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ABSTRACT In software maintenance, concise summaries of bug reports are crucial, significantly enhancing
developer efficiency and ultimately improving software quality and user experience. Large language
models (LLMs) have become the standard method for bug report summarization due to their powerful
representation capabilities. However, LLM-based approaches face two primary challenges: accurately
modeling the contextual relationships between various components within a bug report and the risk of
overfitting when fine-tuning LLMs on datasets of limited size. To address these challenges, we propose a
novel approach, SumLLaMA, which leverages contrastive learning pre-training and parameter-efficient fine-
tuning. Contrastive learning pre-training is employed to construct contextual relations between components
in a single bug report, enabling SumLLaMA to learn sequence-level representations. For parameter-efficient
fine-tuning, we fine-tune a smaller adapter instead of the entire LLM, reducing the number of parameters
trained to about 1/1500 of the original model, effectively mitigating the risk of overfitting. To evaluate the
effectiveness of SumLLaMA, we compare it against five baseline models, including a state-of-the-art model,
on a publicly available dataset. The experimental results show that SumLLaMA outperforms all baselines
by up to 26.66, 17.10, and 24.01 points in ROUGE-1, ROUGE-2, and ROUGE-L metrics, respectively,
achieving a state-of-the-art result for automated bug report summarization.

INDEX TERMS Bug report summarization, efficient fine-tuning, software maintenance, contrastive
representation.

I. INTRODUCTION
Automated bug report summarization is crucial in the soft-
ware maintenance lifecycle, especially with the increasing
number of bug reports submitted to tracking systems [1].
Concise summaries of bug reports can quickly help devel-
opers assess the priority and severity of a bug [2], which
improves the efficiency of bug assignment and fixing, further
boosting the quality of software products and enhancing
user experience. With the powerful learning capabilities
of neural networks, deep learning techniques [3] have
become the mainstream solution for automated bug report
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summarization. These approaches [4], [5] typically rely on
the Sequence-to-Sequence framework [6] and utilize different
neural network architectures to summarize bug reports in
an encoder-decoder manner. The encoder transforms the
bug report sequence into a semantic vector, from which the
decoder generates the summary. However, these approaches
often struggle to capture deep semantic features from the
input due to the complexity of bug reports and the limitations
of shallow network architectures.

Large language models (LLMs) [7], [8], currently one
of the most effective deep learning techniques, are able to
learn deep contextual representation due to their architecture,
which stacks attention networks. Fang et al. [2] propose
RTA, the first LLM pre-trained on their collected bug report
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corpus, which can be applied to various bug report-related
tasks through fine-tuning. As a result, their fine-tuned RTA
on the task-specific dataset achieves state-of-the-art results
in the task of bug report summarization. To further improve
the learning ability of LLMs, Shao and Xiang [9] propose
KSCLP and perform Knowledge-Specific pre-training for
LLM, which helps their model to learn domain-specific
representation, improving the performance on the bug report
summarization task.

Although LLM-based approaches are effective, they still
face two primary limitations that compromise summarization
quality in the context of bug reports. First, unlike the
continuous code input in tasks like code search [10],
clone code detection [11], program repair [12], and code
optimization [13], bug reports comprise multiple distinct
components. Consequently, a bug report sequence contains
multiple sub-sequences derived from these components.
However, current LLM-based approaches overlook the
contextual relationship between these components, i.e., the
semantic interaction between different sub-sequences. This
oversight negatively impacts the summarization quality
of bug reports. Second, in contrast to natural language
processing (NLP) tasks such as machine translation, which
have many large-scale publicly available datasets, the dataset
scale for bug report summarization is relatively limited. As a
result, LLMs may struggle to achieve full training on small-
scale datasets, leading to a heightened risk of overfitting.
Ultimately, this can significantly impair their ability to
generalize to new datasets.

To tackle the challenges outlined above, we introduce a
new approach based on LLMs for automated summarization
of bug reports, which we refer to as SumLLaMA. This
approach leverages the capabilities of LLMs combined with
a custom pre-training objective and efficient fine-tuning
strategies. For the first challenge, we propose a novel
pre-training method for SumLLaMA using contrastive learn-
ing. Specifically, we generate multiple positive samples from
a given bug report by masking different components. The
pre-training objective is designed to enable the model to dis-
tinguish these positive samples from negative ones, thereby
enhancing the semantic understanding of the relationships
between various components of the bug report and finally
achieving sequence-level contextual representation learning.
To address the second challenge, we opt to fine-tune only
a subset of the LLM’s parameters by low-ranking adaption.
We introduce a summarization adapter, which comprises
only about 1/1500 of the original LLM’s parameters. This
approach is feasible due to the adequacy of the current
dataset for fine-tuning such a small neural architecture for
bug report summarization, allowing us to minimize the risk
of overfitting while improving the generalization capabilities
of SumLLaMA.

To evaluate the effectiveness of SumLLaMA, we care-
fully select four state-of-the-art baseline approaches: Deep-
Sum [4], BugSum [5], PRHAN [14], and Transformer [15].
We then conduct extensive comparative experiments on an

open-source dataset released by Fang et al. [2]. Following
previous work, we divide the dataset into training, validation,
and testing sets. We train our model using the training
set and assess its performance on both the validation and
testing sets. The experimental results reveal that SumLLaMA
outperforms all baseline approaches in terms of ROUGE-1,
ROUGE-2, and ROUGE-L scores, with improvements rang-
ing from 2.93 to 24.01 points. This significant enhancement
demonstrates the effectiveness of SumLLaMA. To further
validate SumLLaMA’s capabilities, we compare it with three
open LLMs (i.e., BERT, RoBERT, and CodeBERT) [16],
[17], [18] and two LLM-based bug report summarization
approaches (i.e., KSCLP and RTA). The experimental results
show that SumLLaMA consistently outperforms all these
baseline approaches by at least 2.93 points on all metrics,
indicating its superior summarization ability.

In this paper, we make the following contributions,
• We introduce SumLLaMA, a novel approach based
on large language models (LLMs) for automated
bug report summarization. To enhance summarization
quality, we devise a customized pre-training objective
that accounts for the distinctive characteristics of
bug reports. Furthermore, we develop an effective
fine-tuning strategy tomitigate the risk of overfitting due
to the dataset’s limited size.

• We present a series of experiments to verify the
effectiveness of SumLLaMA. The experimental results
demonstrate that SumLLaMA performs better than all
baseline approaches.

• To further substantiate the effectiveness and efficiency
of SumLLaMA, we compare it with three open-source
LLMs and two LLM-based bug report summarization
methods. The results support the superior summariza-
tion capabilities of our approach.

The remainder of this paper is organized as fol-
lows. Section II elaborates on the background knowledge,
and Section III presents the construction of SumLLaMA.
Section IV and Section V describe the experimental setups
and results, respectively. Section VII discusses the threats to
validity. Finally, we conclude this paper and point out the
future work in Section VIII.

II. BACKGROUND
A. BUG REPORTS
Figure 1 presents a bug report from the Eclipse project,1

retrieved from the Bugzilla platform. Bug reports typically
comprise several components, such asDescription, Summary,
Component, Version, Assignee, Comment, among others.
Each component serves a distinct function, contributing vital
information for developers in resolving bugs. For example,
the Description component provides comprehensive details
about the bug, including its symptoms, effects, and impact
on software performance. The Summary component offers
a succinct overview of the problem, enabling developers to

1https://bugs.eclipse.org/bugs/
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FIGURE 1. An example of bug report with id 582758 in Eclipse
platform [9].

quickly ascertain the nature of the bug. The Component
element identifies the specific module or segment of the
software application affected by the bug, while the Version
element indicates the software application’s version in which
the bug was found. According to previous work [1], [2],
we consider five components (‘‘Summary’’, ‘‘Product’’,
‘‘Component’’, ‘‘Description’’, ‘‘Importance’’) in the pre-
training stage. This approach helps to fully establish the
contextual relationship between different components. In the
fine-tuning stage, we remove the ‘‘Summary’’ component
from the input to train the model to generate it based on the
remaining four components.

B. LARGE LANGUAGE MODEL
Large language models (LLMs) [7], [19], developed through
unsupervised pre-training on large-scale corpora, have shown
remarkable capability in learning universal data represen-
tations, leading to their proficiency in a wide array of
NLP tasks, including sentiment analysis [20], text summa-
rization [21], and machine translation [22]. This attribute
has spurred the adaptation of LLMs for various software
engineering tasks, such as code search [23], clone code
detection [11], code summarization [24], code optimiza-
tion [13], and program repair [25]. By leveraging their
powerful representation learning capabilities, these models,
pre-trained on massive software engineering datasets like
source code from GitHub and subsequently fine-tuned for
specific tasks, have achieved state-of-the-art results in various
software engineering tasks, demonstrating the versatility and
effectiveness of LLMs in both natural language and software
engineering domains.

C. PARAMETER-EFFICIENT FINE-TUNING
As the scale of LLMs continuously increases [7], they
exhibit increasingly powerful capabilities in various tasks.
However, the large scale of LLMs also makes it difficult to
fine-tune for specific tasks due to the high computational
resource requirements. For example, recent work reported
that fine-tuning the LLaMA-7Bmodel [7] with all parameters
requires more than 100GB peak GPU memory when the
batch size is set to the smallest value. Consequently,
although modern LLMs are powerful, fine-tuning them on
task-specific datasets is a significant challenge. Parameter-
efficient fine-tuning methods, such as Low-Rank Adaptation
(LoRA) [26], can fine-tune parts of the parameters of
LLMs. Specifically, LoRA fine-tunes low-rank matrices, i.e.,
an adapter, rather than the parameters in LLMs. In this
way, LoRA can fine-tune 1/1500 of LLMs’ parameters
without affecting the fine-tuning performance. In our work,
considering that fine-tuning the full parameters of LLMs on
the current dataset of bug report summarization might lead
to a serious overfitting risk, we propose applying LoRA,
a parameter-efficient fine-tuning method, to the task of bug
report summarization. There are two advantages: 1) Training
a few parameters can effectively alleviate the overfitting risk.
2) It is possible to train LLMs on the limited GPU resources.

D. RELATED WORK
Early approaches for bug report summarization relied heavily
on information retrieval techniques. Rastkar et al. [27] and
Jiang et al. [28] employed classifiers to select relevant
sentences from bug reports, with their effectiveness largely
dependent on the quality of the training corpus [29].
Arya et al. [30] proposed amethod for categorizing comments
based on their content, enabling users to choose sentences
that satisfy their specific needs. Radev et al. [31] introduced
a novel approach that compresses sentences into vectors by
using TF-IDF values and selecting sentences similar to the
centroid of all sentence vectors. Further, Zhu et al. [32] and
Mei et al. [33] explored sentence selection based on reference
relations, withMani et al. [34] refining this technique through
a noise removal strategy.

As deep learning techniques have become increasingly
powerful, Li et al. [4] propose the first deep learning-based
approach for bug report summarization, which aims to
minimize the inclusion of controversial sentences in sum-
maries through neural networks. Subsequently, Fang et al. [2]
introduce the first generative approach to generate summaries
for bug reports using a sequence-to-sequence method.
Specifically, they first pre-train an LLM on their collected
data to learn domain-specific representations, and then
further fine-tune the model for bug report summarization
in a supervised way. Shao and Xiang [9] propose KSCLP,
an approach that improves LLM-based summarization by
incorporating knowledge-specific and contrastive learning
pre-training. They designed two novel pre-training objectives
to enable the model to learn the inner knowledge of bug
reports in the pre-training stage.
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Unlike the approaches mentioned earlier, SumLLaMA is
designed with two distinctive considerations: Firstly, bug
reports consist of several distinct components, and establish-
ing the contextual relationship between these components
enhances the model’s ability to learn sequence-level repre-
sentations. Secondly, acquiring a high-quality, large-scale,
task-specific dataset for fine-tuning LLMs for bug report
summarization is challenging, making parameter-efficient
fine-tuning more practical than full-parameter fine-tuning.

III. APPROACH
In this section, we elaborate on the pipelines of SumLLaMA
for summarizing bug reports, which is shown in Figure 2. The
pipeline is composed of three core components: contrastive
learning-based pre-training, parameter-efficient fine-tuning,
and finally, inference.

A. MODEL INTRODUCTION
Due to the significant performance of recent decoder-only
Large LLMs [7], [35], [36], we select CodeLLaMA [37]
as the foundational model for this work. CodeLLaMA,
distinguished by its pre-training on over 4TB of open-source
corpus (equivalent to 500B tokens after pre-processing and
tokenization), adopts the GPT-3 [38] model architecture.
It utilizes the Transformer decoder layer, with a notable
modification: the replacement of post-normalization with
pre-normalization. This adjustment enables CodeLLaMA to
normalize the input of each Transformer layer rather than
the output. In contrast to previous LLMs that employed
absolute positional embedding [16], [17], CodeLLaMA
introduces rotary positional embedding [39]. This relative
position embedding technique allows the model to learn
deep positional relations, enhancing its understanding of
context. The pre-training of CodeLLaMA involves the use
of an AdamW optimizer, coupled with a cosine learning
rate schedule, weight decay, gradient clipping, and warmup.
These strategies collectively contribute to themodel’s optimal
performance. Upon completion of pre-training, CodeLLaMA
demonstrates exceptional zero-shot learning capabilities,
outperforming all open-source LLMs and achieving com-
petitive results with OpenAI’s GPT-3.5 [37]. Moreover,
fine-tuned CodeLLaMA [12] achieves state-of-the-art results
on program repair, further underscoring its potential in
advancing the field of software engineering.

B. CONTRASTIVE LEARNING PRE-TRAINING
In Fig. 2, we first construct positive and negative samples for
contrastive learning pre-training. For samples in a mini-batch
of size n, each sample is considered a negative sample with
respect to the others, resulting in n − 1 negative samples
for each. The challenge then lies in constructing positive
samples for a given sample. Given that bug reports consist of
multiple distinct components, we construct positive samples
by masking different components and adopt the following
criteria for masking:

• For a given bug report, only one component is masked.
Therefore, for a bug report with m components, we can
generate m positive samples, effectively enlarging the
original dataset by a factor of m.

• We choose five components in bug reports to build
a corresponding sequence, including ‘‘Summary’’,
‘‘Product’’, ‘‘Component’’, ‘‘Description’’, and ‘‘Impor-
tance’’.

• When masking a component, if it is shorter than 15
1) With a 70
2) With a 15
3) For the remaining probability, the selected token is

replaced with a random token.
After these processing steps, we successfully construct

positive samples for each bug report. We then design a
Siamese network for contrastive learning pre-training. This
Siamese network consists of two CodeLLaMA models
with shared parameters. For a mini-batch denoted as B,
we construct positive samples for the bug reports within
it, resulting in a derived mini-batch B′. Subsequently, these
two mini-batches are fed into the CodeLLaMA models
in the Siamese network, obtaining the contextual vector
representations for each bug report. Finally, we use the
following contrastive learning objective to pre-train the
model:

ℓi = − log
esim(Bi,B′

i)/τ∑N
j=1 e

sim(Bi,B′
j)/τ

(1)

In the above equation, sim(·) represents the cosine similarity
function. The variables Bi and Bi′ denote the contextual
representations of the i-th bug report and its corresponding
positive sample, respectively, and τ refers to a temperature
parameter that mitigates the issue of gradient vanishing.
By adopting this contrastive learning objective, we encourage
the model to identify the positive sample derived from
the original bug report sequence. This training process has
two advantages: (1) By masking one component in each
positive sample, the model is encouraged to fully build the
contextual interaction between the masked component and
other components, and (2) upon completing the pre-training,
the model achieves a comprehensive understanding of the
contextual interaction among all components, facilitating the
learning of sequence-level contextual representation for bug
reports.

Table 1 provides a comprehensive overview of the
pre-training parameters for SumLLaMA, a novel LLM-
based approach for automated bug report summarization.
Aligning with the configuration of CodeLLaMA [37],
we set the hyperparameters of SumLLaMA as follows:
32 layers, 32 attention heads, a word embedding dimension
of 4096, an attention head size of 256, and an intermediate
representation size of 11008. For optimization, we employ
the AdamW optimizer [40] with a learning rate of 1 × 10−4,
and decay rates for the first and second moments (β1 and β2)
set to 0.9 and 0.95, respectively. We also implement a cosine
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FIGURE 2. The pipeline of SumLLaMA.

decay strategy for the learning rate with a warmup step of
8000. The batch size is 32, and the maximum sequence length

for the bug reports is 300 tokens. SumLLaMA undergoes
a pre-training regime spanning 10 epochs, leveraging the
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TABLE 1. Statistics of parameters used in the pretraining stage.

initial weight configuration from CodeLLaMA. Instead of
pre-training all parameters of SumLLaMA, we utilize LoRA
to perform parameter-efficient pre-training.

C. PARAMETER-EFFICIENT FINE-TUNING OF SUMLLAMA
After completing the contrastive learning pre-training,
we apply the pre-trained SumLLaMA to bug report sum-
marization through supervised fine-tuning. In this phase,
we construct the input by omitting the ‘‘Summary’’ com-
ponent from the bug report used in the pre-training stage.
The model is then fine-tuned to generate summarizations
in an auto-regressive manner, which involves predicting
each token sequentially based on the preceding context.
Specifically, for a given bug report sequence of tokens X =

x1, x2, . . . , xn−1, the model aims to predict the probability of
the next summarization token xn. The probability of the next
token, given the preceding tokens, is computed as follows:

Lsummary =

N∑
n=1

logP(xn|x<n; θ ), (2)

where Lsummary is the loss function for summarization, N
is the total number of tokens in the sequence, x< n denotes
the sequence of tokens before position n, and θ represents the
parameters of the model. P(xn|x<n; θ ) is the probability of the
token xn given the context x<n, as predicted by the model with
parameters θ . During fine-tuning, the model’s parameters θ

are updated tomaximize the likelihood of correctly predicting
the next token in a large corpus of text. This objective enables
the model to learn domain-specific representations tailored
to the task of bug report summarization.

Due to the large scale of CodeLLaMA (a language
model for code) and the limited dataset available for bug
report summarization, we employ Low-Rank Adaptation
(LoRA) to perform parameter-efficient fine-tuning. Instead
of fine-tuning all the parameters, SumLLaMA focuses on
fine-tuning a low-rank adapter, specifically a summariza-
tion adapter, which contains approximately 1/1500 of the
CodeLLaMA parameters. The core concept of LoRA is to

approximate updates to theweightmatrices in the transformer
layers (such as the attention and feed-forward layers) using
low-rank matrices. More specifically, for a weight matrix
W ∈ Rd×d in a transformer layer, the update is approximated
as follows:

1W = UV T , (3)

where U ∈ Rd×r and V ∈ Rd×r are low-rank matrices, and
r ≪ d is the rank of the low-rank approximation. The rank
r is a hyperparameter that controls the number of trainable
parameters. During fine-tuning, only the parameters inU and
V are updated, while the original weight matrix W remains
fixed. The updated weight matrixW ′ used in the forward pass
is then given by:

W ′
= W + α1W = W + αUV T , (4)

where α is a scaling factor that controls the magnitude of the
update.
Training Details: For the fine-tuning of SumLLaMA,

we configured the settings as follows: a batch size of 16,
a learning rate of 5 × 10−4 with cosine decay, a training
epoch of 2, and a maximum output length of 30. For LoRA,
we set the rank to 8, α to 16, and the dropout rate to 0.05.
Additionally, we connected the adaptation matrices to qproj
and vproj in each Transformer decoder layer.

D. INFERENCE
Figure 2 illustrates the inference process after fine-tuning.
For each new bug report in the test set, we input it into the
fine-tuned SumLLaMA. The summarization adapter within
SumLLaMA then processes this input, converting it into a
semantic vector representation. This representation serves as
the basis for generating the summary, which is constructed
token by token. Following the approach of Hu et al. [24],
we employ a beam search decoding strategy to produce
the summary. Specifically, we set the beam size to 10.
This means that for each bug report, SumLLaMA generates
10 candidate summaries, allowing for a diverse set of
potential summarizations to be considered before selecting
the most appropriate one.

IV. EXPERIMENTAL SETUPS
In this section, we present the experimental setup, which
includes the research questions we aim to investigate, the
dataset and baseline models for comparison, the evaluation
metrics, and the details of the experimental environment,
such as the configurations and tools used to conduct the
experiments.

A. RESEARCH QUESTIONS
Our work focuses on the following three research questions
(RQ):

• RQ1: How effective is SumLLaMA when compared
with the baseline approaches?

• RQ2: How effective is SumLLaMA when compared
with LLM-based approaches?
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TABLE 2. The statistics of the original bug report corpus.

TABLE 3. The dataset used for experiments.

• RQ3: How do our proposed strategies contribute to the
quality of bug report summarization?

The research goal of RQ1 is to evaluate the SumLLaMA’s
effectiveness in summarizing bug reports, thus we compare
it with state-of-the-art approaches for this task. By per-
formance comparison, we aim to verify that our proposed
pre-training and fine-tuning strategies could help LLMs
build task-specific representations for the task of bug report
summarization. Since SumLLaMA is constructed based on
LLMs, the research goal of RQ2 is to determine whether
our approach surpasses other LLM-based approaches, such
as BERT [16], CodeBERT [18], RTA [2], and KSCLP [9].
By comparing the performance of each model, we aim to
further verify that SumLLaMA could learn more effective
task-specific representations for the task of bug report
summarization. Furthermore, the research goal of RQ3 is to
verify the effectiveness of our proposed pre-training and fine-
tuning strategies. Consequently, we design the corresponding
ablation experiment to evaluate the contribution of per
proposed method.

B. DATASET AND BASELINES
1) DATASET
Our study employs the public bug report corpus curated
by Fang et al. [2], which encompasses over 270,000 bug
reports from four renowned projects on BugZilla: Mozilla,
Eclipse, Netbeans, and the GNUCompiler Collection (GCC).
A comprehensive breakdown of the dataset, including the
distribution of reports across projects and their average
length, is presented in Table 2. The corpus is partitioned
into three subsets: 80% of the reports form the training
set, 10% constitute the validation set, and the remaining
10% are allocated to the testing set. The training set is
utilized for initial model pre-training, subsequent fine-tuning,
and training baseline methods. Performance evaluation of
these baselines is conducted on the validation and testing
sets. In the pre-training stage, we utilize five components,
i.e., ‘‘Summary’’, ‘‘Product’’, ‘‘Component’’, ‘‘Description’’,
and ‘‘Importance’’, to build the input sequence. As for the

fine-tuning stage, we build the input sequence by removing
the ‘‘Summary component’’, and then we fine-tune the model
to generate corresponding summarization.

2) BASELINE SELECTION FOR RQ1
To achieve the research goal of RQ1, we select four state-of-
the-art approaches to verify the SumLLaMA’s effectiveness,
which is the same as the previous work [9]. The details of
these baselines are shown as follows,

• DeepSum [4]: It is the first approach to utilize neural
networks, i.e., word2vec [41], for the task of bug report
summarization.

• BugSum [5]: This approach further improves the
performance ofDeepSum by connecting word2vec with
Bi-directional gated recurrent unit.

• PRHAN [14]: It is constructed by stacking hybrid
attention networks that can learn global and local context
relations of the bug report sequence.

• Transformer [15]: It is built by stacking self-attention
networks and its effectiveness is verified by various
generative tasks.

By comparing SumLLaMA against these state-of-the-art
baseline approaches, we could perform an overall evaluation
of the effectiveness of SumLLaMA.
Baselines in RQ2 In RQ2, we select five effective LLMs
to further evaluate the effectiveness of SumLLaMA on the
task of bug report summarization. The first three models
are general LLMs, i.e., BERT [16], RoBERTa [17], and
CodeBERT [18]. To apply them for bug report summariza-
tion, we fine-tune them on our built datasets. Moreover,
we also choose two LLM-based approaches for bug report
summarization, i.e., RTA and KSCLP, both of which
achieve state-of-the-art results on the task of bug report
summarization. For RTA, we fine-tune it for bug report
summarization, and for KSCLP, we directly evaluate it on the
testing set since it is already fine-tuned for the task of bug
report summarization.

C. EVALUATION METRICS
Building on previous studies [2], [4], we employ composite
BLEU (c.B.) and ROUGE-L (R.L) as metrics to evaluate
model performance, commonly used in tasks like code
summarization [24], machine translation [6], and code
translation [42].

The BLEU score is defined as:

BLEU = BP · exp

(
N∑
n=1

wn log(pn)

)
, (5)

where BP is a brevity penalty, wn =
1
N is the weight for each

n-gram, and pn is the geometric mean of modified n-gram
precision. Following [24], we set N = 4. The BLEU score
ranges from 0 to 100, with higher scores indicating better
accuracy.
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TABLE 4. The performance comparison between SumLLaMA against
baseline approaches.

For ROUGE-N evaluation, the F1 score is:

F1ROUGE-N =
2 × RROUGE-N × PROUGE-N
RROUGE-N + PROUGE-N

, (6)

with recall RROUGE-N and precision PROUGE-N defined as:

RROUGE-N =

∑
(gen,ref )∈S

∑
gramn∈ref Cntgen(gramn)∑

(gen,ref )∈S
∑

gramn∈ref Cntref (gramn)
, (7)

PROUGE-N =

∑
(gen,ref )∈S

∑
gramn∈ref Cntgen(gramn)∑

(gen,ref )∈S
∑

gramn∈gen Cntgen(gramn)
, (8)

where gen and ref are the model-generated summary and
ground truth, respectively, and S is the test set. The ROUGE
score, like BLEU, ranges from 0 to 100, with higher values
indicating better summarization.

D. EXPERIMENTAL ENVIRONMENT
In this study, all experiments were conducted on a deep learn-
ing server equipped with four NVIDIA Tesla A100 GPUs,
each with 40GB of memory. The implementation of
SumLLaMA and its training utilized a suite of Python
packages, including PyTorch version 2.0.1, transformers
version 4.33.2 [43], and datasets version 2.14.5. For the
second research question (RQ2), we used publicly available
LLMs sourced from the Transformers Hub.2 These models
are then fine-tuned for bug report summarization on the
training set.

V. EVALUATION
A. ANSWER TO RQ1: EFFECTIVENESS COMPARISON
Table 4 presents the experimental results and performance
comparison between SumLLaMA and state-of-the-art base-
line approaches. We employ four metrics for evaluation:
ROUGE-1 (R.1), ROUGE-2 (R.2), ROUGE-L (R.L), and
Composite BLEU (c.B.), as detailed in the table. The
findings indicate that SumLLaMA significantly outperforms
the baseline models across all metrics. Specifically, SumL-
LaMA surpasses the best baseline model, the Transformer,
by at least 9.05 points in terms of Composite BLEU.
Among the baseline approaches, DeepSum exhibits the worst
performance. This is because it is built by solely utilizing
a simple word embedding layer. In contrast, other baseline
approaches demonstrate enhanced performance, highlighting
the effectiveness of advanced neural network architectures

2https://huggingface.co/models

TABLE 5. The performance comparison between SumLLaMA and
LLM-based approaches on bug report summarization.

such as Bi-GRU, hybrid attention networks, and self-attention
networks.

Unlike conventional approaches that utilize shallow
neural architectures, SumLLaMA employs a Large Lan-
guage Model (LLM)-based approach. LLMs are typically
constructed by stacking multiple layers of Transformer
encoders and decoders, resulting in a deep and power-
ful architecture. To further enhance the performance of
SumLLaMA, we implement improvements in both the
pre-training and fine-tuning stages. In the pre-training
phase, we enhance SumLLaMA’s capability to construct
representations by incorporating contrastive learning. This
technique strengthens the contextual interaction between
components extracted from bug reports, leading to more
effective sequence-level modeling. During the transition to
the fine-tuning phase, we adopt parameter-efficient training
by integrating Low-Rank Adaptation (LoRA). This approach
requires training only a small subset of parameters, enabling
comprehensive training on datasets of limited size. Com-
pared to the traditional full-parameter fine-tuning of LLMs,
SumLLaMA exhibits superior generalization capabilities.
Ultimately, the integration of these two training strategies
enables SumLLaMA to achieve state-of-the-art performance
in the task of bug report summarization, setting a new
benchmark in the field.

B. ANSWER TO RQ2: EFFECTIVENESS COMPARISON
AGAINST LLMS
Table 5 presents experimental results and performance
comparison of SumLLaMA against general LLMs and
LLM-based bug report summarization approaches. Aligning
with RQ1, we utilize four performance metrics to measure
these models, including ROUGE-1 (R.1), ROUGE-2 (R.2),
ROUGE-L (R.L), and Composite BLEU (c.B.).

Upon analyzing the experimental results in Table 5,
it becomes evident that LLM-based approaches outperform
all general LLMs. This superior performance is attributed to
the additional pre-training on bug report corpora, enabling
the model to learn domain-specific representations. More-
over, KSCLP incorporates knowledge-specific pre-training to
grasp the inner knowledge of bug reports, thus surpassing
the fine-tuned RTA. Despite the high performance of
these approaches, SumLLaMA still significantly outperforms
them, with a margin ranging from 2.93 to 3.13 points.
This improvement is due to our two proposed methods
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TABLE 6. The impact of our proposed methods on the performance of
SumLLaMA. PEFT and CLP denote parameter-efficient fine-tuning and
contrastive learning pre-training.

that enhance LLMs in both the pre-training and fine-
tuning phases. During pre-training, we establish inner
semantic relations among different bug report components
by designing a task-specific contrastive learning objective.
In the fine-tuning stage, we employ parameter-efficient fine-
tuning to thoroughly train core parameters for bug report
summarization. Although CodeLLaMA-7B is much larger
than the LLMs used in previous bug report summarization
models, our trainable parameters are approximately 1/25
of theirs. Consequently, with the limited scale of the
bug report corpus, SumLLaMA receives adequate training
and effectively avoids the risk of overfitting. Owing to
these advanced methodologies, SumLLaMA outperforms all
LLM-based approaches and further enhances the quality of
automated bug report summarization.

C. ANSWER TO RQ3: THE EFFECT OF DIFFERENT
PRE-TRAINING OBJECTIVES
Table 6 presents an ablation study through a comprehen-
sive comparison of our proposed two training methods.
We establish two primary comparative groups with dif-
ferent training strategies: fine-tuning SumLLaMA solely
with the parameter-efficient method and fine-tuning SumL-
LaMA with contrastive learning pre-training. Subsequently,
we compare these two derived versions against the orig-
inal SumLLaMA. The results in Table 6 unequivocally
demonstrate the necessity of performing domain-specific pre-
training for applying LLMs to a specific task. Specifically,
SumLLaMA, with our tailored contrastive learning pre-
training, can outperform the state-of-the-art KSCLP model.
More impressively, even when we directly fine-tune a small
subset of the parameters of SumLLaMA using the parameter-
efficient method, it still achieves results close to those of
RTA, despite the latter being pre-trained on a bug report
corpus. When we integrate these two methods, SumLLaMA
finally achieves state-of-the-art results and further improves
the quality of bug report summarization.

VI. DISCUSSION
SumLLaMAcan be utilized for various softwaremaintenance
activities associated with bug reports, extending beyond
merely summarizing them. Firstly, our method for training
a summarization adapter using an open-source dataset can
be customized to fit any specific development context or
company-specific dataset. Secondly, once a SumLLaMA
model is adequately trained, we envisage equipping devel-
opers with a maintenance assistant. This assistant would

provide pertinent information at various stages of software
maintenance. Although the integration of such a system is
more aligned with engineering practices and is beyond the
scientific purview of our study, it could prove beneficial for
companies adopting a SumLLaMA-like approach.

VII. THREATS TO THE VALIDITY
In this study, we identify two potential threats to the
validity of our research. The first threat concerns the optimal
configuration of hyperparameters for our chosen parameter-
efficient method, namely LoRA. To mitigate this issue,
we adopt the same settings as used in previous work, where
it was demonstrated that these settings enable the model
to achieve state-of-the-art results in a specific task. This
selection effectively addresses the threat of internal validity
to our research.

The external validity, or generalizability, of our study is a
concern due to the exclusive use of data from the Bugzilla
platform for SumLLaMA. When applied to bug reports from
other platforms, SumLLaMA may encounter generalization
issues. However, we propose two methods to mitigate this
threat: parameter-efficient training and transfer learning [44].
Parameter-efficient training allows us to train a small subset
of the model’s parameters on a limited dataset, enhancing
its generalization capability. Additionally, transfer learning
enables us to fine-tune SumLLaMA on a user-customized
dataset, adapting its representation to the specific domain.

VIII. CONCLUSION
In this study, we introduce SumLLaMA, a novel LLM-
based approach for bug report summarization. Specifically,
we propose a novel contrastive learning objective for
SumLLaMA’s pre-training. This objective enables the model
to learn the contextual interactions between different compo-
nents extracted from bug reports, thereby building effective
sequence-level representations. Subsequently, we introduce
a parameter-efficient training method to fine-tune a small
subset of SumLLaMA’s parameters. This method allows for
full training of this parameter subset on a limited dataset
scale, enhancing the model’s generalization. To evaluate
SumLLaMA’s effectiveness, we conducted comprehensive
comparative experiments against traditional and LLM-based
approaches. Our results show that SumLLaMA significantly
outperforms all baseline approaches. In the future, we aim to
further explore how to efficiently and effectively apply LLMs
to automate various activities in software maintenance. Addi-
tionally, we will also explore how to apply the LLM-based
approach to real-world software maintenance.
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