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ABSTRACT This research presents a new approach for identifying instances of copy-move forgeries in
digital images by utilizing the Multiscale Detector a Neural Network-based method, which serves as an
image key-point detector and descriptor. The act of copy-move manipulation involves the replication and
subsequent insertion of a specific segment of an image, intending to modify the overall content of the image.
The approach we utilize leverages the sophisticated functionalities of Multiscale Detector, a framework
that combines key-point detection with descriptor extraction, to accurately detect and localize instances
of copy-move manipulation. The effectiveness of our approach is assessed on a range of copy-move
forgeries, encompassing instances that have undergone post-processing and geometric transformations. The
experimental findings illustrate the resilience of our approach in identifying instances of manipulations
over a diverse range of textured images and various alteration approaches. Furthermore, our approach
demonstrates strong performance even when subjected to supplementary processing procedures such as
brightness modification, color reduction, contrast adjustment, and blurring. Our suggested method has
greater performance when compared to the existing manipulation detection approach, as demonstrated
through a comparative analysis. In addition, the algorithm we have developed has high computing efficiency,
allowing for real-time detection of forgeries. The methodology employed in this study, which builds upon
the Multiscale Detector framework, offers a highly effective approach to the detection of copy-move
manipulations in digital images.

INDEX TERMS Copy-move forgery, multiscale detector, neural network, computer vision, image forensics,
forgery detection.

I. INTRODUCTION
The availability and user-friendliness of cutting-edge image
editing software, such as Adobe Photoshop, Adobe Light-
room, GNU Image Manipulation Program (GIMP), Picasa,
Paint.net, and others, have made manipulating digital images
simple [1], [2]. These techniques make it easier to create
altered images that might seem completely real without
ever revealing their fraud. Unfortunately, the unethical
use of altered digital images has spread to numerous
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fields, including scientific journals, newspapers, magazines,
websites, visual representations of medicine, and even
courtrooms [3], [4]. As a result, the discipline of digital image
forensics has emerged, and researchers have created a variety
of techniques to identify altered photographs.

Image splicing and copy-move have emerged as the two
most popular counterfeit methods. The former comprises
combining many photographs to make a false composite,
while the latter entails copying and moving portions of an
image to produce a fake version [5]. When certain sections of
an image are copied and then pasted inside of another image,
a copy-move manipulation occurs, producing modified
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FIGURE 1. These images depict instances of copy-move manipulation. The initial row exhibits unaltered images, whilst the subsequent row
showcases modified images.

content. This method can add extra aesthetic components
or obscure actual information in the image, as shown in
Figure (1). The detection of copy-move manipulated images
is extremely difficult since the manipulated zone gets the
visual traits of the surrounding areas because it is a part
of the same image [6] Additionally, malevolent attacks use
several techniques to conceal the modified content, including
rotating, scaling, applying JPEG compression, introducing
noise, and more, all of which complicate the process of
manipulated image detection.

There are many instances where photographs of man-made
or natural environments contain actual itemswith comparable
looks, as shown in Figure (1). In such cases, it becomes chal-
lenging to recognize identical parts inside an image, which is
a key component of copy-move manipulation detection. The
difficulty in distinguishing between authentically captured
content and replicated portions is caused by the presence of
real but similar items in the image. This work presents a novel
method for detecting copy-move manipulations to tackle
this research conundrum head-on. This innovative technique
boasts the ability to precisely identify the locations of altered
portions inside themanipulated image in addition to detecting
manipulated photographs.

A. CHALLENGES AND LIMITATIONS
IN EXISTING METHODS
Copy-move manipulation stands out as a particularly nefar-
ious type of manipulation among the deceptive techniques
used. Existing detection approaches have drawbacks that
limit their usefulness and efficacy. Our suggested method is
motivated by addressing these limitations. The following are
some of the limitations of the existing detection approaches.

• Sensitivity to Image Quality: Many current detection
approaches are sensitive to changes in image quality,
including noise, distortion, and compression artifacts.
The accuracy of manipulation detection can be compro-
mised by this sensitivity’s potential for false positives or
false negatives.

• Limited Generalisation: Existing approaches frequently
have trouble adapting well to new or undiscovered

types of manipulation, particularly when they must
deal with a wide range of texture, color, brightness,
lighting, contrast, and blur variations. Post-processing
like JPEG compression, noise addition, and geometrical
transformations such as angle rotation and change in
scale of the manipulated region.

• Limited Image Type: There aren’t many thorough
studies that cover manipulated images with various
attributes, such as diverse image sizes, manipulated
region sizes, and image file formats, in the present
corpus of research. This gap emphasizes the demand for
more adaptable detection methods.

• Limited Scalability: Some approaches have difficulty
handling huge datasets or require complex compu-
tations, which limits their usefulness in situations
involving a large number of digital images.

B. OUR PROPOSED CONTRIBUTION
To overcome the challenges and limitations discussed above,
we proposed the use of a Multiscale Detector key-point
detector and descriptor. The Multiscale Detector architecture
is a deep neural network-based key-point detector created for
practical and real-time applications. Our proposed approach
includes several significant contributions.

• Sensitivity to Image Quality: Our approach is excep-
tionally resilient to changes in image quality, like the
presence of noise, distortion, and compression. False
positives as well as false negatives have been thoroughly
addressed while retaining a balanced outcome.

• Detection of Novel assaults: Our approach efficiently
finds a wide range of novel attacks, such as those
employing different textures, varied lighting, blur, varied
colors, JPEG compression, and geometrical transforma-
tion attacks. Furthermore, it has exceptional proficiency
in detecting coordinated assaults that use both rotation
and scale inside the modified areas.

• Robustness Against Complex Attacks: While previous
research often overlooked flip assaults and combinations
of rotation, and scaling, with post-processing, our
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approach excels at detecting these intricate manipula-
tions, leading to a higher level of accuracy.

• Versatility and Robustness: Our approach shows its
efficacy on a variety of datasets with images of various
sizes, manipulated region sizes, and image file formats.
This adaptability highlights how effective our system is
in spotting copy-movemanipulations inmany situations.

• Processing Time Efficiency: Our approach drastically
saves the processing time needed for detection, ensuring
quicker outcomes without compromising accuracy.

In our research, we describe a groundbreaking approach
for improving the precision, effectiveness, and adaptability
of copy-move manipulation detection in digital images using
key-point detection via the Multiscale Detector architecture.
Our approach addresses the complex difficulties presented by
diverse image transformations and is motivated by the need
to get past the constraints of existing solutions.

The remaining sections of the paper are organized in
the following manner: Section II comprises established
methodologies. Section III comprises theMultiscale Detector
and its operational mechanism. Section IV focuses on the
Multiscale Descriptor network, which is used for key-point
detection. Section V encompasses the methods employed
in the suggested approach. Section VI encompasses the
assessment criteria and dataset employed in this study.
Section VII comprises the findings and interpretations of the
results. Section VIII comprises the conclusion.

II. LITERATURE REVIEW
The detection of copy-move forgeries using traditional
techniques can be classified into two distinct categories,
which are determined by their dependence on manually
designed features [7]. These categories include block-based,
key-point-based, and deep learning-based approaches. Block-
based approaches involve the extraction of local features by
utilizing overlapping or non-overlapping patches [8], whereas
key-point-based approaches focus on patches that have a
high density of key-points. Deep learning-based approaches
utilize deep neural networks to learn and extract features for
copy-move forgery detection. All of the approaches under
the passive detectionÂ category provide numerous ways to
identify a copy-move manipulation in digital images. The
parts that follow will provide a comprehensive analysis of
these strategies.

A. BLOCK-BASED
Block-based approaches have been developed to identify
instances of copy-move manipulations in images without
the need for additional post-processing. However, these
approaches have certain limitations when it comes to
detecting geometric attacks, and they also require significant
computational power [9], [10]. Numerous researchers have
investigated a block-basedmethodology for identifying copy-
move manipulation. Some of these investigations comprise;
Babu and Rao [11], proposed to utilize a blend of several

iterations of Local Binary Patterns (LBP) such as local
ternary pattern, local phase quantization, and local Gabor
binary pattern. The characteristics of BP are employed
to train the classifier model, while the Support Vector
Machine is utilized for the classification of copy-move
manipulation verification. Diwan et al. [12] proposed a
method that uses Locality Preserving Projection to detect
instances of copy-move manipulation. Their block-based
approach exhibits efficacy for both post-processed and
unaltered images. Hosny et al. [13] proposed a method for
sub-sampling images using QPCETMs, which integrates the
Sobel operator to detect edges and remove small sections.
However, its efficacy may be restricted when used in images
with uniform or densely textured areas. Gani et al. [14]
proposed approach involves applying Cellular Automata
to the individual Discrete Cosine Transform (DCT) block
characteristics inside the image. However, it is important
to note that this method has a significantly high temporal
complexity.

The block-based method is ineffective in identifying when
the duplicated area undergoes geometric transformations,
such as rotation, scaling, or flip. This is because the
transformed area may not match precisely with any of the
blocks in the image [15]. Hence, an alternative methodology
is required to identify geometrically altered instances of copy-
move forgeries.

B. KEYPOINT-BASED
Key-point-based approaches are employed to extract and
compare distinctive key-points to identify instances of image
manipulation when a block-based approach fails to detect [7].
Diwan et al. [16] In this paper, the SuperPoint detector
for detecting copy-move manipulations in complex assaults
is described. This approach employs a trained model with
self-supervised learning and a quick detection time. Kumar
and Meenpal [17] utilized a silent keypoint section approach
with SIFT features along with KAZE image keypoint features
for the detection of copy-move forgery. Lee et al. [18]
Proposed a copy-move detection methodology that utilizes a
rotation-invariant characteristic and high-frequency wavelet
coefficients. This approach uses a correlation module and a
reduced mask decoder module. Venugopalan and Gopaku-
mar [19] employed SIFT keypoint with DBSCAN for the
clustering of the extracted keypoints. Additionally, they used
the Hu invariant moment for getting for identification of
similar regions in copy-move images. Wang et al. [20]
utilize simple linear iterative clustering (SLIC) and the K-
multiple-means (KMM) for feature extraction alongwith Fast
Quaternion Generic Polar Complex Exponential Transform
(FQGPCET) and the texture features based on the Gray-level
co-occurrence matrix (GLCM) to enhance the robust feature
extraction for copy-move forgery detection.

Keypoints are often identified by locating portions of the
image with high-contrast variations in texture or colour. The
number of keypoints detected in an image is determined by its
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FIGURE 2. The architecture for training a network of multiscale detector.

texture. Smooth images may have fewer detectable keypoints
than images with more textured regions. This may result in
a decreased detection rate for keypoint-based techniques for
smooth images [21].

C. DEEP LEARNING-BASED
However, it is important to acknowledge that block-based
and keypoint-based approaches include certain limitations,
including the requirement for robustness against various
image processing techniques and potential issues related
to computing efficiency [22], [23]. This phenomenon has
prompted researchers to investigate deep learning frame-
works as a potential choice, which have demonstrated encour-
aging outcomes in enhancing the precision of copy-move
manipulation detection [24], [25]. Numerous methodologies
utilizing deep learning frameworks have been put forth in the
realm of copy-movemanipulation detection. Zhu et al. [26] In
this study they have proposed end-to-end AR-Net along with
deep matching to capture context information fully. Babu and
Rao [27] In this study they have used an optimized naive base
classifier along with GLCM and steerable pyramid transform
for copy-move forgery detection. Rhee [28] In this study they
used noveltyGT images for image classification and semantic
segmentation. Mashael et al. [29] In this study they used
a Neural architecture search network for feature extraction
and manipulation detection, and they tuned parameters using
the RSA approach. Khalil et al. [30] In this study they
used transfer learning for image copy-move manipulation
detection. Their results suggest that MobileNetv2 gives
the best results. Rao et al. [31] In this study they used
RestNet with transformer decoding for addressing splicing
and copy-move manipulation detection.

III. WORKING OF MULTISCALE DETECTOR
The Multiscale Keypoint Detector [32] is a sophisticated
neural network specifically created to detect key-points in
digital images at different scales. This detector employs
a fusion of convolutional and pooling layers, alongside
recursive convolutions, to analyze image content and produce
a feature map. Significantly, the network adjusts to various
keypoint scales by employing a scale-dependent branching

mechanism. The primary objective is to identify important
areas inside images, making the Multiscale Keypoint Detec-
tor a desirable tool for tasks such as copy-move forgery
detection. In this context, the ability to recognize key-points
across several scales is essential for reliable and precise
analysis of image integrity.

A. TRAINING ARCHITECTURE FOR MULTISCALE
KEY-POINT DETECTION NETWORK
The main goal of the detection system is to accurately
identify areas in an input image that can be considered
high-quality key-points. The architecture of the multiscale
key-point detection network, as depicted in Figure (2),
involves the application of convolutional and pooling layers
to image patches is subsequently followed by recursive
convolution until the feature-map dimension is reduced to
1 × 1. Considering that a batch can contain patches of
different sizes, a branch that depends on the scale is selected
for each patch, which determines the required number
of recursive convolutions. The final phase comprises two
completely connected layers that direct the network towards
a binary classification of keypoints. This architecture is
designed to facilitate the efficient learning of keypoints at
many scales, allowing for differences in scale across the
dataset.

During the training procedure, the network takes sets of
patches {pi} ⊂ P as input, accompanied by binary labels
that indicate if each patch represents a good key-point.
The detection network operates as a binary classification
Convolutional Neural Network, learning to discern if a
specific patch qualifies as a good key-point. A scale-
dependent branching mechanism is employed for each
patch, dynamically determining the number of recursive
convolutions based on the scale. To enhance performance, the
training incorporates hard-negative mining. This involves the
random sampling of the dataset to construct batches with a
mixture of positive and negative patches, thereby improving
the key-point detector’s efficacy.

Training Objective: The training objective is defined by
the loss function LK ,P, which consists of two terms. The first
term employs hinge loss to model key-point detection as a
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FIGURE 3. Inference architecture of multiscale detector.

binary classification task. The second term utilizes a squared
difference loss, introducing a Gaussian-like reaction in the
vicinity of the patch’s center to discourage network reactions
on patches that are not centered. The loss function is defined
as the combination of multiple factors.

LKP =
1
N

∑
j

(
λmax(0, 1 − yjxj) + (1 − λ)

∥∥xj − hj
∥∥2)

(1)

here:
xj: Network output
yj: Training label (yj(∈ {−1, 1}))
hj: Gaussian-like reaction in the vicinity of the patch’s

center.

B. INFERENCE ARCHITECTURE
The inference architecture of the multiscale keypoint detec-
tion network commences by subjecting the input image to
a series of convolutions and pooling layers. Subsequently,
a recurrent convolutional procedure is employed until the
feature map size is diminished to 1 × 1. Following each
iteration of recursive convolution, the network calculates
the keypoint feature map. Significantly, as the convolutions
advance further into the network, the receptive fields of indi-
vidual neurons expand, leading to output feature maps that
bear resemblance to a scale-space of keypoints. This design
guarantees that the network efficiently gathers information
at several scales, resulting in a thorough representation
of important features across various scales in the input
image. During inference as shown in Figure (3) the network
processes whole images assuming they are at least of size
64×64. The architecture includes:

1) Convolutional and pooling layers are applied to the
input image.

2) Recursive convolution is applied until the feature-map
dimension is 1×1.

3) The network is fully convolutional, outputting a
feature-map in which each value represents the score
of a particular image region’s key-point.

Inference Procedure:
1) The network outputs a feature-map after every recur-

sive convolution, resembling a key-point scale space.
2) The generated feature-maps enable the identification

of the optimal scale for each patch by determining the
scale with the highest key-point value.

Training Objective: The joint loss function LKPcombines
hinge-loss and squared difference loss terms to train the
key-point detection network:

LKP =
1
N

∑
j

(
λmax(0, 1 − yjxj) + (1 − λ)∥xj − hj∥2

)
(2)

These equations represent the training and inference
procedures for a multiscale key-point detection network,
emphasizing the scale-dependent branching mechanism and
the convolutional architecture’s ability to handle key-points
of varying scales efficiently.

IV. DESCRIPTOR NETWORK FOR KEY-POINT MATCHING
The Multiscale descriptor is a feature representation that
effectively captures information at several levels of scale
within an image. In the domain of key-point detection and
matching, the multiscale descriptor is specifically crafted to
exhibit resilience against fluctuations in the dimensions and
visual characteristics of key-points.

A. WORKING OF MULTISCALE DESCRIPTOR
A multiscale descriptor operates by extracting significant
data from image patches at various resolutions. The method
usually commences by identifying key-points at different
scales through a key-point detection network. After identi-
fying the key-points, patches that are centered around these
key-points are extracted from the image at various scales,
creating a multiscale database. The multiscale descriptor
network is subsequently trained to acquire a nonlinear feature
embedding from these patches and map them into a feature
space. This embedding is specifically designed to minimize
the Euclidean distance between descriptors of matching
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patches while maximizing the distance between descriptors
of non-matching patches. During the process of inference,
the multiscale descriptor network, which has been trained,
analyses complete images and produces a feature-map that
accurately reflects the key-points and their descriptors at
various sizes. This allows the system to rapidly detect
and align distinctive features at different scales, making
it resistant to variations in size and perspective within
the images. Utilizing multiscale descriptors improves the
effectiveness of tasks that rely on key-points, such as picture
registration and copy-move manipulation detection. This is
achieved by offering a full representation that takes into
account key-point information at various resolutions.

The objective of the descriptor network is to learn a
nonlinear feature embedding f (p) from image patches p into a
feature space Rd . This embedding ensures that the Euclidean
distance between the embeddings of two patches is minimal
if they are a match and significant if they are not. The training
employs a triplet network methodology, where a patch p1 is
expected to exhibit greater proximity to a positive match
p2 than to a negative patch p3.

Training Procedure
Input: Set of patch triplets p1, p2, p3.
Architecture: The embedding feature vector in every

patch is computed using a convolutional neural network, with
three networks utilizing identical weights. The feature vectors
are scaled to conform to the d-dimensional unit hypersphere.

EuclideanDistances:Calculate the combinations between
each pair of items. The Euclidean distances calculated are
based on the feature vectors of the anchor patch and the
positive and negative patches.

Triplet Ranking Loss: Employ a triplet ranking loss
to minimize the distance between matching patches in the
feature space and maximize the distance between non-
matching patches. The loss is characterized as:

LT =
1
N

∑
j

max(0,D(pj1, pj2) − D(pj1, pj3) + h) (3)

HereD is the Euclidean distance function and h is a chosen
margin (0.2 in this case).

Online Hard Negative Mining
Triplet Sampling: Triplate sampling involves random

selection of negative patches, while the anchor and positive
patches are taken from the match setM .
Online Hard Negative Mining: To ensure convergence,

sample negative patches that violate the triplet constraint the
most. For each matching pair in the training batch, choose the
negative patch that violates the constraint the most. Each pair
of matching items in a batch can be selected from a common
pool of negative patches.

Training Objective
The loss function LT for training the key-point description

network is defined by the triplet ranking loss:

LT =
1
N

∑
j

max(0,D(pj1, pj2) − D(pj1, pj3) + h) (4)

whereD(pa, pb) = ∥f (pa)− f (pb)∥2 represents the Euclidean
distance function between the embedding feature vectors
computed from image patches pa and pb.
This approach ensures that the descriptor network learns

a nonlinear feature embedding that facilitates the accurate
matching of key-points in images, effectively capturing the
relationships between positive and negative patches in the
training triplets. The use of online hard negative mining helps
focus on challenging examples that contribute to improved
learning and convergence.

The significance of the descriptor network in the field
of copy-move manipulation detection is highlighted by its
potential, refined through meticulous training, to provide
discriminative embeddings for key-points. These embeddings
function as different identifiers, encoding the individual
characteristics of image patches that are crucial for efficient
matching. When key-points display congruence, it provides
strong evidence indicating the presence of duplicated regions
within the image. This capacity to match becomes crucial in
the wider challenge of detecting occurrences of copy-move
forgeries in digital images. The purpose of the descriptor
network goes beyond only representing features. It is a crucial
component in the detection process, providing a strong
mechanism to reveal manipulated areas and enhance the
overall dependability and precision of manipulation detection
systems.

V. METHODOLOGY
The proposed approach combines the advantages of the
multiscale key-point detector and descriptor network, pro-
viding a comprehensive strategy for identifying instances
of copy-move manipulation in digital images. The inclusion
of multiscale information improves the system’s ability to
adapt to various manipulation situations, while the descriptor
network guarantees precise matching, hence enhancing the
overall dependability and effectiveness of the manipulation
detection system.

A. FEATURE EXTRACTION USING MULTISCALE
DESCRIPTOR
TheMultiscale Detector is designed to learn a nonlinear func-
tion and distinguish potential manipulation regions within
an image. Simultaneously, a descriptor network is employed
to acquire a nonlinear feature representation from image
patches. The primary objective is to ensure that the Euclidean
distance between embeddings is small for matching patches
and large for non-matching ones, enhancing the network’s
discriminative capabilities.

1) DATASET PREPARATION
Curating a thorough dataset is essential for training and
assessing the copy-move manipulation detection system. The
dataset should comprise a heterogeneous assortment of both
genuine and manipulated images to guarantee the model’s
efficacy over a wide range of scenarios.
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The process of dataset construction entails collecting
authentic images together with manipulated ones, in which
copy-move forgeries are intentionally inserted. Authentic
images serve as the reference point, whereas altered images
contain duplicated sections. The dataset’s diversity is crucial
for effectively training a resilient model that can accurately
identify copy-move forgeries across different scenarios.
We have used seven publicly available datasets for this
purpose. Details of these datasets are given in the section

2) DESCRIPTOR LEARNING
We employ a triplet network methodology. To train a
descriptor network for acquiring a nonlinear feature embed-
ding from image patches. Each image patch undergoes
convolutional processing to calculate its embedding feature
vector, aiming to create embeddings that facilitate accurate
matching and discrimination between patches. Themultiscale
key-point detector incorporates a scale-dependent branching
mechanism guided by convolutional and pooling layers,
adapting to varying key-point scales in the dataset.

The comprehensive training objective for both the multi-
scale key-point detector and the descriptor network includes
hinge loss for classification and squared difference loss to
penalize responses on non-centered patches. To enhance
training and convergence, online hard negative mining is
incorporated, focusing on challenging examples during the
learning process. The applied loss functions encompass
hinge loss for classification and squared difference loss,
contributing to the effective training of both networks.

3) INFERENCE PHASE
In the inference phase, the multiscale key-point detection
network processes entire images using convolutions and
pooling layers. This fully convolutional design ensures
efficient multiscale inference, accommodating the varied
nature of key-points in the dataset. Triplet loss is employed
during the descriptor network’s training, ensuring that the
embedding feature vectors of matching patches are closer
than those of non-matching ones. Online hard negative
mining is utilized to select challenging triplets, enhancing the
learning process.

4) DETECTION PHASE
During the detection phase, the trained multiscale key-point
detector identifies key-points in the input image. The descrip-
tor network is then employed to compute embeddings for
the detected key-points. Leveraging multiscale information,
the matching process effectively identifies duplicated regions
indicative of copy-move forgeries. This systematic approach
combines the strengths of multiscale key-point detection and
descriptor learning, offering a robust solution for detecting
copy-move forgeries in digital images.

B. ALGORITHMIC STEPS OF DETECTION
The approach for identifying copy-move manipulation based
on aMultiscale Detector is employed to identify and precisely

find the regions that have been modified inside an input
image. The proposed algorithm for detecting copy-move
forgeries employs a multiscale key-point detection and
descriptor learning approach, which functions through a
series of separate stages. Initially, the digital image input is
loaded for analysis. The approach then employs a multiscale
key-point detection network that utilizes convolutional and
pooling layers together with a scale-dependent branching
mechanism. Recursive convolutions are used iteratively till
the feature-map dimension is decreased to 11, resulting in
a collection of key-points that represent various sizes in a
shared feature space.

After identifying key-points, image patches are extracted
with the key-points in their center. These patches are chosen
to cover regions that are large enough to capture local
information. Afterward, a network for learning descriptors is
trained using triplet loss. This procedure entails passing each
patch through a convolutional neural network to calculate an
embedded feature vector, which is then normalized to the
hypersphere of a D-dimensional unit. The network calculates
the pairwise Euclidean distances between the embeddings
of the anchor, positive, and negative patches. This process
helps the network to project matching patches closer together
and non-matching patches farther apart.

After acquiring embeddings, the technique computes
pairwise distances and establishes a matching threshold
to identify probable key-point matches. Identifying corre-
sponding key-points exposes areas that suggest the presence
of copy-move manipulation. The algorithm presents the
outcomes by either displaying them or preserving them,
frequently including the creation of bounding boxes around
the identified corresponding areas. Figure 4 Shows the visual
outcome of the detection on some images.

Additional steps that can be included include threshold
adjustment and assessment, where the matching threshold
can be adjusted based on the properties of the dataset,
and the success of the algorithm can be evaluated using
metrics such as precision, recall, and F1. Moreover, the
procedure can be iterated for many images when dealing with
a dataset. To summarise, the technique utilizes a combination
of multiscale key-point detection and descriptor learning to
systematically and effectively detect instances of copy-move
forgeries in digital images. The algorithm 1 provides the
algorithmic stages for the proposed approach.

VI. EVALUATION METRIC AND DATASET
The tests done in our study were centered around the
assessment of functionality at each pixel. The True Positive
metric (TP) was employed to represent the overall count of
pixels identified as manipulated that are indeed manipulated.
The False Positive metric (FP) was utilized to represent the
total count of pixels inaccurately identified as manipulated.
Conversely, the False Negative metric (FN) was employed to
represent the total count of pixels inaccurately identified as
not manipulated. Utilizing the above values, we computed
the metrics of True Positive Rate (TPR) or Recall (R),
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FIGURE 4. Stages of manipulation detection. From left to right, the images include the original, manipulated, ground
truth, detected keypoint, and detected copy-move regions.

TABLE 1. Overview of the dataset employed for experimental work.

F1, and Precision (P) [12]. The F1 serves as the principal
assessment statistic employed to evaluate the efficacy of
our proposed methodologies and to make comparisons with
other documented techniques [24]. The value of the variable
in question is measured on a scale from 0 to 1, with
1 representing the highest quality and 0 representing the
lowest quality. In our research study, we have converted this
value into a percentage. The associations among TPR or R,
F1, and P with TP, FP, and FN can be described as:

R∗ = TPR =
TP

TP+ FN
,

P∗ =
TP

TP+ FP
,

F1∗ =
2TP

2TP+ (FP+ FN )
.

Multiple evaluation criteria, including P, R or TPR, and F1,
were employed to assess the effectiveness of our approach.
Precision is a measure that calculates the proportion of
accurately determined positive detections out of the total
number of positive detections. The concept of Recall refers
to the proportion of accurately detected positive detection

to the total number of genuinely manipulated areas. The F1
is calculated as the average of the harmonics of Precision
and Recall, providing a fair evaluation of the algorithm’s
total efficacy. The aforementioned measures offer significant
insights into the Precision and efficacy of our approach
in identifying instances of copy-move manipulation. These
metrics provide a comprehensive assessment of our method’s
performance and are particularly useful for comparative
analyses with other reported techniques in the field.

A. TYPE OF MANIPULATIONS CONSIDERED
The categorization of copy-move manipulation can be
classified into four primary categories, which are determined
by the specific technique employed in the creation of the
manipulation. The subsequent items are:

• The act of duplicating and relocating part of an image
within the same image can be classified as a simple
copy-move manipulation. This could be one instance or
many instances of a particular duplicated region. This
is known as multiple copy-move manipulations. These
created images have not undergone any post-processing.

VOLUME 12, 2024 64743



A. Diwan et al.: Advancing Copy-Move Manipulation Detection in Complex Image Scenarios

Algorithm 1Multiscale Key-Point Detection and Descriptor
Learning
1: Input: Digital image suspected of containing copy-move

forgeries.
2: Output: Detected key-points and potential matching

regions.
3: Load the digital image.
4: Apply multiscale key-point detection network.
5: Extract patches centered on detected key-points.
6: Train descriptor network using triplet loss.
7: Use trained descriptor network to compute embeddings

for detector key-point.
8: Calculate pairwise distances between embeddings for

matching threshold.
9: Define matching threshold.

10: Find key-point pairs with distances below the threshold
for identifying matching key-points.

11: Display or save results, draw bounding boxes for
visualization results.

12: Fine-tune matching threshold, evaluate performance.
13: If working with a set of images, repeat the process.

• We did a study that included manipulated images that
were post-processed to conceal their manipulations.
In such cases, post-processing is frequently performed
with a high level of expertise tomake it more challenging
to detect manipulations. As part of our study, we looked
at what happened to these changed images when we
changed the JPEG compression level and added noise.

• Aside from the basic post-processing method used to
hide manipulation evidence, there are also auxiliary
processes that help hide manipulation evidence even
more. The detection of such techniques poses challenges
due to their ability to consistently modify image
pixels. The techniques encompassed in this set include
Brightness adjustment (BC), Contrast adjustment (CA),
Colour reduction (CR), and Blur.

• Geometric transformations have gained popularity as a
technique for producingmanipulated images due to their
ability to make persuasive copy-move manipulation.
These modifications can be implemented using three
distinct methods: There are three primary methods for
manipulating regions in a geometric context: 1) the
duplication of a region followed by rotation, 2) the
duplication of a region followed by scaling and trans-
lation, and 3) the combination of scaling and rotation
on a duplicated region. Images that have been rotated
180 degrees are what we are most interested in.

B. DATASET
We have utilized seven publicly available datasets in our
study, each serving as a valuable resource for evaluating
our proposed method. These datasets include CMFD [33],
GRIP [34], CoMoFoD [35], MICC-600 [36], MICC-220

[36], CASIA II.0 [37] and COVERAGE [38]. To provide a
comprehensive overview of these datasets, we have compiled
various dataset-related details, as presented in Table (1).

1) CoMoFoD: There are 200 base images in the CoMo-
FoD dataset. There are a total of 160 altered images,
40 each for translation, rotation, scaling, combination,
and distortion. In addition, every single altered image
goes through a series of post-editing procedures that
include things like compression, noise, color reduction,
brightness adjustment, contrast augmentation, and blur.

2) CASIA II.0: There are a total of 7491 images in the
collection, 5123 of which have been manipulated in
some way. We chose 3274 copy-move manipulated
images that had been altered in various ways from this
collection. Images are transformed using translation,
rotation, and scale; some are further processed employ-
ing JPEG compression and blurring of edges.

3) CMFD: There are a total of 48 texture-rich base images
included in the CMFD dataset. Copy-move manipula-
tion is used in these images, which includes translation,
rotation, scaling, and any combination thereof. Combi-
nations of image rotation, scaling, and JPEG compres-
sion, as well as other post-processing processes like
Additive White Gaussian Noise (AWGN), are used to
simulate attacks. Using a 2circ rotation, a 1% scaling,
and a JPEG compression level of 80, we were able
to build up a combination attack. Later configurations
(4circ, 3%, 75), (6circ, 5%, 70), and (8circ, 7, 65)
enhanced rotation and scaling but decreasing JPEG
quality.

4) MICC-600: Approximately 440 of the 600 images in
the MICC-600 dataset have not been altered in any
way. Copy-move manipulation is used to construct
the altered images, which can use any combination of
translation, rotation, and scale. They also use methods
like JPEG compression and noise for post-processing.

5) MICC-220: There are a total of 220 imageswith ground
truth in the MICC-220 dataset, consisting of 110 orig-
inal images and their corresponding altered variants.
In this data set, manipulation is accomplished through
the use of the copy-move method in conjunction with
either translation, rotation, scaling, or all three. JPEG
compression and noise are also used as post-processing
operations.

6) COVERAGE: The original, manipulated, and ground
truth images of the same object are all included in
the 200-image Coverage dataset. Images from both
indoor and outdoor settings are included. There are six
different types of post-processing in the dataset. They
are translation, rotation, scaling, changing the lighting,
free form, and anymix of these five. In addition, twenty
photographs have been altered in various ways using
copy-move techniques.

The images from different datasets that were used for
training and tests in copy-move manipulation detection are
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TABLE 2. Information of dataset and number of images used for training and test phase of the proposed work.

shown in Table (2). The number of images from each
dataset that were randomly selected to train the copy-move
manipulation detection model is listed in the ‘‘Training
Images’’ row of the Table (2). In the same way, the ‘‘Test
Images’’ row shows how many images were used to see
how well the trained model worked with new, unknown data.
The selection of training and test sets for each dataset is
typically made based on the principle of random sampling
to ensure representative coverage of the data distribution.
To ensure reliable experimentation with the limited amount of
data, cross-validation was performed 10 times randomly. The
final result was obtained by averaging the results from each
cross-validation run and evaluated accordingly. In our study,
we adopted this approach, drawing from seven varied datasets
and employing random sampling of images from each dataset
for both training and testing. This methodology was key to
ensuring a thorough and robust evaluation of our approach.

VII. FINDINGS AND INTERPRETATION
The Multiscale detector exhibits the capacity to extract
resilient and consistent key-points from images, despite its
initial features having changed. The detection of potential
instances of copy-move manipulation can be accomplished
by conducting a comparison of the extracted key-points
obtained from various regions of an image. Moreover, the
utilization of the Multiscale Detector and descriptor allows
for the establishment of correspondences among the extracted
key-points, enabling a precise assessment of the extent
of geometric alterations applied to the duplicated region.
The aforementioned data can thereafter be employed to
facilitate the localization and identification of occurrences of
counterfeiting.

Through the implementation of our conducted tests
and subsequent assessment, we have effectively showcased
the effectiveness of the proposed approach in accurately
detecting instances of manipulation within a wide range
of image categories. This encompasses images that went
through variousmanipulations and subsequent modifications.
The criteria for assessment utilized in our study have shown
that our technique attains notable levels of Precision, Recall,
and F1. The results of this study demonstrate that the used
methodology exhibits effectiveness in detecting occurrences
of copy-movemanipulations, proving its potential as a helpful
tool in the domain of forensic image analysis.

All experimentswere conducted using theOpenCV-Python
public library on a computer system equipped with an Intel

Core i7 processor, 8 GB RAM, and a CPU clocked at
2.80GHz. The Multiscale Detector’s computational cost for
copy-move tampering detection is primarily influenced by
recursive convolutions, the scale-dependent branching mech-
anism, and the convolutional and pooling layers. Among
these components, the convolutional layers and recursive
convolutions are the most computationally intensive.

A. DETECTION OF SIMPLE COPY-MOVE
The focus of our study pertains to the detection and analysis
of instances of simple copy-move manipulation within the
entirety of the datasets including various images like. The
study conducted experiments to investigate two situations of
simple copy-move manipulation, namely multiple and single
copy-move scenarios. The approach we provided demon-
strated strong performance in both scenarios. In Figure (5),
a selection of identified manipulations for both multiple and
single copy-move scenarios has been included. The proposed
methodology ensures precision by utilizing a diverse range of
images that exhibit distinct textures.

The results achieved for simple copy-move manipulation
detection are presented in Table (3). The findings exhibit
a consistent level of performance across various datasets.
The approach we present demonstrates superior performance
compared to the standard key-point-based approach [21],
[39] across multiple datasets including GRIP, CMFD, CASIA
II.0, CoMoFoD, COVERAGE, MICC-600, and MICC-220.
However, the results in the GRIP dataset exhibit a modest
decrease. The aforementioned phenomenon can be ascribed
to the existence of highly smooth visual representations and
depictions featuring elaborate patterns, such as sculptures
adorned with engravings. Insufficient key-point quantity in
smooth images hinders the precise detection and location of
manipulations. On the other hand, in images that possess
intricate patterns and exhibit self-repeating structures, the
presence of numerous comparable key-points can result
in inaccurate identification of manipulated areas. When
evaluating the effectiveness of the suggested methodology
on certain datasets, it is crucial to take into account these
elements.

In a similar vein, numerous experiments were conducted
to detect and localize instances of copy-move manipulations.
The findings are presented in Figure (5). Upon comparing
these results with the previous key-point-based approach,
it is evident that the Multiscale Detector-based strategy
demonstrates greater efficiency.
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FIGURE 5. Results of manipulation detection for images. From top to bottom, the images include the original,
manipulated, ground truth, and detected images.

TABLE 3. Comparative F1 analysis of our results with recent publications
on simple copy-move manipulation in images.

B. DETECTION OF MANIPULATED IMAGES WITH
POST-PROCESSING
In instances where manipulation is executed with expertise,
the modified image might need additional post-processing
methods to conceal the act of manipulation. The present
study analyzed various post-processing techniques, including
but not limited to JPEG compression, Noise addition, color
reduction, brightness change, contrast adjustment, and blur.
The approach we have developed effectively identified
and accurately determined a particular location of the
manipulation, even in images that have undergone subsequent
processing. These methods are frequently employed to
conceal instances of copy-move manipulation in images.

The Multiscale Detector detector demonstrates the abil-
ity to extract stable and resilient key-points from post-
processed images, even in cases where the original features
have undergone modifications. Through the process of
comparing the extracted key-points obtained from various
regions within the image, the detector can identify possible
instances of copy-move manipulation. Further, the utiliza-
tion of the Multiscale Detector descriptor allows for the
matching of the extracted key-points, enabling an accurate
determination of the extent of geometrically transformed
regions. The aforementioned data is effectively employed
to correctly identify and pinpoint the location of the
manipulation.

1) JPEG COMPRESSION
JPEG compression is a commonly employed technique for
decreasing the size of the image while maintaining an
acceptable level of visual quality. JPEG compression is a
form of lossy compression employed to decrease the size
of an image by selectively eliminating certain elements. The
presence of these factors poses challenges in the identification
of manipulated content within these images. The Multiscale
Detector algorithm operates by identifying and characterizing
the unique attributes present inside an image, including but
not limited to edges, corners, and blobs. The identification
of these features is accomplished by the utilization of a
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FIGURE 6. Comparative analysis of manipulation detection for images under varied levels of JPEG compression and additive
noise, displaying precision, recall, F1, and True Positive Rate (TPR) from left to right with state-of-the-art approaches.

FIGURE 7. Manipulation detection result for images under different levels of JPEG compression and additive noise.

convolutional neural network, a computational model that is
capable of learning and recognizing visual patterns within
images across various scales.

To identify the presence of JPEG compression using
the Multiscale Detector method, the initial step involves
extracting key-points and descriptors from the image portions
that have been copied and moved. This is achieved by
utilizing the Multiscale Detector detector. Next, we proceed
to identify the critical spots by employing a nearest-neighbor
search.

In the conducted test, a series of digital images were
employed, each exhibiting varying degrees of JPEG com-
pression, spanning from JPEG100 (representing the mini-
mal amount of compression) to JPEG20 (representing the
maximal level of compression). The results exhibited a
progressive decline as the compression level rose, as depicted
in Table (4). As anticipated, the F1 exhibited a decline
with more compression; still, commendable outcomes were
attained across all instances. It is well acknowledged that as
compression levels increase, the high-frequency components
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TABLE 4. Comparative analysis of manipulation detection for images
under different levels of JPEG compression and additive noise for two
datasets CMFD and CoMoFoD, alongside CenSurE key-point based
approach [21].

TABLE 5. Comparative analysis manipulation detection for images under
different levels of angle rotation for CMFD dataset, alongside CenSurE
key-point based approach [21].

of an image, including edges, corners, and gradients, undergo
a steady process of smoothing. The key-point detector heavily
depends on these high-frequency features as they play a
critical role in detecting key-points that are both robust and
stable.

The visual quality of compressed images employing JPEG
compression is observed to deteriorate and exhibit blocking
artifacts as the compression level falls below 40. The presence
of these artifacts may have an impact on the identification of
counterfeit elements within images that have undergonemore
extensive compression. The Multiscale Detector architecture
demonstrates the ability to mitigate the adverse effects of
increased compression levels through its capacity to identify
and analyze the low level characteristics of an image.
Nevertheless, the influence of compression artifacts becomes
apparent when examining the F1 and accuracy of localizing
the manipulated parts.

2) ADDITIVE NOISE
The introduction of noise into an image results in the
emergence of diverse corners and edges. As the amount
of noise increases, it can cause a blurring effect. The
presence of various unrelated edges can potentially hinder

the accurate recognition of key-points. Multiscale descriptors
play a pivotal role in maintaining consistent and reliable
performance, particularly when faced with elevated levels
of noise in an image. Their adaptability across different
scales allows them to effectively capture both fine and
coarse details, ensuring a robust feature extraction process.
This multiscale nature contributes to the stability of the
output by enabling the descriptor to focus on relevant
information and discriminate between signal and noise. The
integration of local and global context information, coupled
with multiresolution analysis techniques, further enhances
the descriptor’s ability to provide a comprehensive and stable
representation, making it well-suited for scenarios where
noise may impact traditional descriptors.

The outcomes for varying degrees of additive noise are
presented in Table (4). The table clearly demonstrates a
decline in the F1 as the level of noise in the images increases.
The occurrence of this phenomenon can be attributed to
the limited number of key-points present in the image,
which subsequently impacts the accurate identification and
localization of the manipulated region. However, despite the
presence of increased amounts of noise, we managed to
successfully identify themanipulated parts within the images.

The Multiscale Detector can identify and accurately locate
instances of manipulation in compressed as well as noisy
images by doing a comparative analysis of the unique
characteristics present in the original and modified image
regions. In Figure 6, a comparative graph illustrates the
results of the proposed method for JPEG compression,
alongside existing approaches such as Zhu et al. [26],
Bi and Pun [39], Li and Zhou [40], and Diwan et al. [21].
The results of the proposed approach showcase superior
performance when compared to recent published works. Key-
point analysis plays a crucial role in detecting copy-move
manipulation, particularly in the presence of post-processing
attacks like JPEG compression and Additive noise. The
graph visually emphasizes the effectiveness of the proposed
method, highlighting its competitive edge over other state-of-
the-art techniques.

3) ADDITIONAL PROCESSING
The concealment of copy-movemanipulation can be achieved
by the utilization of diverse post-processing techniques
that manipulate the pixel-level characteristics of an image,
effectively obscuring any discernible evidence of the manip-
ulation. Various processes encompass contrast modification,
color reduction, brightness alteration, and blurring. An exam-
ple of this phenomenon is that when the brightness of the
manipulated image is heightened, it diminishes the contrast
value and thus increases the occurrence of false negatives.
As a result, the recall rate and overall accuracy of detection
(F1) are reduced. In contrast, the process of color reduction
entails decreasing the intensity level across all color channels,
causing multiple hues to be represented by identical values.
This, in turn, amplifies the prominence of edges and has a
consequential impact on the accuracy of detection.
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TABLE 6. Comparative analysis of manipulation detection for images
under different levels of scale change for CMFD dataset, alongside
CenSurE key-point based approach [21].

The efficacy of our suggested approach, which is based on
a Multiscale Detector, lies in its ability to accurately identify
and pinpoint instances of manipulation within images that
have undergone diverse post-processing procedures. Experi-
ments were done on several post-processing techniques using
the CoMoFoD dataset. The data indicate that our approach
consistently detects and precisely determines the location
of manipulation, regardless of the degree of post-processing
used, ranging from mild (level 1) to severe (level 3).
The outcomes of additional post-processing are depicted
in Figure (8). The Multiscale Detector detector employs a
clustering technique to preserve similarity across key-points,
while also effectively capturing local image information
using a Multiscale Detector.

C. DETECTION OF MANIPULATED IMAGES WITH
GEOMETRICAL TRANSFORMATIONS
The task of identifying image manipulation becomes
increasingly complex when the replicated portion undergoes
geometric alterations before its relocation. In instances of
this nature, the relationship between the copy and move
parts undergoes substantial modification, particularly when
the extent of rotation and scale is considerable. The task
of extracting similar features from the parts that have
gone through substantial geometric modifications poses
greater challenges compared to circumstances when the
transformations are minimal.

The task of identifying instances of copy-move manip-
ulations in images that have gone through geometric
transformations poses a significant challenge because of
the lack of invariance of some image features to rotation
and scaling. To tackle this issue, we employed the Mul-
tiscale Detector key-point detector, a reliable method for
obtaining consistent image key-points that exhibit resilience
against rotation and scaling. The utilization of homography
adaption in the Multiscale Detector algorithm proves to be
advantageous within the domain of copy-move manipulation
detection inside geometrically altered images. This technique
facilitates the identification and alignment of key-points,
enabling the identification and matching of these key-
points, especially in cases where the manipulated region
has experienced various geometrical transformations, such as
rotation, scaling, or a combination of transformations.

When a manipulated part of an image experiences a
homographic transformation, the corresponding key-points
in the original and manipulated regions will not exhibit
direct correspondence. Nevertheless, through the process of
calculating the homography matrix across the two parts of the
image, it becomes possible to transfer the key-points from the
original part to the corresponding coordinates in the manipu-
lated part of the image. Consequently, these key-points can
then be matched with the key-points that were discovered
in the manipulated region. The proposed method enables the
identification of copy-move manipulation in images that have
been subjected to homographic transformations.

The process of homography adaption in a Multiscale
Detector entails the estimation of the homography matrix
between the key-points found in both the original and
manipulated parts. This estimation is achieved through the
use of the RANSAC algorithm. The homography matrix can
subsequently be employed to convert the key-points inside
the initial region into the corresponding coordinates within
the manipulated part, hence facilitating the establishment of
correspondence between the two regions.

The repeatability of the Multiscale Detector is a beneficial
characteristic when it comes to the identification of image
manipulation including rotation. The geometrical invariance,
in conjunction with transformation computation, enables
the detection of manipulations even in cases where the
copy-move part experiences a change in scale, either from
tiny to big or from big to tiny. In the proposed approach,
the advantages of the Multiscale Detector was exploited by
utilizing its feature extraction capabilities. This enables us
to preserve correspondence across copy-move images, even
when they undergo rotations of varying magnitudes.

The proposed methodology has demonstrated a notable
enhancement in the detection precision for rotation in
comparison to the key-point-based approach previously
discussed by Diwan et al. [21]. The method demonstrates
notable efficacy in identifying instances of manipulation that
include substantial angle rotations, specifically those of 20◦,
40◦, 60◦, and 180◦. The findings of the proposed study exhibit
steady performance across several small angles of rotation,
specifically 2◦, 4◦, 6◦, 8◦, and 10◦. Figure (9) presents a
collection of images exhibiting varying rotation angles.

The Table (6), displays the outcomes of detecting and
localizing copy-move manipulated images that have under-
gone scale changes. Various datasets contain manipulated
images that incorporate both rotation and scaling techniques.
Our approach effectively identifies and localizes instances of
manipulations in various types of attacks. The combination of
rotation and scaling is exemplified by the images presented in
Figure (10).

D. LIMITATIONS AND FUTURE SCOPE
Processing multiscale information may be more computa-
tionally complex than single-scale methods, which could be
problematic in situations when resources are restricted or
in real-time applications. Additionally, small-scale changes
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FIGURE 8. Copy-move manipulation detection results for images with additional post-processing, e.g., Brightness change (BC),
Colour reduction (CR), Contrast adjustment (CA), and blur for the CoMoFoD dataset.

FIGURE 9. Results of manipulation detection for images subjected to angle rotation from left to right, the images include
the original, manipulated, ground truth, and detected images.

may be difficult for multiscale detectors to precisely detect,
especially in instances where the copied region is heavily
transformed.

Multiscale copy-move detection methods are expected to
evolve in the future to better handle emerging challenges
in digital image forensics other than copy-move tampering.
One approach to enhance feature representation and detection
accuracy across various dimensions is to utilize advanced
deep learning architectures like graph neural networks or
attention mechanisms. Additionally, research may focus on

creating adaptive multiscale techniques that can automati-
cally adjust scale selection based on image characteristics
and types of manipulation. Another approach to detecting
sophisticated copy-move tampering could involve exploring
new methods for handling complex transformations, such
as non-rigid deformations or content-aware manipulations.
Additionally, combining multiscale detectors with forensic
techniques like image hashing or content-based retrieval
could lead to more comprehensive and efficient forgery
detection systems.
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FIGURE 10. Results of copy-move tampering detection for images subjected to scale change and combined attacks, from left
to right, the images include the original, manipulated, ground truth, and detected images.

VIII. CONCLUSION
The Multiscale Detector architecture uses scale-space anal-
ysis, key-point localization, subpixel refinement, and neural
network-based descriptor learning. This combination detects
robust and unique key-points and extracts proper feature
descriptions. This approach helps the system acquire and
interpret local image structures and patterns, making it
ideal for copy-move modification detection. The proposed
copy-move fusion method, which is capable of being
trained from start to finish, utilizes the Multiscale Detector
key-point detector and descriptor’s positive attributes. This
approach finds and pinpoints digital imagine copy-move
manipulation. Data-driven algorithms update their learn-
ing process using training data to improve manipulation
detection.

The Multiscale Detector feature detection method demon-
strates exceptional performance in a variety of copy-move
manipulation scenarios, including simple copy-move
instances (both single and multiple), post-processed copy-
move cases involving JPEG compression and noise,
geometrically transformed copy-move instances involving

angle rotation and scale modification, and additional image
manipulations such as brightness modification, color reduc-
tion, contrast adjustment, and blur. The inherent robustness
of our methodology enables the efficient identification of
manipulated instances among a diverse array of copy-move-
manipulated images. In addition, our research emphasizes the
incorporation of images with diverse textures, encompassing
both smooth and coarse images with dense textures. This
deliberate strategy improves the adaptability of our detection
method, allowing it to detect a wide variety of manipulated
images.

Our proposed solution has been rigorously evaluated
on seven open-source datasets, and the results confirm its
superior performance compared to prior image manipulation
detection methods. In addition, the algorithm’s capacity for
efficient data analysis makes it well-suited for applications
requiring rapid detection of manipulations. In general,
our methodology produces consistent and reliable results
when applied to various categories of image manipulations,
highlighting its efficacy and adaptability in identifying copy-
move manipulations.
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