performance. Then, the Window-based
Performance Weighted Probability Averaging Ensemble
(W-PWPAE) model is used for final prediction. Like [36],
the authors did not design different concept drift scenarios
for evaluating the proposed system. However, their proposed
system considers old concepts while retraining.

Qiao et al. [39] used the residual subspace projection
method to calculate the anomalous quantity in the incom-
ing instances. When the anomalous quantity increases, the
concept drift occurs. If the concept drift is detected, LSTM
and CNN-based classifiers are retrained to classify multiclass
attacks. However, they did not mention whether they use
old instances along with new instances for retraining. They
studied the performance of their proposed system for data
streams with unbalanced data.

Yang et al. [40] designed a technique that estimates the
distance of an incoming sample to all the existing classes in
the training set. If any incoming sample exhibits a significant
distance from all the existing classes, then that sample is cho-
sen as the candidate drifting sample. Then, the autoencoder
improves its learning with the candidate drifting sample.
The authors studied the performance of their drift detection
technique in the scenario where drifting samples come from
a new class that does not exist in the training dataset.

Andresini et al. [41] employed DNN to predict the class
label of the incoming instances. If the DNN model assigns
the least certain prediction to an incoming instance, then the
incoming instance is assigned a pseudo-label and will be
given as input to the DNN model for updating. They studied
the performance of their proposed system for data streams
with unbalanced data.

Korycki and Krawczyk [42] developed a trainable drift
detector that is based on Restricted Boltzmann machine. The
drift detector is fully trainable and is capable of autonomous

adaptation to the current state of a stream, imbalance ratio,
and class roles without relying on user-defined thresholds.
They assigned larger training weights to minority class and
identical instances using a novel training weight formula.
They studied the performance of their proposed system in
imbalanced data streams.

Liu et al. [43] employed a technique that selects the
test instances with low prediction confidence for retraining.
Adaptive Random Forest (ARF) and Leverage Bagging are
two algorithms used for training the classifier in multiclass
imbalance network traffic.

Abdel Wahab [14] utilized PCA to detect the drift in the
intrusion data. An online DNN is proposed that dynami-
cally adjusts the sizes of hidden layers based on the Hedge
weighing mechanism to learn and adapt as new intrusion data
steadily emerges. The authors did not design different concept
drift scenarios for evaluating the proposed system.

Xu et al. [44] proposed autoencoder-based incremental
learning for anomaly detection in the presence of concept
drift in IoT networks. They implemented a dynamically
adjusting parameters algorithm to judge the importance of
data in real-time and incrementally update the model accord-
ing to the importance. The proposed system is not tested in
different concept drift scenarios.

Jain et al. [45] presented an error-based and data
distribution-based methods to detect drift. They measured
the severity of concept drift to decide the amount of data
needed to retrain the model. They detected anomalies in
the streaming network intrusion data using Support Vector
Machine classifier. They also employed K-means clustering
for sample size reduction of training datasets. They retrained
the model by merging testing and training data whenever drift
is occurred.

Amin et al. [46] evaluated the performance of drift detec-
tion algorithms such as DDM, EDDM, STEPD and ACE
by combining them with four classifier algorithms such
as 1-Nearest-Neighbor, Naive Bayes, SVM and LSTM:
DDM-1NN, DDM-NB, DDM-SVM, DDM-LSTM, EDDM-
1NN, EDDM-NB, EDDM-SVM, EDDM-LSTM, STEPD-
1NN, STEPD-NB, STEPD-SVM, STEPD-LSTM,
ACE-1NN, ACE-NB, ACE-SVM, and ACE-LSTM. They
retrain the model only with new data.

Wang et al. [47] proposed DDM-FP-M, a drift detection
method, that utilizes error rate and false positive rate to detect
concept drift inmulti-label class dataset. The proposedDDM-
FP-M is tested on the testbed dataset and compared with
DDM that uses prequential error rate. The result demon-
strated that DDM-FP-M detected the concept drift earlier
than DDM. They focused only on detecting the drift in the
streaming dataset.

While exploring these research works, we observed the use
of different techniques for drift detection and adaptation in
online IoT network streams. However, most of these research
works have not studied the performance of the proposed tech-
niques in different concept drift scenarios. Further, despite the

64704 VOLUME 12, 2024

S. Selvam, U. M. Balasubramanian: UASDAC: An Unsupervised Adaptive Scalable DDoS Attack Classification

increasing prevalence of IoT devices generating substantial
amounts of streaming network traffic, only limited research
articles offered a comprehensive data pipeline for efficiently
collecting vast streaming network traffic from IoT devices,
employing distributed processing for real-time analysis, and
subsequently storing the processed data in a distributed
database for future analytics. However, those research articles
did not address the handling of concept drift in their data
pipeline. Hence, in this work, we present a novel data pipeline
that consists of three components, namely, an online network
stream collector to collect streaming network traffic from IoT
devices, an online network stream analyzer to detect con-
cept drift and DDoS attacks in online network streams, and
online network stream repository to store network traffic for
future analytics. Our data pipeline also offers an efficient and
effective retraining mechanism that uses a simple calculation
to prepare the retraining dataset for retraining when concept
drift occurs. These components are implemented with big
data technologies to offer scalability. Further, we also study
the performance of the proposed drift detection component
in different concept drift scenarios. Table 1 summarizes the
reviewed research articles.

III. PROPOSED SYSTEM
This section presents the details of the proposed data pipeline,
concept drift detection, and retraining methods. There are
three components in the proposed system, namely, the online
network stream collector, online network stream analyzer,
and online network stream repository. The workflow of the
proposed data pipeline is illustrated in Figure 1.

A. ONLINE NETWORK STREAM COLLECTOR
The main task of Online network stream collector is to collect
the streaming network traffic from geographically distributed
IoT devices and ingest it into an online network stream
analyzer component. This component utilizes tools, namely
NFStream [48] and Apache Kafka [49], to complete its task.
The roles and responsibilities of these tools are given below.

1) NFSTREAM
It is a Python-based open-source package that can con-
vert packets to network flows. Our online network stream
analyzer operates on network flows rather than packets.
Hence, NFStream is used to convert packets from IoT
devices to network flows. NFStream groups packets based on
5-tuple <Source IP, Destination IP, Source Port, Destination
Port, Protocol> and generates flows. It allows us to extract
flow-based statistical features such as the number of packets
sent from source to destination and vice versa, the number
of bytes sent from source to destination, and vice versa.
Algorithm 1 explains the process of extracting statistical
network flow features from a packet capture file.

2) APACHE KAFKA
Apache Kafka is an open-source distributed data ingestion
tool widely used in high-performance stream processing

Algorithm 1 Obtaining Flow-Based Statistical Features
From Packet Capture (PCAP) File
Input: PCAPfile from an IoT device, the required flow-based
statistical features
Output: Flow-based statistical features for each flow
1. Open and read PCAP file
2. Group packets based on 5-tuple <Source IP,

Destination IP, Source Port, Destination Port,
Protocol> and generate flows

3. for each flow in flows
Extract flow-based statistical features and store
them in a CSV file

4. Close PCAP file

data pipelines. It can ingest streaming data from the dis-
tributed source to the stream processing engine for ana-
lytics. We choose Apache Kafka for its high-throughout,
fault-tolerant, distributed, and scalable nature, making it
well-suited for handling the ever-growing streaming traffic
from IoT devices [50]. In our proposed system, ApacheKafka
ingests the flow-based statistical features of each flow from
NFStream to the online network stream analyzer component
in regular time intervals.

B. ONLINE NETWORK STREAM ANALYZER
The primary function of this component is to receive the
statistical features of a set of flows from Apache Kafka
and classify each flow into either DDoS or Benign at reg-
ular intervals. This component can identify and retrain the
classifier if there is a drift in the online streams. This compo-
nent comprises three subcomponents: drift detector, retrain,
and classifier. This component is implemented with Apache
Spark [51] and Apache Spark Structured Streaming API [52].
We choose Apache Spark for its rapid data processing and
analysis capability. This is essential for detecting and adapt-
ing to concept drift in high velocity streaming IoT data.
Additionally, Spark’s support for various machine learning
algorithms facilitates the implementation of drift detection
and classification models in a distributed environment. The
drift detector and classifier subcomponents work together.
Hence, we explain them first and then present the working
of retrain subcomponent.

1) DRIFT DETECTOR AND CLASSIFIER
In online streamingmode, the drift detector and classifier sub-
components receive the flow-based statistical features of a set
of online streams in regular intervals. The drift detector finds
the existence of drift in the streaming flows. Meanwhile, the
classifier subcomponent classifies the flow into either DDoS
or benign. Initially, we train the machine learning algorithm
with initial training instances, Train_setinitial , in offline mode
and generate an initial model, Initialmodel . This Initialmodel
is used in both drift detector and classifier subcomponents.
However, we refer to the Initialmodel used in the drift detector
and classifier subcomponents as DDmodel and Classifiermodel,

VOLUME 12, 2024 64705

S. Selvam, U. M. Balasubramanian: UASDAC: An Unsupervised Adaptive Scalable DDoS Attack Classification

TABLE 1. Summary of drift detection techniques and datasets in reviewed research articles.

respectively. In online streaming mode at time-interval T1,
when a set of streaming flows arrives (Test_set_T1), it is
given as an input to both the drift detector and classifier.

The drift detector applies the DDmodel to find the prediction
probability of each flow in the Test_set_T1. At the same
time, it also finds the prediction probability of each flow

64706 VOLUME 12, 2024

S. Selvam, U. M. Balasubramanian: UASDAC: An Unsupervised Adaptive Scalable DDoS Attack Classification

FIGURE 1. Proposed data pipeline to collect, analyze and store online network traffic streams in the presence of concept drift.

in the Train_setinitial . Then, it uses Kolmogorov-Smirnov
(KS) test, a non-parametric statistical test, to compare
the cumulative distribution function of prediction proba-
bilities of Test_set_T1 and Train_setinitial instances. The
Kolmogorov-Smirnov test calculates the p-value for each
class independently by comparing the prediction probabilities
of Train_setinitial with Test_set_T1. Then, the drift detector
chooses the maximum p-value and checks whether it is lesser
than the significance level. If it is lesser than the significance
level, then it concludes that there is a drift in the Test_set_T1.
Conventionally, the widely used value for significance level
of p-value is 0.05 in statistics [53]. Hence, we choose 0.05 for
the significance level.

When the drift detector detects the drift, it invokes
the retrain subcomponent to retrain the machine learn-
ing algorithm to adapt to the novel patterns. The model
produced by the retrain subcomponent is called the
Retrainedmodel . Then, the Retrainedmodel replaces both
DDmodel and Classifiermodel . If the drift detector says there
is no drift, it does not invoke the retrain subcomponent.
Algorithm 2 explains the working of the drift detector com-
ponent. In Algorithm 2, Initialmodel and Train_setinitial are
used when either the time interval is T1, or there is no
drift in the previous time interval. However, Retrainedmodel
and Train_setretrain are used instead of Initialmodel and
Train_setinitial, respectively, after drift is detected at least
once.

2) RETRAIN
This subcomponent retrains the machine learning algorithm
when drift occurs. Recently, researchers have proposed sev-
eral techniques to update the model in the event of drift
occurrence. Retraining the model is one of the simple and
effective techniques that takes the instances causing the drift
as input and updates the model to recognize novel patterns.

However, there are two challenges that may affect the effec-
tiveness of the retraining technique. The first challenge is
that if instances from the previous training are not consid-
ered while retraining, the updated model recognizes only the
new concepts and fails to recognize old concepts. Due to
this, the retrained model’s performance will degrade when
applied to old concepts. To mitigate this, if we consider
all the instances from the set of streaming test instances
that caused the drift and the most previous training dataset
(MPTS) i.e., old concepts, then the volume of retraining data
will increase. Consequently, the time required to retrain the
model will also increase. Additionally, the second challenge
pertains to retraining time, where the increased volume of
retraining data can significantly prolong the retraining pro-
cess. To tackle these challenges, our retraining technique
employs a calculation method that selects an optimal number
of instances for every class label. This selection is made
from the streaming test instances that caused the drift (Drift-
set) and the most previous training dataset (MPTS). Next,
we present and elucidate the equations used in the pro-
posed work for selecting an optimal number of instances for
retraining.

Equation 1 describes the ratio of instances for a specific
class in the MPTS relative to the sum of instances for that
class in both the MPTS and the Driftset. Equation 2 describes
the ratio of instances for a specific class in the Driftset relative
to the sum of instances for that class in both MPTS and the
Driftset. Equation 3 calculates the total number of instances
to be extracted for a specific class in the MPTS. Equation 4
calculates the total number of instances to be selected for
a specific class in the Driftset. Equation 5 describes the
total instances selected for each class label from both the
MPTS and the Driftset. After selecting the optimal num-
ber of instances for each class label from the Driftset and
MPTS, the retraining process starts with Train_setretrain and

VOLUME 12, 2024 64707

S. Selvam, U. M. Balasubramanian: UASDAC: An Unsupervised Adaptive Scalable DDoS Attack Classification

Algorithm 2 Drift Detector Algorithm
Input: Initialmodel , Retrainedmodel , Train_setinitial ,
Train_setretrain, Test_set_Ti(test set at time interval
Ti)
Output: True (Existence of drift in Test_set_Ti) or False (No
drift in Test_set_Ti)
1. Start
2. d=0
3. for i=1, 2, 3, 4, 5. ,n

3.1. If the Time interval is equal to T1 or d==0
Trainingmodel = Initialmodel
Trainset =Train_setinitial

3.2. If d ==1
Trainingmodel = Retrainedmodel
Trainset =Train_setretrain

3.3. Apply Trainingmodelon Trainset and calculate
prediction probabilities (pred_prob_train)

3.4. Apply Trainingmodel on Test_set_Ti and
calculate prediction probabilities
(pred_prob_test)

3.5. For each class in Trainset
// ks_2samp is Python method for
// Kolmogorov-Smirnov of 2 samples
p_value=ks_2samp (pred_prob_train,

pred_prob_test)
Store p_value in p_values set

3.6. Find maximum p_value (p_valuemax) from
p_values set

3.7. If p_valuemax < 0.05
Invoke the retrain subcomponent
d=1
return True

else
return False

generates Retrainedmodel, as specified in Algorithm 3. Then,
this component replaces the old trained model in the drift
detector and classifier subcomponents with Retrainedmodel .

class ratioMPTS, class

=
InstancesMPTS, class

InstancesMPTS, class+ InstancesDriftset, class
(1)

class ratioDriftset, class

=
InstancesDriftset, class

InstancesMPTS, class+ InstancesDriftset, class
(2)

total instancesMPTS, class = class ratioMPTS, class

× InstancesMPTS, class (3)

total instancesDriftset, class = classratioDriftset, class

× InstancesDriftset, class (4)

total instancesclass = total instancesMPTS, class

+ total instancesDriftset, class (5)

C. ONLINE NETWORK STREAM REPOSITORY
This component stores the online streaming flow-based statis-
tical features, Train_setinitial and Train_setretrain. The online
network stream analyzer and retrain subcomponents access
this database to perform their task. This database is imple-
mented with MongoDB, a NoSQL database. MongoDB is
a widely used document-oriented database well suited to
high-performance data pipelines. Further, its rich querying
capabilities support efficient retrieval and analysis of his-
torical data for drift detection and analytics. The network
administrator can analyze the data stored in this database in
real-time to identify and report malicious IoT devices through
dashboards.

Algorithm 3 Retrain Algorithm
Input:MPTS, Driftset
Output: Train_setretrain, Retrainedmodel
1. Start
2. Train_setretrain = Empty
3. For Each Class Type

3.1. Calculate class ratioMPTS,Class
3.2. Calculate class ratioDriftset,Class
3.3. Calculate total instancesMPTS,Class
3.4. Calculate total instancesDriftset,Class
3.5. Calculate total instancesClass
3.6. Add total instancesClass to Train_setretrain

4. Retrainedmodel = LightGBM(Train_setretrain)
5. return Train_setretrain, Retrainedmodel

IV. EXPERIMENTS, EVALUATION, AND DISCUSSION
This section presents and discusses the dataset, the exper-
imental environment, and the performance of the proposed
system.

A. EXPERIMENT ENVIRONMENT
PySpark is used to code the proposed system. It is a
library that interfaces Python and Apache Spark. The pro-
posed system is executed on a machine with an eight-core
Intel i5-1135G7 processor, 8GB RAM, and a 64-bit Ubuntu
22.04.1 LTS operating system. Apache Spark is installed
and deployed in the machine in local mode. When the local
mode is employed, all the processes of Spark are run on
a single machine, optionally using any number of cores on
the local system. However, we used a single core to run our
experiments.

B. DETAILS ON DATASET
NSL-KDD and IoT23 datasets are used to evaluate the pro-
posed system. This subsection presents the details of both
datasets.

1) NSL-KDD DATASET
NSL-KDD is the most preferred publicly available bench-
mark dataset used by the researchers working in the field

64708 VOLUME 12, 2024

S. Selvam, U. M. Balasubramanian: UASDAC: An Unsupervised Adaptive Scalable DDoS Attack Classification

of concept drift and network intrusion detection. It is an
improved version of the original KDDCup 1999 dataset [54].

2) IoT23 DATASET
The IoT23 [25] was first made available online in January
2020. IoT23 is a modern unbalanced dataset for malicious
IoT device detection. In recent times, it is a popular dataset
among the researchers. It comprises 20 malware Packet Cap-
ture (PCAP) files and their corresponding labeled flow data.
Besides malware captures, it contains three benign PCAP
files and their corresponding labeled flow data. IoT23 traffic
was captured during 2018 and 2019 in the Stratosphere Lab-
oratory, AIC group, FEL, CTU University, Czech Republic.

C. DATASET PREPARATION
To rigorously assess the effectiveness of our proposed tech-
nique for detecting and adapting to drift, we meticulously
prepared datasets sourced from NSL-KDD and IoT23. The
primary objective of this subsection is to provide a compre-
hensive overview of our dataset preparation process.

1) PREPARATION OF NSL-KDD DATASET
There are 148517 records in the dataset. KDDTrain+.txt
contains 125972 records, and KDDTest+.txt contains
22544 records. Each record contains 41 features with label
class as 42nd feature. There are 9 categorical and 32 continu-
ous features in the dataset. We converted categorical features
into continuous features. The two class labels in the dataset
are Benign and Attack. We mapped the Benign label to 0 and
Attack to 1. To evaluate the proposed system, we considered
the last 10 percent of KDDTrain+.txt as Train_setinitial .
Then, we divided the entire KDDTest+.txt into 9 test sets,
namely Test_set1, Test_set2, Test_set3, Test_set4, Test_set5,
Test_set6, Test_set7, Test_set8, Test_set9. Each test set con-
sists of 3514 records. It is known that there is a sudden drift
in Test_set3 [26].

2) PREPARATION OF IoT23 DATASET
We used labeled flow data from IoT23. Some labeled flow
data files are huge and have a greater number of flows. Hence,
we have extracted the desired number of flows from those big
files. The total number of flows extracted from the original
dataset is 15792577. There are 20 features and one class
label column in the dataset. We considered ‘orig_ip_bytes’
and ‘orig_pkts’ features to conduct our experiments since
these two features scored high feature importance from
feature important scoring process. There are many class
labels in the dataset. Since our system classifies DDoS
flows from benign flows, we extracted only the instances
labeled ‘Benign’ or ‘DDoS’ instances. We first randomly
sampled 40000 instances for Benign and DDoS separately
from the original dataset and generated the training dataset,
namely Train_setinitial . We also randomly sampled another
40000 instances for benign and DDoS separately to generate

the dataset, namely Test_setinitial . This Test_setinitial is free
from concept drift.

Furthermore, we mapped the Benign label to 0 and DDoS
to 1 in the Train_setinitial and Test_setinitial . To conduct drift
detection experiments, we synthetically introduced concept
drift to the Test_setinitial and generated three different test
datasets: Testconcept1, Testconcept2, and Testconcept3. Each test
dataset exhibits a different concept drift scenario. Table 2
shows how the drift is introduced to Test_setinitial and
three different test concepts are generated. First, Testconcept1
was generated by updating the ‘orig_ip_bytes’ column in
5000 randomly sampled instances with a benign class label
from the Test_setinitial . This involved replacing their values
with a random selection from the ‘orig_ip_bytes’ column of
instances with a DDoS class label in the same Test_setinitial .
Subsequently, Testconcept2 was derived from Test_setinitial by
replacing 5000 instances labeled as DDoS with randomly
selected 5000 instances labeled as Benign. This dataset was
prepared to exhibit the class imbalance feature. Like the
Testconcept1 generation process, Testconcept3 was generated.
However, in this case, we replaced not only the values of
the ‘orig_ip_bytes’ column but also the ‘orig_pkts’ column
values in the Test_setinitial .

TABLE 2. Process of preparing Testconcept1, Testconcept2 and Testconcept3
from Test_setinitial for the IoT23 dataset for studying the proposed
system in different concept drift scenarios.

D. EXPERIMENTS
This section presents the various experiments conducted to
study the performance of the proposed system. We compared
the performance of our proposed system with OASW [26],
a recent drift detector, and an adapter in the IoT network.
Since OASW used LightGBM [55], a highly efficient gradi-
ent boosting decision tree, as its machine learning algorithm,
we also chose it to train our classifier. OASW algorithm
maintains two sliding windows, namely the current and pre-
vious windows. The size of these windows is determined

VOLUME 12, 2024 64709

S. Selvam, U. M. Balasubramanian: UASDAC: An Unsupervised Adaptive Scalable DDoS Attack Classification

through experiments. If the accuracy of the current window
is dropping alpha percent, then the warning level is triggered.
After that, if the current window’s accuracy keeps dropping,
the drift alarm is triggered. The design of OASW allows it
to detect instances causing the drift. OASW requires the true
labels of incoming test instances to detect the drift. Further,
the drift detection process in OASW confirms the occurrence
of drift when classification accuracy falls below a certain
threshold. Conversely, our proposed system does not rely on
true labels to detect the drift. It confirms the occurrence of
drift by analyzing the distribution of prediction probabilities
of training and testing instances. Hence, our system is more
suitable for practical scenarios where true labels of incoming
test instances are generally unknown.

FIGURE 2. Experiment process on NSL-KDD dataset.

1) EXPERIMENT ON NSL-KDD DATASET
Figure 2 illustrates the experiment process on NSL-
KDD dataset. In offline mode, we applied LightGBM on
Train_setinitial to produce the Initialmodel .Then, we streamed
9 test sets at regular intervals. That is, we streamed Test_set1
at time interval T1, Test_set2 at T2 and so on. As each test
set is streamed, we applied drift detector subcomponent to
calculate p-value. Figure 3 shows the p- value obtained for
each test set. It can be seen from Figure 3 that the p-value
for Test_set1 and Test_set2 is above 0.05. This indicates
that there is no drift in Test_set1 and Test_set2. However, p-
value obtained for Test_set3, Test_set4, Test_set5, Test_set6,
Test_set7, Test_set8, Test_set9 is below 0.05. This indicates
there is a drift in Test_set3 and it continues till Test_set9
if drift adaptation (i.e., retraining) is not performed. When
drift is detected at T3, we retrained the model by follow-
ing Algorithm 3. Then, the retrained model is applied on
Test_set3. As a result, the p-value obtained for Test_set3 is
above 0.05. After retraining process, when we applied the

retrained model to the subsequent test sets, we observed p-
values crossing 0.05.

To compare our proposed system, UASDAC, with OASW,
we executed OASW on NSL-KDD dataset as described
in [26]. As a result, OASW generated the plot shown in
Figure 4. The accuracies obtained by UASDAC is plotted
in Figure 5. The average accuracy obtained by UASDAC is
97.69% which is 0.08% above when compared to OASW.
To test the performance of UASDAC and OASW when old
concepts are coming back, we streamed Train_setinitial at T10.
As UASDAC retrains the model with the portion of instances
causing the drift and the most previous training set when
the drift occurs, it did not see any drift in the Train_setinitial
at T10. Hence, retraining is not performed at T10. However,
as OASW considers only the instances causing the drift for
retraining, it reports drift in Train_setinitial . Hence, it retrains
the model one more time.

TABLE 3. Total time taken by UASDAC and OASW in drift detection and
adaptation on NSL-KDD dataset.

Table 3 documents the time taken byUASDAC andOASW.
It is evident that our proposed system, UASDAC, outper-
forms OASW in terms of time efficiency. UASDAC not only
achieves superior accuracy but also completes the task in
a shorter amount of time. This efficiency of UASDAC can
be attributed to predict labels for all incoming test instances
simultaneously. In contrast, OASW predicts labels instance
by instance using River, a streaming Python library, which
measures the model’s accuracy as it processes each instance
in the test dataset. If drift is detected during processing,
OASW invokes retraining. This allows OASW to detect
multiple drifts in a test dataset and engage in multiple retrain-
ing cycles. However, UASDAC identifies only one drift for
the entire test dataset, leading to a single retraining cycle.
Additionally, UASDAC is implemented on Spark, enabling
distributed processing of the dataset. These factors contribute
to UASDAC completing its task more quickly than OASW.

2) EXPERIMENT ON IoT23 DATASET
Now,we present the experiments conducted on IoT23 dataset.
Figure 6 illustrates the experiment process on IoT23 dataset.
In offline mode, we applied LightGBM on Train_setinitial
to produce the Initialmodel . We applied the Initialmodel on
Test_setinitial and obtained the accuracy of 99.96%. Since
there is no concept drift in Test_setinitial , we could achieve
the accuracy of 99.96%. However, there will be drop in
accuracy when Initialmodel is applied on three test concepts:
Testconcept1, Testconcept2 and Testconcept3.

a: EXPERIMENT1: ONLINE STREAMING OF TESTconcept1
In this experiment, we investigate the performance of our
proposed system under the assumption that the incoming

64710 VOLUME 12, 2024

S. Selvam, U. M. Balasubramanian: UASDAC: An Unsupervised Adaptive Scalable DDoS Attack Classification

FIGURE 3. P-values obtained by drift detector subcomponent of UASDAC before and after adaptation.

FIGURE 4. Accuracy achieved by OASW. Red dot indicates drift point. Green dashed line
indicates the beginning of old concepts.

online stream may exhibit concept drift. To find whether the
proposed drift detector finds the concept drift, we streamed
Testconcept1 to the drift detector and classifier subcompo-
nents. It is considered that when Testconcept1 is streamed, the
Initialmodel is in use in both the drift detector and classi-
fier subcomponents. Then, the drift detector subcomponent
applied the Kolmogorov-Smirnov test on Testconcept1 and
Train_setinitial to calculate the p-value. The p-value obtained
is closer to zero. Figure 7 shows the obtained p-value.
Figure 8 shows the Empirical Cumulative Distribution Func-
tion plot (ECDF) for Testconcept1 and Train_setinitial . It indi-
cates a significant difference in the distribution of prediction
probabilities between the Testconcept1 and Train_setinitial ,
leading to concept drift detection. At the same time, the

classifier subcomponent predicted the class label for the
instances in Testconcept1 and calculated the accuracy. The
accuracy obtained is 93.72%.

Meanwhile, since the drift is detected in Testconcept1, the
drift detector subcomponent invoked the retrain subcompo-
nent. As a result, the retrain subcomponent calculated the
number of sample instances to be extracted for each class
from the Testconcept1 and MPTS for retraining. It is crucial
to note that Testconcept1 is considered as Driftset since the
instances fromTestconcept1 cause the observed drift. Similarly,
Train_setinitial is considered as MPTS.

Table 4 shows the number of instances extracted for
each class from MPTS and Driftset for retraining.
The number of instances presented in Table 4 constitute

VOLUME 12, 2024 64711

S. Selvam, U. M. Balasubramanian: UASDAC: An Unsupervised Adaptive Scalable DDoS Attack Classification

FIGURE 5. Accuracy achieved by UASDAC. Red dot indicates drift point.

FIGURE 6. Experiment process on IoT23 dataset.

FIGURE 7. p-values obtained for Testconcept1, Testconcept2, Testconcept3.

Train_setretrain. After this, the retrain subcomponent cre-
ates the Retrainedmodel by retraining LightGBM on

FIGURE 8. ECDF plot to show the distribution of prediction probabilities
between the Testconcept1 and Train_setinitial .

TABLE 4. Number of instances from MPTS and Driftset for retraining in
Experiment1.

Train_setretrain. Subsequently, the Retrainedmodel replaces the
Initialmodel in the drift detector and classifier subcomponents.
Then, this Retrainedmodel will be used in subsequent intervals
until the next drift occurs.

After replacing the Initialmodel in the classifier subcom-
ponent with the Retrainedmodel , we tested the classifier on
Testconcept1 to verify whether the classifier can recognize
the novel patterns in Testconcept1. During this investiga-
tion, we observed that the classifier with the Retrainedmodel
improved the accuracy from 93.72% to 99.89%.

64712 VOLUME 12, 2024

S. Selvam, U. M. Balasubramanian: UASDAC: An Unsupervised Adaptive Scalable DDoS Attack Classification

FIGURE 9. OASW plot for Testconcept1.

FIGURE 10. Accuracy comparison between UASDAC and OASW in
different concept drift scenarios on IoT23 dataset.

To compare our proposed system, UASDAC, with OASW,
we presented the Train_setinitial and Testconcept1 to OASW for
evaluation. As a result, OASW generated the plot shown in
Figure 9.

It can be observed from Figure 9 that offline Light-
GBM achieved an accuracy of only 93.72%. This accuracy
is achieved when drift detection and adaptation are not
employed. However, when drift detection and adaptation
are implemented, the accuracy is improved from 93.72%
to 98.95%.

Figure 10 and Figure 11 show the accuracy and the time
taken by UASDAC and OASW respectively for all the exper-
iments on IoT23 dataset. It is evident that our proposed
system,UASDAC, outperformsOASW in terms of both accu-
racy and time efficiency. UASDACnot only achieves superior
accuracy but also completes the task in a shorter amount of
time. This efficiency can be attributed to UASDAC requiring
only a single retraining iteration when drift occurs in the
test data set. At the same time, OASW engages in multiple
retraining cycles and processes the test data set instance by
instance.

b: EXPERIMENT2: ONLINE STREAMING OF TESTconcept2
In real-life practical scenarios, the incoming network traf-
fic may consist of more instances for one class label than

FIGURE 11. Time taken comparison between UASDAC and OASW in
different concept drift scenarios on IoT23 dataset.

other class labels. This is called the class imbalance prob-
lem. Hence, it is essential to study the performance of drift
detector and adaptation techniques in imbalanced online test
streams. Therefore, this experiment is designed to consider
the Testconcept2, an imbalanced test set, as input to Initialmodel .
Our drift detector algorithm successfully detected the drift
when applied on Train_setinitial and Testconcept2. The drift
detector subcomponent applied the Kolmogorov-Smirnov
test on Testconcept2 and Train_setinitial to calculate the
p-value.

Figure 7 shows the obtained P-value. The p-value for
Testconcept2 may not be as close to zero as other test concepts,
it still falls below the threshold value of 0.05, indicating sig-
nificant concept drift detection. Figure 12 shows the Empir-
ical Cumulative Distribution Function plot for Testconcept2
and Train_setinitial . Though there is not much difference
observed in the plot it still indicates a significant difference
in the distribution of prediction probabilities between the
Testconcept2 and Train_setinitial , leading to concept drift detec-
tion. At the same time, the classifier subcomponent predicted
the class label for the instances in Testconcept2 and calculated
the accuracy. The accuracy obtained is 92.88%. Since the
drift is detected, the retrain subcomponent is invoked, and it
retrained themodel with the Train_setretrain. The details about
the number of instances used for retraining are presented
in Table 5. The number of instances presented in Table 5
constitute Train_setretrain. After this, the retrain subcompo-
nent creates the Retrainedmodel by retraining LightGBM on
Train_setretrain. Subsequently, the Retrainedmodel replaces the
Initialmodel in the drift detector and classifier subcomponents.
Then, this Retrainedmodel will be used in subsequent intervals
until the next drift occurs.

After replacing the Initialmodel in the classifier subcom-
ponent with the Retrainedmodel , we tested the classifier on
Testconcept2 to verify whether the classifier can recognize
the novel patterns in Testconcept2. During this investiga-
tion, we observed that the classifier with the Retrainedmodel
improved the accuracy from 92.88% to 99.78%.

For comparison, we presented the Train_setinitial and
Testconcept2 to OASW. The plot generated by OASW is shown
in Figure 13. The performance comparison of UASDAC and
OASW is shown in Figure 10 and Figure 11. Once again, like

VOLUME 12, 2024 64713

S. Selvam, U. M. Balasubramanian: UASDAC: An Unsupervised Adaptive Scalable DDoS Attack Classification

TABLE 5. Number of instances from MPTS and Driftset for retraining in
Experiment2.

FIGURE 12. ECDF plot to show the distribution of prediction probabilities
between the Testconcept2 and Train_setinitial .

FIGURE 13. OASW plot for Testconcept2.

in experiment 1, our system UASDAC outperformed OASW
in terms of both accuracy and time efficiency. To measure the
robustness of the retrained model, we evaluated the perfor-
mance of the retrained model with the test set that consists
of 35000 benign instances and 45000 DDoS instances. The
evaluation generated the accuracy of 99.97%.

c: EXPERIMENT3: ONLINE STREAMING OF TESTconcept3
The scenario for this experiment is the same as exper-
iment 1. However, we streamed Testconcept3 to the drift
detector and classifier subcomponents. As in experiment 1,
the drift detector subcomponent successfully detected the
drift. The p-value obtained is closer to zero. Figure 7
shows the obtained p-value. Figure 14 shows the Empirical

FIGURE 14. ECDF plot to show the distribution of prediction probabilities
between the Testconcept3 and Train_setinitial .

FIGURE 15. OASW plot for Testconcept3.

Cumulative Distribution Function plot for Testconcept3 and
Train_setinitial . It indicates a significant difference in the dis-
tribution of prediction probabilities between the Testconcept3
and Train_setinitial , leading to concept drift detection. At the
same time, the classifier subcomponent predicted the class
label for the instances in Testconcept3 and calculated the accu-
racy. The accuracy obtained is 93.71%. However, OASW
failed to detect the drift in Testconcept3. This inability of
OASW can be observed in the plot given in Figure 15.
Figure 15 shows the same accuracy for offline LightGBM
and online LightGBM. Also, it can be observed that there are
no detected drift points in the plot. Since our drift detector
found the drift in Testconcept3, we prepared Train_setretrain
as explained in experiment1. However, in this case, we used
Testconcept3 instead of Testconcept1 while preparing the
Train_setretrain. After retraining with Train_setretrain, when
we applied the classifier with the Retrainedmodel , we observed
that the classifier could not recognize the new patterns in
the Testconcept3. This is because 5000 instances of the benign
class share identical values for the features ‘orig_ip_bytes’
and ‘orig_pkts’ with instances labeled as DDoS. As a result,
retraining does not improve the classifier’s performance,
unlike in Experiment 1.

64714 VOLUME 12, 2024

S. Selvam, U. M. Balasubramanian: UASDAC: An Unsupervised Adaptive Scalable DDoS Attack Classification

V. CONCLUSION
This research article introduced the UASDAC, an adap-
tive and scalable system, which classifies DDoS traffic and
Benign traffic in massive online IoT network streams in the
presence of concept drift. The system employs Kolmogorov-
Smirnov test, an unsupervised technique, to detect concept
drift in online network streams in regular intervals. If the
drift is detected, the system retrains the classifier model by
selecting an optimal number of instances from both the set of
instances causing the drift and themost previous training. The
performance of the system is evaluated on NSL-KDD and
IoT-23 datasets in different concept drift scenarios. Notably,
UASDAC outperformed OASW in terms of accuracy, achiev-
ing an improvement of 0.08% in NSL-KDD dataset and
0.91% to 0.94% in IoT23 dataset. In terms of time efficiency,
our UASDAC showcased remarkable performance gains over
the existingmethod in both datasets. For NSL-KDD, our tech-
nique completed tasks in a mere 1.67 seconds, whereas the
OASW required a significantly longer time of 34.32 seconds.
In IoT23, the efficiency gains were even more pronounced,
with our method taking only 0.45 seconds compared to the
substantial 116.78 seconds taken by OASW.

Currently, UASDAC assumes that drifting instances come
from classes present in the training dataset. However, in sce-
narios where new types of attack classes emerge, the drifting
instances may belong to classes not included in the training
dataset. UASDAC is not equipped to handle this type of con-
cept drift in its current form. Therefore, for future research,
we aim to enhance UASDAC to accommodate multiclass
attack scenarios from real-world settings. In addition, future
work will focus on exploring the effectiveness of alterna-
tive machine learning models to further enhance UASDAC’s
adaptability to concept drift in IoT networks.

ACKNOWLEDGMENT
The authorswould like to thankAmrita VishwaVidyapeetham
for facilitating the research.

CONFLICT OF INTEREST
The authors hereby declare the absence of any competing
interest.

REFERENCES
[1] H. Chunduri, T. G. Kumar, and P. V. S. Charan, ‘‘Amulti class classification

for detection of IoT botnet malware,’’ in Proc. Intl. Conf. Comput. Sci.
Commun. Secur., May 2021, pp. 17–29, doi: 10.1007/978-3-030-76776-
1_2.

[2] P. R. K. Pranav, S. Verma, S. Shenoy, and S. Saravanan, ‘‘Detection of
botnets in IoT networks using graph theory and machine learning,’’ in
Proc. 6th Int. Conf. Trends Electron. Informat. (ICOEI), Tirunelveli, India,
Apr. 2022, pp. 590–597, doi: 10.1109/ICOEI53556.2022.9777117.

[3] R. Vinayakumar, M. Alazab, S. Srinivasan, Q.-V. Pham, S. K. Padannayil,
and K. Simran, ‘‘A visualized botnet detection system based deep learning
for the Internet of Things networks of smart cities,’’ IEEE Trans. Ind. Appl.,
vol. 56, no. 4, pp. 4436–4456, Jul. 2020, doi: 10.1109/TIA.2020.2971952.

[4] Nokia Threat Intelligence Report Finds Malicious IoT Botnet Activity
Has Sharply Increased. Accessed: Dec. 26, 2023. [Online]. Available:
https://www.nokia.com/about-us/news/releases/2023/06/07/nokia-threat-
intelligence-report-finds-malicious-iot-botnet-activity-has-sharply-
increased/

[5] T. Tu, J. Qin, H. Zhang, M. Chen, T. Xu, and Y. Huang, ‘‘A comprehensive
study of mozi botnet,’’ Int. J. Intell. Syst., vol. 37, no. 10, pp. 6877–6908,
Mar. 2022, doi: 10.1002/int.22866.

[6] A. A. Cook, G.Misirli, and Z. Fan, ‘‘Anomaly detection for IoT time-series
data: A survey,’’ IEEE Internet Things J., vol. 7, no. 7, pp. 6481–6494,
Jul. 2020, doi: 10.1109/JIOT.2019.2958185.

[7] G. Wang, M. Nixon, and M. Boudreaux, ‘‘Toward cloud-assisted
industrial IoT platform for large-scale continuous condition monitor-
ing,’’ Proc. IEEE, vol. 107, no. 6, pp. 1193–1205, Jun. 2019, doi:
10.1109/JPROC.2019.2914021.

[8] E. Zeydan and J. Mangues-Bafalluy, ‘‘Recent advances in data engineering
for networking,’’ IEEE Access, vol. 10, pp. 34449–34496, 2022.

[9] G. V. Arbex, K. G. Machado, M. Nogueira, D. M. Batista, and R. Hirata,
‘‘IoT DDoS detection based on stream learning,’’ in Proc. 12th Int.
Conf. Netw. Future (NoF), Coimbra, Portugal, Oct. 2021, pp. 1–8, doi:
10.1109/NoF52522.2021.9609940.

[10] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia, ‘‘A
survey on concept drift adaptation,’’ ACM Comput. Surv., vol. 46, no. 4,
pp. 1–37, Mar. 2014, doi: 10.1145/2523813.

[11] A. G. Menon and G. Gressel, ‘‘Concept drift detection in phishing using
autoencoders,’’ in Proc. Symp. Mach. Learn. Metaheuristics Algorithms,
Appl. Singapore: Springer, Feb. 2021, pp. 208–220, doi: 10.1007/978-981-
16-0419-5_17.

[12] H.Mehmood, P. Kostakos,M. Cortes, T. Anagnostopoulos, S. Pirttikangas,
and E. Gilman, ‘‘Concept drift adaptation techniques in distributed
environment for real-world data streams,’’ Smart Cities, vol. 4, no. 1,
pp. 349–371, Mar. 2021, doi: 10.3390/smartcities4010021.

[13] P. Pradeep, S. Krishnamoorthy, and A. V. Vasilakos, ‘‘A holistic approach
to a context-aware IoT ecosystem with adaptive ubiquitous middle-
ware,’’ Pervas. Mobile Comput., vol. 72, Apr. 2021, Art. no. 101342, doi:
10.1016/j.pmcj.2021.101342.

[14] O. Abdel Wahab, ‘‘Intrusion detection in the IoT under data and concept
drifts: Online deep learning approach,’’ IEEE Internet Things J., vol. 9,
no. 20, pp. 19706–19716, Oct. 2022, doi: 10.1109/JIOT.2022.3167005.

[15] K. Rajora and N. S. Abdulhussein, ‘‘Reviews research on applying
machine learning techniques to reduce false positives for network intrusion
detection systems,’’ Babylonian J. Mach. Learn., vol. 2023, pp. 26–30,
May 2023, doi: 10.58496/bjml/2023/005.

[16] A. Shahraki, M. Abbasi, A. Taherkordi, and A. D. Jurcut, ‘‘A compar-
ative study on online machine learning techniques for network traffic
streams analysis,’’ Comput. Netw., vol. 207, Apr. 2022, Art. no. 108836,
doi: 10.1016/j.comnet.2022.108836.

[17] A. Adnan, A. Muhammed, A. A. A. Ghani, A. Abdullah, and F. Hakim,
‘‘An intrusion detection system for the Internet of Things based onmachine
learning: Review and challenges,’’ Symmetry, vol. 13, no. 6, p. 1011,
Jun. 2021, doi: 10.3390/sym13061011.

[18] J. Lu, A. Liu, F. Dong, F. Gu, J. Gama, and G. Zhang, ‘‘Learning under
concept drift: A review,’’ IEEE Trans. Knowl. Data Eng., vol. 31, no. 12,
pp. 2346–2363, Dec. 2019, doi: 10.1109/TKDE.2018.2876857.

[19] R. N. Gemaque, A. F. J. Costa, R. Giusti, and E. M. dos Santos,
‘‘An overview of unsupervised drift detection methods,’’ WIREs Data
Mining Knowl. Discovery, vol. 10, no. 6, p. e1381, Nov. 2020, doi:
10.1002/widm.1381.

[20] V. M. Nidhi, V. Gupta, and R. Vig, ‘‘Methods to investigate concept
drift in big data streams,’’ in Knowledge Computing and Its Applications:
Knowledge Manipulation and Processing Techniques, vol. 1. Singapore:
Springer, Feb. 2018, pp. 51–74, doi: 10.1007/978-981-10-6680-13.

[21] A. Naghib, N. Jafari Navimipour, M. Hosseinzadeh, and A. Sharifi, ‘‘A
comprehensive and systematic literature review on the big data manage-
ment techniques in the Internet of Things,’’ Wireless Netw., vol. 29, no. 3,
pp. 1085–1144, Nov. 2022, doi: 10.1007/s11276-022-03177-5.

[22] R. A. A. Habeeb, F. Nasaruddin, A. Gani, I. A. T. Hashem, E. Ahmed,
and M. Imran, ‘‘Real-time big data processing for anomaly detection:
A survey,’’ Int. J. Inf. Manage., vol. 45, pp. 289–307, Apr. 2019, doi:
10.1016/j.ijinfomgt.2018.08.006.

[23] M. G. Yaseen and A. S. Albahri, ‘‘Mapping the evolution of intrusion
detection in big data: A bibliometric analysis,’’Mesopotamian J. Big Data,
vol. 2023, pp. 138–148, Dec. 2023, doi: 10.58496/mjbd/2023/018.

[24] Datasets | Research | Canadian Institute for Cybersecurity | UNB.
Accessed: Jan. 5, 2024. [Online]. Available: http://nsl.cs.unb.ca/NSL-
KDD/

[25] S. Garcia, A. Parmisano, and M. J. Erquiaga, Jan. 20, 2020, ‘‘IoT-23: A
labeled dataset with malicious and benign IoT network traffic (version
1.0.0),’’ Zenodo, doi: 10.5281/zenodo.4743746.

VOLUME 12, 2024 64715

http://dx.doi.org/10.1007/978-3-030-76776-1_2
http://dx.doi.org/10.1007/978-3-030-76776-1_2
http://dx.doi.org/10.1109/ICOEI53556.2022.9777117
http://dx.doi.org/10.1109/TIA.2020.2971952
http://dx.doi.org/10.1002/int.22866
http://dx.doi.org/10.1109/JIOT.2019.2958185
http://dx.doi.org/10.1109/JPROC.2019.2914021
http://dx.doi.org/10.1109/NoF52522.2021.9609940
http://dx.doi.org/10.1145/2523813
http://dx.doi.org/10.1007/978-981-16-0419-5_17
http://dx.doi.org/10.1007/978-981-16-0419-5_17
http://dx.doi.org/10.3390/smartcities4010021
http://dx.doi.org/10.1016/j.pmcj.2021.101342
http://dx.doi.org/10.1109/JIOT.2022.3167005
http://dx.doi.org/10.58496/bjml/2023/005
http://dx.doi.org/10.1016/j.comnet.2022.108836
http://dx.doi.org/10.3390/sym13061011
http://dx.doi.org/10.1109/TKDE.2018.2876857
http://dx.doi.org/10.1002/widm.1381
http://dx.doi.org/10.1007/978-981-10-6680-13
http://dx.doi.org/10.1007/s11276-022-03177-5
http://dx.doi.org/10.1016/j.ijinfomgt.2018.08.006
http://dx.doi.org/10.58496/mjbd/2023/018
http://dx.doi.org/10.5281/zenodo.4743746

S. Selvam, U. M. Balasubramanian: UASDAC: An Unsupervised Adaptive Scalable DDoS Attack Classification

[26] L. Yang and A. Shami, ‘‘A lightweight concept drift detection and adapta-
tion framework for IoT data streams,’’ IEEE Internet Things Mag., vol. 4,
no. 2, pp. 96–101, Jun. 2021, doi: 10.1109/IOTM.0001.2100012.

[27] B. Zhou, J. Li, J. Wu, S. Guo, Y. Gu, and Z. Li, ‘‘Machine-learning-
based online distributed denial-of-service attack detection using spark
streaming,’’ in Proc. IEEE Int. Conf. Commun. (ICC), May 2018, pp. 1–6,
doi: 10.1109/ICC.2018.8422327.

[28] N. V. Patil, C. R. Krishna, and K. Kumar, ‘‘SSK-DDoS: Distributed
stream processing framework based classification system for DDoS
attacks,’’ Cluster Comput., vol. 25, no. 2, pp. 1355–1372, Jan. 2022, doi:
10.1007/s10586-022-03538-x.

[29] W.-C. Shih, C.-T. Yang, C.-T. Jiang, and E. Kristiani, ‘‘Implementation
and visualization of a netflow log data lake system for cyberattack detec-
tion using distributed deep learning,’’ J. Supercomput., vol. 79, no. 5,
pp. 4983–5012, Oct. 2022, doi: 10.1007/s11227-022-04802-y.

[30] Z. Shi, J. Li, C. Wu, and J. Li, ‘‘DeepWindow: An efficient method
for online network traffic anomaly detection,’’ in Proc. IEEE 21st
Int. Conf. High Perform. Comput. Commun., IEEE 17th Int. Conf.
Smart City, IEEE 5th Int. Conf. Data Sci. Syst. (HPCC/SmartCity/DSS),
Aug. 2019, pp. 2403–2408, doi: 10.1109/HPCC/SmartCity/DSS.2019.
00335.

[31] A. Abid, F. Jemili, and O. Korbaa, ‘‘Real-time data fusion for intrusion
detection in industrial control systems based on cloud computing and
big data techniques,’’ Cluster Comput., vol. 27, no. 2, pp. 2217–2238,
Jun. 2023, doi: 10.1007/s10586-023-04087-7.

[32] R. Alghamdi and M. Bellaiche, ‘‘An ensemble deep learning based IDS
for IoT using lambda architecture,’’ Cybersecurity, vol. 6, no. 1, p. 32,
Mar. 2023, doi: 10.1186/s42400-022-00133-w.

[33] A. Yahyaoui, H. Lakhdhar, T. Abdellatif, and R. Attia, ‘‘Machine learning
based network intrusion detection for data streaming IoT applications,’’
in Proc. 21st ACIS Int. Winter Conf. Softw. Eng., Artif. Intell., Netw.
Parallel/Distributed Comput. (SNPD-Winter), Jan. 2021, pp. 51–56, doi:
10.1109/SNPDWinter52325.2021.00019.

[34] M. Jain and G. Kaur, ‘‘Distributed anomaly detection using concept
drift detection based hybrid ensemble techniques in streamed network
data,’’ Cluster Comput., vol. 24, no. 3, pp. 2099–2114, Feb. 2021, doi:
10.1007/s10586-021-03249-9.

[35] Z. Shao, S. Yuan, and Y. Wang, ‘‘Adaptive online learning for IoT
botnet detection,’’ Inf. Sci., vol. 574, pp. 84–95, Oct. 2021, doi:
10.1016/j.ins.2021.05.076.

[36] L. Yang, D. M. Manias, and A. Shami, ‘‘PWPAE: An ensemble
framework for concept drift adaptation in IoT data streams,’’ in Proc.
IEEE Global Commun. Conf. (GLOBECOM), Dec. 2021, pp. 1–6, doi:
10.1109/GLOBECOM46510.2021.9685338.

[37] B. H. Schwengber, A. Vergütz, N. G. Prates, and M. Nogueira, ‘‘Learning
from network data changes for unsupervised botnet detection,’’ IEEE
Trans. Netw. Service Manage., vol. 19, no. 1, pp. 601–613, Mar. 2022, doi:
10.1109/TNSM.2021.3109076.

[38] L. Yang and A. Shami, ‘‘A multi-stage automated online network data
stream analytics framework for IIoT systems,’’ IEEE Trans. Ind. Infor-
mat., vol. 19, no. 2, pp. 2107–2116, Feb. 2023, doi: 10.1109/TII.2022.
3212003.

[39] H. Qiao, B. Novikov, and J. O. Blech, ‘‘Concept drift analysis by dynamic
residual projection for effectively detecting botnet cyber-attacks in IoT
scenarios,’’ IEEE Trans. Ind. Informat., vol. 18, no. 6, pp. 3692–3701,
Jun. 2022, doi: 10.1109/TII.2021.3108464.

[40] L. Yang, W. Guo, Q. Hao, A. Ciptadi, A. Ahmadzadeh, X. Xing, and
G. Wang, ‘‘CADE: Detecting and explaining concept drift samples for
security applications,’’ in Proc. 30th USENIX Secur. Symp. (USENIX),
2021, pp. 2327–2344.

[41] G. Andresini, F. Pendlebury, F. Pierazzi, C. Loglisci, A. Appice, and
L. Cavallaro, ‘‘INSOMNIA: Towards concept-drift robustness in network
intrusion detection,’’ in Proc. 14th ACM Workshop Artif. Intell. Secur.
New York, NY, USA: Association for Computing Machinery, Nov. 2021,
pp. 111–122, doi: 10.1145/3474369.3486864.

[42] L. Korycki and B. Krawczyk, ‘‘Concept drift detection from multi-
class imbalanced data streams,’’ in Proc. IEEE 37th Int. Conf.
Data Eng. (ICDE), Chania, Greece, Apr. 2021, pp. 1068–1079, doi:
10.1109/icde51399.2021.00097.

[43] W. Liu, C. Zhu, Z. Ding, H. Zhang, and Q. Liu, ‘‘Multiclass imbal-
anced and concept drift network traffic classification framework based
on online active learning,’’ Eng. Appl. Artif. Intell., vol. 117, Jan. 2023,
Art. no. 105607, doi: 10.1016/j.engappai.2022.105607.

[44] L. Xu, X. Ding, H. Peng, D. Zhao, and X. Li, ‘‘ADTCD: An adap-
tive anomaly detection approach towards concept-drift in IoT,’’ IEEE
Internet Things J., vol. 10, no. 18, pp. 15931–15942, Sep. 2023, doi:
10.1109/JIOT.2023.3265964.

[45] M. Jain, G. Kaur, and V. Saxena, ‘‘A K-means clustering and SVM
based hybrid concept drift detection technique for network anomaly
detection,’’ Expert Syst. Appl., vol. 193, May 2022, Art. no. 116510, doi:
10.1016/j.eswa.2022.116510.

[46] M. Amin, F. Al-Obeidat, A. Tubaishat, B. Shah, S. Anwar, and
T. A. Tanveer, ‘‘Cyber security and beyond: Detecting malware and
concept drift in AI-based sensor data streams using statistical tech-
niques,’’ Comput. Electr. Eng., vol. 108, May 2023, Art. no. 108702, doi:
10.1016/j.compeleceng.2023.108702.

[47] P. Wang, N. Jin, and G. Fehringer, ‘‘Concept drift detection with false
positive rate for multi-label classification in IoT data stream,’’ in Proc.
Int. Conf. U.K.-China Emerg. Technol. (UCET), Aug. 2020, pp. 1–4, doi:
10.1109/UCET51115.2020.9205421.

[48] Z. Aouini and A. Pekar, ‘‘NFStream,’’ Comput. Netw., vol. 204, Feb. 2022,
Art. no. 108719, doi: 10.1016/j.comnet.2021.108719.

[49] Z. Wang, W. Dai, F. Wang, H. Deng, S. Wei, X. Zhang, and B. Liang,
‘‘Kafka and its using in high-throughput and reliable message distribu-
tion,’’ in Proc. 8th Int. Conf. Intell. Netw. Intell. Syst. (ICINIS), Nov. 2015,
pp. 117–120, doi: 10.1109/ICINIS.2015.53.

[50] T. P. Raptis and A. Passarella, ‘‘A survey on networked data streaming
with Apache Kafka,’’ IEEE Access, vol. 11, pp. 85333–85350, 2023, doi:
10.1109/ACCESS.2023.3303810.

[51] M. Zaharia, R. S. Xin, P.Wendell, T. Das,M. Armbrust, A. Dave, X. Meng,
J. Rosen, S. Venkataraman, M. J. Franklin, A. Ghodsi, J. Gonzalez,
S. Shenker, and I. Stoica, ‘‘Apache Spark: A unified engine for big data
processing,’’ Commun. ACM, vol. 59, no. 11, pp. 56–65, Oct. 2016, doi:
10.1145/2934664.

[52] M. Armbrust, T. Das, J. Torres, B. Yavuz, S. Zhu, R. Xin, A. Ghodsi, I.
Stoica, and M. Zaharia, ‘‘Structured streaming: A declarative API for real-
time applications in Apache Spark,’’ in Proc. Int. Conf. Manage. Data,
May 2018, pp. 601–613, doi: 10.1145/3183713.3190664.

[53] P. Porwik and B. M. Dadzie, ‘‘Detection of data drift in a two-dimensional
stream using the Kolmogorov–Smirnov test,’’ Proc. Comput. Sci., vol. 207,
pp. 168–175, Jan. 2022, doi: 10.1016/j.procs.2022.09.049.

[54] (Oct. 2007). KDD Cup 1999. [Online]. Available: http://kdd.ics
.uci.edu/databases/kddcup99/kddcup99.html

[55] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu,
‘‘LightGBM: A highly efficient gradient boosting decision tree,’’ in Proc.
Adv. Neural Inf. Process. Syst., 2017, pp. 3149–3157.

SARAVANAN SELVAM received the Master of
Engineering degree in computer science from
Sathyabama University, Chennai, India. He is cur-
rently an Assistant Professor with the Department
of Computer Science and Engineering, Amrita
School of Computing, Chennai. He has 19 years of
teaching experience. His research interests include
large-scale cybersecurity analytics, design and
development of big data technology-based appli-
cations, and streaming data analytics.

UMA MAHESWARI BALASUBRAMANIAN
(Senior Member, IEEE) received the B.E. degree
in computer science and engineering from
Bharathidasan University, in 1993, the M.E.
degree in computer science and engineering from
Anna University, Chennai, India, in 2004, and the
Ph.D. degree in computer science and engineer-
ing from Amrita Vishwa Vidyapeetham, India,
in 2020. She is currently an Assistant Professor
with the Department of Computer Science and

Engineering, Amrita School of Computing, Bengaluru, India. Her current
research interests include digital twin, machine/deep learning, the IoT
applications in healthcare, agriculture, network security, overlay networks,
P2P video streaming, application layer multicasting in wired, and wireless
networks.

64716 VOLUME 12, 2024

http://dx.doi.org/10.1109/IOTM.0001.2100012
http://dx.doi.org/10.1109/ICC.2018.8422327
http://dx.doi.org/10.1007/s10586-022-03538-x
http://dx.doi.org/10.1007/s11227-022-04802-y
http://dx.doi.org/10.1109/HPCC/SmartCity/DSS.2019.00335
http://dx.doi.org/10.1109/HPCC/SmartCity/DSS.2019.00335
http://dx.doi.org/10.1007/s10586-023-04087-7
http://dx.doi.org/10.1186/s42400-022-00133-w
http://dx.doi.org/10.1109/SNPDWinter52325.2021.00019
http://dx.doi.org/10.1007/s10586-021-03249-9
http://dx.doi.org/10.1016/j.ins.2021.05.076
http://dx.doi.org/10.1109/GLOBECOM46510.2021.9685338
http://dx.doi.org/10.1109/TNSM.2021.3109076
http://dx.doi.org/10.1109/TII.2022.3212003
http://dx.doi.org/10.1109/TII.2022.3212003
http://dx.doi.org/10.1109/TII.2021.3108464
http://dx.doi.org/10.1145/3474369.3486864
http://dx.doi.org/10.1109/icde51399.2021.00097
http://dx.doi.org/10.1016/j.engappai.2022.105607
http://dx.doi.org/10.1109/JIOT.2023.3265964
http://dx.doi.org/10.1016/j.eswa.2022.116510
http://dx.doi.org/10.1016/j.compeleceng.2023.108702
http://dx.doi.org/10.1109/UCET51115.2020.9205421
http://dx.doi.org/10.1016/j.comnet.2021.108719
http://dx.doi.org/10.1109/ICINIS.2015.53
http://dx.doi.org/10.1109/ACCESS.2023.3303810
http://dx.doi.org/10.1145/2934664
http://dx.doi.org/10.1145/3183713.3190664
http://dx.doi.org/10.1016/j.procs.2022.09.049

