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ABSTRACT The cardiovascular system is responsible for carrying the blood along with nutrition and
oxygen throughout the body. This system consists of heart, blood, and blood vessels. The experts, or doctors
called as cardiologists, analyze the sounds of heart’s (lub-dub) beat and flow of blood to diagnose Cardio
Vascular Disease (CVD) using a traditional stethoscope and phonological cardiogram technique. Through the
stethoscope, the cardiologist will listen to vibration produced by heart beat and heart beat sound and murmur
sound are popularly known as phonocardiogram (PCG) signals, which are being recorded for medical
diagnosis purposes using a stethoscope. The development of a technique for the automatic recognition of
HVD’s assists the experts in recognizing the CVD effectively in the initial stage itself from PCG signals.
There are many tools available to help doctors in a clinical setting for the accurate diagnose the CVD in
a less time. The main aim of this proposed work is to provide an Artificial Intelligence (AI) based PCG
signal analysis for the automatic and early detection of various cardiac conditions using supervised and
unsupervised Recurrent Neural Network (RNN) based Bidirectional Long Short-Term Memory (Bi-LSTM)
Machine Learning (ML) algorithm. Along with this algorithm, Generative Adversarial Networks (GAN’s)
is considered because they can create fresh, high-quality, pseudo-real data that resembles their training set
which has been demonstrated by using their two unique networks: Discriminator Network (DN) and the
Generator Network (GN). The proposed method is tested using heart sound signals from the well-known,
freely accessible PhysioNet and Kaggle datasets. The Experimental results are validated based accuracy,
precision, F1-score, sensitivity, and specificity.

INDEX TERMS RNN-Bi LSTM, multi decision GAN approach, recognition of cardiovascular disease,
feature optimization process.

1. INTRODUCTION abnormal heart rate, either too slow or too fast. Detecting
Heart arrhythmia, also known as heart valve disorder (HVD), HVD at an early stage can significantly reduce the mortality
refers to the irregular heartbeat or sound characterized by an rate associated with various cardiac failures, potentially by up
to one-third [1]. The prevalence of cardiovascular diseases

The associate editor coordinating the review of this manuscript and is alarmingly increasing worldwide, with projected costs of
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$1 trillion per year by 2030 [2]. In addition to irregular
heartbeat, morphological parameters such as shortness of
breath, dizziness, palpitations, fainting, and other symptoms
may indicate the presence of arrhythmias or HVD. While
not all arrhythmias or HVDs lead to mortality, certain
types, including atrial fibrillation, premature ventricular
contractions, and excessive supraventricular ectopic beats,
are associated with various cardiovascular diseases (CVDs)
such as stroke.

Cardiovascular disease (CVD) is a major global health
concern, causing approximately 17.9 million deaths annually
and accounting for 44% of all non-communicable disease-
related deaths, as highlighted by the World Health Organiza-
tion (WHO) [1]. Among the complications associated with
CVD, cardiovascular arrhythmias stand out, characterized
by abnormal electrical impulses in the myocardium, leading
to irregular heart rhythms. These arrhythmias contribute
significantly to the occurrence of cardiac arrests [2]. Hence,
the prompt and accurate identification of cardiac arrhythmias
becomes paramount in order to save lives and mitigate the
impact of these life-threatening conditions.

The heart’s rthythm is governed by an electrical impulse
generated by the sinoatrial node (SA node) located in the
right atrium. This electrical activity of the heart can be
detected by placing electrodes on the patient’s body surface
and recording the resulting electrical potential differences.
These measurements are visually represented and captured
in an electrocardiogram (ECG), providing valuable insights
into the heart’s electrical activity.

An electrocardiogram (ECG) is a widely used non-invasive
diagnostic tool that records the electrical activity of the heart
using a group of electrodes typically placed on the patient’s
skin. It is an effective method for detecting heart conditions,
including arrhythmias.
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FIGURE 1. A typical waveform of an ECG signal.

The ECG waveform consists of various components such
as the P wave, Q wave, R wave, S wave, T wave, and U
wave, which collectively form a normal ECG cycle. These
components are characterized by time-domain features like
amplitude, duration, interval, and segment [3], as illustrated
in Figure 1. The sequential depolarization of the atria and
ventricles generates distinct waveforms [4]. Abnormalities in
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the ventricles or atria can cause irregular ECG waveforms,
enabling the diagnosis of various cardiac arrhythmias such as
premature ventricular contraction (V), atrial premature beat
(A), and right bundle branch blocks (R). These deviations in
the ECG waveform are indicative of alterations in the origin
and propagation of electrical impulses in the heart, reflecting
the presence of cardiac arrhythmias.

The recognition of heart valve disorders (HVDs) from
phonocardiogram (PCG) signals, which capture the heart
sound, has gained popularity as a cost-effective and non-
invasive diagnostic approach. Digital stethoscopes equipped
with digital signal processing kits enable the acquisition and
interpretation of PCG recordings, aiding in the diagnosis and
treatment of valve-related disorders. In this study, our focus
is on the automatic recognition of various HVDs based on the
distinct lub-dub heart sound in the PCG signal.

A method for classifying HVDs based upon the formant
characteristics of PCG signals, whose acoustic properties
represent heart sounds. The conventional time frequency
domain statistical features can be extracted from PCG signals,
clearly showing big fluctuations specific to various HVDs.
The direct classification of HVDs is also done with PCG
signals using sequential networks. The spectrum of the PCG
signal shows distinct peaks comparable to the formant peaks
in voiced speech, especially in the voiced component of the
heart sound (lub-dub).

In a normal person, we can hear two prominent heart
sounds, S1 (lub) and S2 (dub), using a stethoscope. The first
heart sound (S1 or lub) occurs due to the closure of the mitral
and tricuspid valves, which follows ventricles contracting in
systole [3]. S2, or dub, is generated in diastole as the aortic
and pulmonic valves are closing. These include another softer
sound known as the S3, S4, murmur due to arterial turbulence
of blood flow, ejection click (EC) during systole, opening
snap/snaps (OS) in diastole and mid systolic snicks [4]. One
of the early means of diagnosis for diseases of the valvular
heart includes cardiac auscultation, which entails listening
to the heartbeat using a stethoscope. Therefore, the early
recognition of HVDs and cardiovascular diseases relies on
analyzing the first two formants of PCG signals, as these
capture the acoustic characteristics of the heart sound. The
main contributions of this work are:

> Our proposed work focuses on efficient feature extrac-
tion techniques to extract the magnitude, frequency, and
absolute value of PCG signals.

> We also employ a deep learning model to automatically
extract these parameters from the lub-dub sound.

> Furthermore, a hybrid neural network incorporating
Generative Adversarial Networks (GANSs) is utilized
for the classification of normal and abnormal cardiac
sounds.

> To address false-positive classifications and improve
accuracy, a hybrid RNN-based Bi-LSTM model is
proposed, which classifies abnormalities based on true-
positive signals.
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> The proposed algorithm is evaluated on PhysioNet and
kaggle datasets, and the results are validated using
an object-oriented approach where the morphological
parameters of heart sound are segmented into delta-
groups.

Il. RELATED WORK

Irregularity in heart beat is one of the chronic heart
conditions that affects older people the most persistently and
has a high morbidity and mortality rate, including stroke,
cardiac failure, and coronary artery disease. Automatic
detection and classification of arrhythmia heartbeats using
electrocardiogram (ECG) signals is important for cardiac
patients. So, to extract the desired or required features the
Hao Dang, et.al has developed a three-layer Convolutional
Neural Network, which consists of one-layer simple CNN
and two- layers are of multi-scale fusion CNN. The simple
CNN is a baseline network with manifold convolutional
layers and a straightforward CNN architecture that is used to
test the single dimension CNN’s capacity for processing ECG
signals. It is suggested that the MSF-CNN A will enhance
the plain-capacity CNNs for learning. In this proposed work,
the experimentation is conducted using normal beat (N),
supraventricular ectopic (S), ventricular ectopic (V), fusion
beat (F), and unknown beat (Q) types of signals which
are available publicly in MIT-BH database and in order to
evaluate the effectiveness of these models, six groups of
ablation experiments are also carried out [1].

ECGs form an essential diagnostic instrument that is
widely used by cardiologists when dealing with cardiac
disease and pathology. The cardiac electrical activity is
accumulated as a function of time, and subsequently analyzed
via ECGs, whereby relevant electronic signals are gathered
from various external electrodes attached on the skin. Cardiac
dysfunction and arrhythmias that often accompany such
disorders also increase the risk of sudden death. Hence, ECG
signal studies have raised widespread interest among both
the computer and biomedical circles. Due to variations in
time and amplitude, of ECG signal, BLSTM model which
is one form of common RNN architecture is employed
for analysis of time series. However, an ELM based on
local receptive fields (ELM-LRFs) is among the fastest
techniques employed in the segmentation and classification
of time series signals. DELM-LRF-BLSTM [2] is a faster
and accurate hybrid deep learning model for ECG signal
recognition proposed by FENGJUAN QIAO & Co. It yielded
very high levels of accuracy and sensitivity of about 99.32%
and 97.15%, respectively when applied to the MIT-BIH
Arrhythmia dataset. This ensures that the model is viable
and effective. Additionally, a one-time activation of heartbeat
detection takes about six and a half milliseconds. This
makes the provided algorithm a good practice since it attains
desirable high performance with minimal computation.

For instance, according to World Health Organization
(WHO) in their latest report, CADs have become the main
cause of unexpected deaths with nearly seventeen millions
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of it recorded across the world and 44 per cent of the
global non-communicable diseases related mortalities are
Many cardiac arrests stem from cardiac arrhythmias that
are associated with abnormal electrical pulse formation and
propagates in the myocardial tissues [1]. So, the accurate
analysis cardiac arrythmias reduces the mortality towards
this Huang, Y., Zhang, F., Wang, D., Guan, Y., Zhou, F,
Pan, Y., & Liu, W. Reference [5] proposed a novel ensemble
classification algorithm KSMAX for accurate detection of
cardiac ventricular and atrial the present study considers only
the wavelet decomposed ECG signal in four level with respect
to the morphological parameters are the morphological visual
representation associated with the QRS complexity and the
basic components of the third and the fourth stage. The
AAMI standard showed that this proposed method achieved
an overall accuracy of about 98.68% from which fifteen
different heartbeat waveforms were extracted from a public
MITDB. The classification accuracy for each of the six major
types is as follows: We obtained 98.75% for N, 99.77% for
R, 99.70% for L, 94.81% for A, 98.57% for V and 99.94%.
Tablel shows the summary of related work. The summary of
the related literature is discussed in table 1. After referring to
the literature from [1], [2], [3], [41, [5], [6], [7], [8], [9], [10],
(111, [12], [13], [14], [15], [16], [17], [18], [19], [20], [21],
[22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32],
[33], [34], [35], [361, [37], [38], [39], [40], [41], [42], [43],
and [44], the recognition of various irregularities of cardiac
is done based on ECG signals and few works related to PCG
signals [14], [16], [18] is done. Because of lack of PCG signal
analysis there is large research gap is identified in the field of
recognition of irregularities.

Ill. DESIGN AND IMPLEMENTATION OF PROPOSED
METHODOLOGY

A. AUSCULTATION ANALYSIS

The heart Auscultation contains two segments: sound acqui-
sition and analysis. For the acquisition of Heart sound
stethoscope is placed at the proper location on the chest of the
patient with a small amount force to listen the heart sound as
shown in the figure 2.

FIGURE 2. Stethoscope position on the chest of the patient.
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TABLE 1. Summary of related work.

Ref Types of Types of features Pathology Recognition rate Datasets used Methods

No. Classifiers

[6] CNN-LSTM Local characteristics of ECG SIGNAL Accuracy: 99.59% MIT-BIH: AF Accurate analysis of

Atrial Fibrillation (AF) Sensitivity:99.93% databases RR intervals and QRS
from ECG signals Specificity: 97.03% interval from ECG
sample

[7] Novel Morphological ECG SIGNAL Database is created . R-peak detection
Integration of parameters of heart beat using a wearable algorithm for
Open loop And from ECG signal using a device initial diagnosis
Closed-Loop wearable device. e Abnormality
Switch Modes Is - detection
Proposed . Classification

ECG signals in
cloud

[8] Optimized Cardiac arrhythmias- ECG SIGNAL Accuracy: 98.45% MIT-BIH arrhythmia Genetic algorithm-
Convolutional ECG based CNN
Neural Network
(CNN)

[9] A Deep Cardiac arrhythmias- ECG SIGNAL Accuracy: 95.81% MIT-BIH arrhythmia CNN-LSTM
Learning-Based ECG integrated with
Multi-Model RRHOS-LSTM
System

[10] | Multi-Layer ECG time-series ECG SIGNAL Accuracy: 95.21% MIT-BIH arrhythmia | Multi-objective
Perceptron database & particle swarm
(MLP), k- MIT-BIH optimization
Nearest Supraventricular (MOPSO)
Neighbor, arrthythmia
Support Vector
Machine,

Random Forest,
and Extra
Decision tree
[11] | Neural Network, | Amplitude, interval, and ECG SIGNAL Accuracies for: MIT-BIH
SVM, and KNN | duration- ECG e N:97.79%, arrhythmia
e 1:99.50%, database
e R:99.59%
® V:97.69%,
o A: 89.70%,
and
e P:99.92%

[12] | Convolutional Premature ventricular ECG SIGNAL Accuracy: 95.59% MIT-BIH database OTSU Method
Neural Network | contraction- ECG Sensitivity:97.93%

(CNN) Specificity: 98.03%

[13] | Dual Heartbeat SVEB or S beats and ECG SIGNAL sensitivity and MIT-BIH database
Coupling Based VEB- ECG positive predictive
on rate is increased by
Convolutional 12.2% and 11.9%

Neural Network

[14] | Ensembled Heart valve disorder PCG SIGNAL PhysioNet: 93.46% PhysioNet
Bagged Trees (HVD) analysis based on and CinC
(EBT) magnitude, frequency and CinC : 99.28%

phase each PCG formants

[15] | Bidirectional RR interval, P wave, QRS ECG SIGNAL - MIT-BIH Stacked Denoising
LSTM (Bi- wave, ECG-intervals, Arrhythmias Autoencoders
LSTM) QRS interval, PR Database, SVDB and (SDAE), as encoder,

interval, ST interval, ST NSTDB automatically learns

level- ECG semantic encoding of
heartbeats without
any complex feature
extraction in
unsupervised way

[16] | End-To-End Abnormal rhythms and PCG SIGNAL Precision:0.838 CPSC 2018 and multi-class
Deep Multi- noise distribution- PCG Recall: 0.822 PhysioNet/CinC 2017 | arrhythmia detection
Scale Fusion F1 Score: 0.828
convolutional
neural network

[17] | Discrete-Time Extract features of Accuracy: 99.3% MIT-BIH Arrhythmia | g-lag unbiased finite
State-Space heartbeats via ECG ECG SIGNAL Sensitivity:99.6% impulse response

records Specificity: 99.8% (UFIR) smoother

VOLUME 12, 2024
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TABLE 1. (Continued.) Summary of related work.

[18] | Convolutional Early detection of cardiac Accuracy: 99.66% Three data set is used CNN in the form of
Neural Network | pathologies- PCG for experimentation: audio samples as well
(CNN) first recorded cardiac as in spectrogram

PCG SIGNAL signal using digital format
stethoscope and other
two taken with the
help of mobile smart
devices

[19] | Feature Heartbeat classification Beat Type: S Beat MIT-BIH Arrhythmia | -
Enrichment - from electrocardiogram Sen:75.6%
convolutional (ECG) using Feature Ppr:90.6%
neural network Enrichment (FE) F1 Score:0.82
(FE-CNN) ECG SIGNAL Beat Type: V Beat

Sen:92.8%
Ppr:94.5%
F1 Score:0.94

[20] | End-To-End Augmenting the original Accuracy: 98.0% MIT-BIH arrhythmia novel data-

Approach and A | imbalanced dataset with Sensitivity:97.7% augmentation
Two-Stage generated heartbeats Specificity: 97.4% technique using
Hierarchical Precision: 90.0% generative adversarial
Approach— ECG SIGNAL networks (GANs)
Based On Deep

Convolutional

Neural Networks

(CNN’s)

[21] | Heartbeat Segment label Beat Type: S Beat MIT-BIH arrhythmia
classification Sen:0.92
using Ppr:0.76
Convolutional ECG SIGNAL F1 Score:0.74
Neural Network Beat Type: V Beat

Sen:0.98
Ppr:0.76

[22] | New generative -- Accuracy: 99.67 + MIT-BIH dataset multi-head attention
adversarial 0.11 mechanism on CNN
network—bgsed ECG SIGNAL architecture.
deep learning
method called
HeartNet

[43] CNN - PCG Signal 96.6% Raw Dataset CNN based classifier.

[45] | Progressive ECG and PCG Sensitivity: PhysioNet/CinC 2016 | Co-learning-assisted
Dense  Fusion signals 94.85+5.14 dataset progressive dense
Network Specificity: fusion network

- 93.97+4.97
accuracy:
94.41 +£3.04
AUC: 0.973 + 0.026

[46] | MLP, RF, | Spectrograms, MFCCs PCG Signals Accuracy: 95.65% PASCAL Features are
ConvlD, DNN, CHALLENGE augmented with
XGB synthetic noise,

ensembled, and
various models
employed including
deep learning and
machine learning.

[47] | Support Vector | Audio PCG signals PCG Signals Accuracy upto: 97% | Classification-of- Artificial intelligence
Machine (SVM), Heart-Sound-Signal- framework for heart
deep neural Using-Multiple- disease classification
network (DNN) Features
and centroid
displacement
based k nearest
neighbor

To determine whether a recorded sound is associated with

a healthy or sick heart, heart sound analysis is used. This
research is a component of a larger effort to develop a robotic
system that can acquire and analyze heart sounds called

65486

a remote auscultation system. This work only addresses
the analysis because acquisition is primarily a mechanical
process. Further, the work does not attempt to identify any
disorders; rather, it only seeks to identify their presence.
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In other words, there are two categories for heart sounds:
“healthy’” and ““diseased.” This problem is simpler compared
to multi-class disease diagnosis, but it allows one method
which does not include the need to segment heart sounds.
This also makes the speech recognition system insensitive
to difficult-to-segment sounds where the signal has been
corrupted.

The first heart sound (S1) and the second heart sound are
the two events that make up heart sounds in healthy adults
(S2). They are collectively known as the ‘“‘basic heart sound”
(FHS). The period from the start of S1 to the start of S1 after
that is known as a cardiac cycle or a single heartbeat. Systole
refers to the period from the end of S1 to the start of S2 of the
same cycle, and diastole refers to the period from the end of
S2 to the start of S1 of the following cycle. The components
of abnormal heart sounds’ cardiac cycles do not belong to
the FHS. Extra heart sounds and murmur sounds are two
categories into which these elements can be divided. Mur-
murs are the second category of abnormal heart sounds. They
result from turbulent blood flow through a stenosed (blocked)
valve or from retrograde flow through a regurgitated (leaking)
valve. Depending on the underlying condition, these sounds
can be heard during either systole or diastole. A murmur
is a reliable sign of valvular (valve-related) disorders. The
appearance of S3 resembles the extra FHS and it needs to be
segment properly after second cycle [36].

B. PROPOSED METHODOLOGY

The general structure of the PCG signal processing is given in
figure 3. It includes the following three major operation: Data
Acquisition, Pre-processing and Segmentation, Processing.

>
Patient Data Acquisition ~—— Iru»pm«.w:m‘], i Em—
[ Segmentation
Scnsor data from patient

Filter and remove the Feature Extraction
artifacts
R iindiard Nomarlize the hear
emove redundant data
SHoYSIedimaunt Gt sound and segement
into frames

and amplify the signal
FIGURE 3. General structure of PCG signal processing.

Processing

Digitize the data for
further analysis

The data acquisition system, records the PCG data in
real time and it is recoded using stethoscope at various
auscultation points as shown in figure 3. In general, the
stethoscope comes with microphone, piezoelectric sensor,
capacitive sensor, T-type MEMS heart sound sensor, MEMS
piezoresistive electronic heart sound sensor [35]. To detect
the cardiac related disorders the PCG signals needs to
processed properly, by removing the unwanted signals at the
pre-processing stage and always processing longer is difficult
compare smaller length sequences, so the recorded sample

VOLUME 12, 2024

is segmented into shorter frames. Later, in processing the
desired features of PCG signal is extracted and classified for
healthy and disorder heart beats.

The proposed work focuses majorly on processing stage,
where the feature extraction and classification are done in a
lesser time. The block diagram of the proposed methodology

is shown in figure 4.
Multi-layered
Bi-LSTM
Network

Scgment the sample
Filtering and into frames using
..... Time-Frequency
Analysis

RAW Hecart GAN Model

Sound Signal

Predict healthy
or unhealthy
condition

Analysis

—

Classilication

Feature Extraction

FIGURE 4. Proposed methodology.

C. SEGMENTATION USING HAUG-HILBERT TRANSFORM
PCG, which is the heart sound recorded via acoustic sensors,
is the raw signal in the analysis of the heart sound. The
two main segments of normal sound conduction include
S1 and S2 which relate to the end of the mitral-tricuspid
and the aortic/pulmonary valves, accordingly. Nevertheless,
the waveform can have murmurs and according to their
structure and position, they can indicate different cardiac
problems. Such for example, one may experience aortic
stenosis murmur between S1 and S2 during systole. Unlike
most adults’ PCG whose S3 is not included in their children
may still have the innocence S3. PCG signals are not
high in frequency (less than 70 Hz) and very short in
duration (S1 is around 120 ms and S2 around 100 ms).
Therefore, just by using time-domain representation will
not reveal all the information that it has Hence, most PCG
signals are transformed into the time-frequency spectrum
by employing Time-Frequency analysis that is used on both
the time and frequency scales. Time-Frequency analyses are
applied in assessing EEG, EMG, ECG, and other bio-signals.
Conversion of 1-D time domain signal to 2-D space with time
and frequency information would aid in the simpler process
of visualization of the frequency data. They can also make
frequency information removal less challenging by acting as
inputs for RNNs.

There are many investigations on Segmentation as the most
difficult initial step for heart sound analysis. In fact, the
best-known approach to segmentation is referred to as the
“envelope analysis”. The method envelopes a heart sound,
discovers peak points in envelope signal, selects peaks as
corresponding to s1 or s2 and constructs cardiac cycles with
the aid of s1 — s1 interval.

1) HILBERT TRANSFORM
In the proposed methodology, the Hilbert-Huang Transform
(HHT) is used to study behaviors of the unseen way
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of variations in PCG signals and to observe their time-
based changes. The use of HHT in EEG and Heart beat
classification is discussed in [23] and [24] and the steps
followed to obtain the HHT of PCG in the proposed work
is shown in figure 5.

Heart Hilbert Transform EMD IMF | +IMEHMF 35 HIME, Sclcct_nun of desired
3 N frequency
Sound data
RNN based Bi-LSTM

‘ Testing

Feature
optimization

FIGURE 5. Steps in obtaining the HHT of PCG signal.

HHT is a deformation procedure giving rise to a compre-
hensive and adaptive basis in order that we may describe
those oscillations’ modes. This differs from most of the other
conventional approaches that use a specific set of priori basis.
HHT consists of two procedures namely, Hilbert spectrum
analysis and the Empirical-Mode-Decomposition (EMD).
Discrete signals are decomposed into IMF’s using EMD.
IMF is defined as a signal that satisfies the following two
conditions: The number of maxima, maxima zero crossings
should either differ by one or the same as the minima, maxima
zero crossings. These two conditions of IMF make Hilbert
Transform to maintain significant instantaneous frequency.
The EMD of the signal is derived as:

i. The first step of the proposed approach involves utilizing
a spline function to generate upper and lower envelopes,
denoted as u[n] and 1[n] respectively, for the original
signal x[n] or temporal result h[n]. These envelopes
serve as smoothed representations that encapsulate the
variations and trends present in the signal, providing
valuable insights into its characteristics.

ii. To obtain the temporal result h[n], the median of the
envelope, denoted as m(n), is derived by averaging the
upper and lower envelopes. This process involves com-
bining the smoothed representations of the signal, u[n]
and I[n], and computing their average. Subsequently,
h[n] is obtained by subtracting this envelope average
from the original signal, resulting in a modified repre-
sentation that highlights the deviations and fluctuations
within the signal.

m(m = 1 M
hy (n) = x (n) —m (n) @

Extract the temporary local oscillation
hii (n) =hy (n) —my; () 3)

iii. Ideally, the temporal result hi; (n) corresponds to the
first Intrinsic Mode Function (IMF). However, if it
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does not meet the criteria of an IMF, it is treated as
a new signal, and the above steps are repeated on this
new signal. This iterative process ensures that each
subsequent result aligns with the characteristics of an
IMF, enabling the extraction of meaningful and distinct
components from the original signal.

hi2 (n) = hy; (n) —my2 (n)
hizn = hyz (n) — my3 (n)

hik(n) = hijx_1 (n) — myg (n) @

Finally, the coefficient of the first Intrinsic Mode
Function (IMF) is obtained. This coefficient represents
an essential feature derived from the decomposition
process and carries valuable information about the
underlying oscillatory patterns and variations within the
signal.

Ci1 (n) = hix (n) (5)

iv. Next, it is important to verify certain conditions for the
subtracted data. Confirm that the local maximum value
is greater than 0, indicating an upward trend, and that
the local minimum value is less than O, indicating a
downward trend. If these conditions are not met, then a
standard deviation (SD) threshold is set. This threshold
serves as a criterion for determining the presence of
significant variations in the data, allowing for further
analysis and processing.

D i [hik-1 () — myg () |

(6)
S (e ()?
The value of SD must be 0.2 < SD < 0.3
r (n) =x(n) —Cyy (n)
ry (n) = x(n) — Cp2 (n) (7

v. The subtracted data obtained in the previous step is
applied to Step 1 iteratively to create a new Intrinsic
Mode Function (IMF). This iterative process continues
until two conditions are met:

> The difference between the subtracted data and the newly
subtracted data falls below a predefined threshold value.

> The subtracted data becomes a monotonic function,

either consistently increasing or decreasing.
By repeatedly applying Step 1 and evaluating these condi-

tions, the decomposition process ensures that the resulting
IMF accurately captures the intrinsic oscillatory behavior
and effectively represents the underlying components of the
original signal.

N
x(n) = > Ci(n)+ri(n) ®)

i=1

VOLUME 12, 2024



N. A. Vinay et al.: RNN-Bi LSTM Based Multi Decision GAN Approach for the Recognition of CVD

IEEE Access

Once the Intrinsic Mode Function (IMF) is obtained for
each frame, the Hilbert Transform is applied to each IMF-
based frame to determine the instantaneous amplitude and
frequency. This process yields valuable information about the
varying amplitudes and frequencies present in each frame.
The IMF coefficients are then stored in a matrix format,
organized in accordance with their respective frames. This
matrix serves as a comprehensive representation of the IMF
coefficients, facilitating further analysis and interpretation of
the signal characteristics [25].

r oAl 1 1 .
Chi Cp G Cly
1 1 1
Gy G Gyl Cix
1 1 1
G G Gy Cly
Ci =
1 1 1
Cnl Cn2 Cn3 ~~~~~~ Can
) 2 2 7
Chi Ci G C%
> > >
Gy G Gyl Ciy
o >
G5 G5 Gyl Ciy
Cip =
2 2 2
Cnl Cn2 Cn3 ~~~~~~ C)%K
- -3 3 3 -
G G Ciz...... Ci,
3 3 3
Gy G Gy Cix
3 3 3
G Gy Gyl Cix
Cyp = : 9
3 3 3
Cnl Cn2 Cn3 ----- C)?k

In the given matrix, K represents the number of frames,
while n represents the number of speech samples within
each frame. Each column in the matrix corresponds to a
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time duration of 5 milliseconds. This organization allows
for a clear representation of the temporal segmentation of
the speech signal, providing insights into the variations and
characteristics of the signal over time.

Further, decomposition of stage 1 IMF component is given
by:

y(@m) =Ci1+Cr2 (10)

C11— Frequency component of IMF stage 1 and it is low
compared to Cy; and Cj; has high energy than Cy; so Cyz
is considered for further decomposition.

The high energy components of IMF stage 1 are repre-
sented by:

C =C31+Cx (11)

Finally, the Hilbert Transform is defined as:

HT (x(n))
=X () =x()
. N .
—jx(m),n=1....... 5—1, when n is even
]x(n),n—E—H ...... N —1, whennisodd

12)

D. DESIGN OF GAN TRANSFORM

In the analysis of sound, the most important step is to
synthesis data of generative models [44] for the analysis
of heart sound (lub-dub). The algorithm needs to give
better results after the distributing the samples of original
signals from newly generated models. For this process, the
system requires a precise generative model like Generative
Adversarial Network (GAN). The architecture of GAN
consisting of two major elements or components that is:
Discriminator and Generator, the working of these two
networks is exactly opposite to each other. The major role
of generator network, is to generate the data samples which
resembles the original sample, whereas, the discriminator
role is differentiate the original sample and synthesized
sample [20]. Because of this reason, GAN is applicable
to synthesis of: image, video, audio. The arrangement of
generator and discriminator is arranged as shown in figure 6.

Inpur Signal
(Heartbeat
Sound signal)

Discriminator LSTM
Network Network
p—

LSTM
Network

Generator
Network

FIGURE 6. Basic structure of GAN to train the two networks: Generator
and discriminator network.

In [20], the two major issues related to GAN is discussed.
First issue is, when the heartbeat from generator network is
not realistic then discriminator is got clowned and under this
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scenario it will concentrates on generating the desired group
of features to enhances the network loss and to avoid the
mode collapse problem. Second issue is, generator network
is not trained to differentiate the heartbeat samples if samples
of different data set is applied simultaneously and it only
generate the similar kind or forged. So, this can be avoided
by training the training the generator network to generate the
synthetic data for tested samples of different datasets. This
procedure is continued till the value of loss function is get
saturated. In this proposed work, as mentioned in [20] the
loss function computed for both discriminator network and
generator network and it is given by:

Discrimintor Network loss
= DNloss

_ _é I(N;log (DN (*)) +1og (1 - DN (GN (x4)))

(13)
Generator Network loss
=GN loss

_ —%élog (1N (aN(x))) (14)

where x the noisy vector of fake sample is, r is the real vector
original sample, N is the number of samples.

The proposed architecture of generator network is as
shown in the figure 7. It consists of fully connected 4 layers
to generate the fake sample of 150 x 1 size the generator
network is fed with 50 x 1 sample input. The discriminator
network architecture is shown in figure 8.

Up-sample
data (512)

Noisy vectors
Sample (50)

Reshape the
sample (128)

Up-sample
data (256)

Fake sample
data (150)

FIGURE 7. Generator network architecture.

Feke pamplo I-DNN(512) 1-D NN (256) IDNN(128)  1-DNN(64) Sigmoid
dara (150) function

FIGURE 8. Discriminator network architecture.

In the initial stages of processing time series signals, the
peak of the signal is very sharp and it is required to smoothen
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the sharp edges but the information at peak should not get loss
also, signal-to-noise ratio should be reduced. But normally
when the signal is subjected for smoothing there is a chance
of loss of information so, the sharp peak values or edges
are replaced by new values obtained from 2m + 1 number of
adjacent polynomials.

The neighboring polynomials are considered as an array
of smaller segments, these segmented arrays are merged to
define the polynomial filter of a signal [34]. The least square
value is estimated between the filtering window coefficients
(w) and column coefficients of polynomial functions (P). It is
given by:

wo=Xp+e (15)

In equation, the error polynomial is defined by €. In terms of
matrix is given by:

o] " p1 ]
@2 P2
3 p3
=XT|": (16)
| Wn | L Pn |

For smoothing the coefficients, the equation (3) can be written
using least square (LS) method as:

p= (XTX)A XTw (17)

But, the projection matrix (p) for the prediction of values is
given by:

h= (XTX)_1XT (18)

To fit the predicted values, the approximation is taken for LS
values of X in equation (3). It is given by:

1 xO ......... xg ]
1 xl ......... x’f
X = . (19)
L 1 xm ......... x;:’l,l a

The matrix defined in equation (7) is known as Vandermond
matrix. The polynomial representation of equation (3) is
given by:
wj = piX} + pi—1X}_l+ --------- +p1Xj] + poXQ,
forj=1......... 2q+1 (20)

In the proposed work, the sound of heart is recorded known
as PCG and the behavior of PCG signal is non-stationary.
So, as the signal varies the window coefficient size will also
get varies hence and this can be avoided in moving window
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technique which is of fixed length to generate the coefficients
which the improves in controlling of variation of standard
deviation, maximum and minimum values. In this proposed
work, the moving window is implemented by smoothing
the n™ coefficient which helps for the analysis of spatial
dependency. Then the n™ location derivative is given by:

P = ((XTX)_1 XT)H P @1

Pl =X p (21a)
Pl = (W) p (21b)

(W);' — Moving Window function of nth order.

E. MULTI-LAYERED RNN BASED BI-LSTM

The research on Recurrent Neural Networks (RNNs) have
proven that it is an effective modelling tools for sequential
data. For several applications, most notably time-series
dependency application, RNN have contributed to significant
advancement. A RNN cell combines two inputs—one is
from current sequence and the other is the output from
the previous step and this forms the basic building block
of an RNN. But, in recent years the research on of Deep
learning is increased significantly in many fields. Because,
the deep learning algorithm has many benefits over the
traditional machine learning algorithm, such as the feature
optimization for complex data preprocessing. In this deep
learning architecture, the model is fed with raw data as its
input, the unique structure and deeply interconnected network
trains the model effectively to process the complex data.
So, likewise the RNN also requires such unique structure to
process the complex long dependency data and to overcome
gradient vanishing problem. One such architecture is, Long
Short-Term Memory (LSTM) based RNN and this structure
helps to overcome this major disadvantage of RNN. The basic
structure of single layer LSTM based RNN is shown in the
figure 9.

\gute/

FIGURE 9. Basic structure of Bi-LSTM.
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In this proposed work, to process the complex data
of cardiac signals, a multi-layered Bi-LSTM structure is
used. It has two hidden layers to process the data and the
mathematical implementation of the LSTM is:

I' = tanh (wzxt +M,d! nz) (22a)
=g (let—i—Mld"l +V,@at! +n1) (22b)
e =0 (weXt FMdt 4 Vioat! + nf) (22¢)
al=g'ol'+e @a! (22d)
h =0 (tht +Myd= 4V, 0a + nh) (22¢)
d'=h'© tanh (a) (22f)

In the described model, the logistic sigmoid function, denoted
as o, is applied to process the shifted delta coefficient g’ as
an input. The desired output vectors 4’ are generated based on
the input provided. The LSTM (Long Short-Term Memory)
architecture, being a memory-based neural network, utilizes
the forget gate ¢’ to determine which information should be
retained and which should be disregarded. The internal state
vectors are represented by a’, while n represents the bias
vectors. The weight vectors V and recurrent weight matrices
M are used in the computation. The input vector at time t is
denoted as X', and w represents the input weight vectors.
The activation function tanh and the element-wise product
© are employed to address the gradient vanishing problem
commonly encountered in RNNs.

Where the logistic sigmoid function is o, the shifted delta
coefficient g’ is fed as an input, the desired output vectors h’
is generated for the applied input, since LSTM is a memory
based neural network the value of forget gate ¢’ helps to
decide which information has to be memorized and which one
ignore, a’ refers to internal state vectors, 7 to bias vectors, V is
weight vectors and M refers to the recurrent weight matrices,
X' is input vector at time t, w are input weight vectors, tanh
and © is the element-wise product of the vectors which helps
in overcome the gradient vanishing problem in RNN.

The multi-layered RNN-based Bi-LSTM model,
as depicted in Figure 10, is structured in this manner. The
dataset is initially trained and tested, allowing past data to
be analyzed in order to predict future data. Subsequently,
a two-layered Bi-LSTM model is trained to predict the
occurrence of cardiovascular disease (CVD) based on the
phonocardiogram (PCG) signals. This approach leverages
the power of the Bi-LSTM architecture to capture temporal
dependencies and make accurate predictions regarding the
presence of CVD from the provided PCG data.

F. FEATURE EXTRACTION AND SELECTION

In the realm of deep learning, the extraction and selection
of desired features pose significant challenges. Signals
such as sound, including speech, heartbeat, and pulmonary
sounds, require particular attention to maintain the long-
term dependencies between each frame throughout the signal.
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FIGURE 10. Multi-layered RNN based Bi-LSTM.

Time series neural networks, such as RNN-based Bi-LSTM,
generate a large set of features from the input samples.
Therefore, a pooling process becomes crucial in selecting the
desired features from the neural network.

In this proposed work, a comparative study of five pooling
functions by [41] and [42] was considered. Based on these
reviews, the authors of this paper decided to adopt pooling in
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Input Sequence

the prediction technique, specifically using the exponential
SoftMax function.

The k-dimensional vector serves as the input to the
Bidirectional Long Short-Term Memory (Bi-LSTM) Recur-
rent Neural Network (RNN). These k-dimensional Shifted
Delta Coefficient (SDC) vectors are transformed into k-
dimensional real vectors, with their sum equating to “1”.
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This transformation is achieved through the SoftMax func-
tion. In the Bi-LSTM RNN, the input to the SoftMax function
can take on positive, zero, or negative values. However, the
SoftMax function normalizes these values to fall between
0 and 1, aligning the Neural Response Coefficients (NRCs)
with the output of the neural network. Thus, the SoftMax
function converts the values into a normalized probability
distribution, where smaller values correspond to lower prob-
abilities and larger values correspond to higher probabilities.
Importantly, the sum of these probabilities always equals 1.

Due to its ability to convert values into a normalized
probability distribution, the SoftMax function is widely used
for classifying complex single-dimensional signals, such as
speech.

The SoftMax is defined mathematically as:

ij -eY

x = ’27 where j=0,1,........ k (23a)
J
The gradient of SoftMax function is:
Xi
o (X)) = wherej=0,1,........ Jk (23b)

Z eYi
=

where X;— the input vectors to SoftMax function, expanded
up to k™ term (xg, xy......... Xk)
x;— are the input vectors.
k

> €% — is the normalization term which makes sure that

=1
thejz output of the function varies between 0 and 1.

Another, challenging task in this work classifying of
healthy and un-healthy heart beat based the features selected.
So, based on the values SoftMax layer the healthy and un-
healthy event is classified. Finally, at the end we need to
predict the following classes of heart beats: N (Normal).

IV. RESULTS AND DISCUSSION

A. DATASET USED FOR EXPERIMENTATION

The analysis two datasets taken from the Kaggle (previously
PASCAL) Heart Sound Classification Contest. The first one
is called A which contains actual field trials data gathered
by means of using a digital stethoscope, usually containing
accompanying noise like speech, traffic, or even accidental
contacts with microphones when on clothes or skin. Audio
file durations are about 1-30s as well. The initial step involved
splitting the Pascal competitions datasets into training and
test set. Dataset A had four classes (normal, murmur,
Extrasystole, and echocardiography artifacts), while dataset
B had three classes (normal, murmur and Extrasystole) as
shown in Table 2.

B. HEART SOUND ANALYSIS

The 4 types of heart sound and related parameters are the
original heart sound is shown in figure 11: (a) Normal (b)
Murmur (c) Extrasystole (d) Artifact
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The proposed work we followed steps for the recognition
of CVD as mentioned in figure 4: (i) Pre-processing (ii) Time-
Frequency analysis (iii) Feature extraction (iv) Classification
(iv) decision making. In general, the processing of time-
series using Machine learning algorithms includes following
features: (i) Energy Estimation (ii) Frequency estimation (iii)
Bandwidth Estimation (iv) Spectral centroid (v) Spectral roll-
off (vi) Features representation using MFCC [43]. The results
of each steps is discussed in the following figure 12 and 13.

The analyses of Harmonic Mel Spectrum, Percussive Mel
Spectrum, Spectral Centroid, and Spectral Roll-off of a
normal heartbeat shown in figure 12 (a), (d), (e), (g), provide
insights into the harmonic structure, transient components,
tonality, and frequency distribution of the heart sounds,
which can be useful in various applications such as heart
rate monitoring, heart sound analysis, and cardiac health
assessment.

The analysis of Harmonic Mel Spectrum, Percussive
Mel Spectrum, Spectral Centroid, and Spectral Roll-off of
murmur heart beat shown in figure 12 (b), (c), (f), (h)
can provide complementary information about the harmonic
structure, transient components, tonality, and frequency
distribution of a heart murmur. The Harmonic Mel Spectrum
and Percussive Mel Spectrum can reveal insights into
the harmonic and transient characteristics of the murmur,
respectively, while the Spectral Centroid and Spectral Roll-
off can provide information about the tonality and frequency
distribution of the murmur, respectively. Analyzing these
features collectively can aid in identifying the underlying
characteristics of a heart murmur and can be helpful in the
diagnosis and management of cardiac conditions, under the
guidance of a medical professional.

The frequency analysis parameters like: Harmonic Mel
Spectrum, Percussive Mel Spectrum, Spectral Centroid, and
Spectral Roll-Off of artifact heart beat shown in figure 13
(a), (d), (e), (g), are different techniques used for analyzing
the artifact heartbeat signal from different perspectives,
including harmonic content, percussive or transient charac-
teristics, spectral balance, and high-frequency content. These
techniques can provide valuable insights into the acoustic
properties and characteristics of the artifact heartbeat signal,
and can be used in various applications such as heartbeat
analysis, heart rate monitoring, and physiological signal
processing.

In figure 13 (b),(c),(f),(h) the Harmonic Mel Spectrum
and Percussive Mel Spectrum focus on the harmonic and
percussive content of the heart beat signal, respectively,
while the Spectral Centroid and Spectral Roll-off provide
information about the frequency characteristics of the signal,
such as the perceived pitch and energy distribution. These
features can be useful in analyzing the spectral properties
of an Extrasystole heart beat and may provide insights
into the underlying physiological or pathological conditions
associated with the abnormal heartbeat.

The Energy and power spectrum are two different features
that can be computed from heart beat signals, including
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Heart beat wave form Duration Sample Rate No. of Samples
3.46 44100 152737
(a)
35 7.935 44100 349958
(d
b 10.408 41635 349958
(©)
s
"
000 { -
MJ‘ ! 9.0 44100 396900
o]
(d
FIGURE 11. Four types of heart sound waveform and its related parameters.
TABLE 2. Number file is A & B dataset-PASCAL database.
Category Normal Murmur Artifact Extrasystole Arrhythmia Frequency (Hz) Bit size
Dataset A(Testing) 31 34 40 19 66 44100 16
Dataset B(Training) 200 95 - 45 - 44100 16

normal, murmur, artifact, and Extrasystole heartbeats and the
results of energy and power spectrum of 4 types of heart
beat is discussed in figure 14. In figure 14 (a) the energy
and power spectrum of normal heart beat is estimated, where
the energy of a normal heartbeat signal would typically be
moderate, reflecting the regular and consistent nature of a
healthy heart’s rhythmic contractions. The power spectrum of
a normal heartbeat signal would typically exhibit a dominant
frequency at the heart rate or fundamental frequency, with
smaller energy contributions at harmonics or other frequency
components. A murmur is an abnormal sound heard during
a heartbeat, which can be caused by various physiological or
pathological conditions. The energy of a murmur heartbeat
signal may vary depending on the severity and characteristics
of the murmur. It can range from low to high, depending
on the intensity and duration of the murmur sound. The
power spectrum of a murmur heartbeat signal may exhibit
additional frequency components or peaks, corresponding
to the abnormal sounds generated by the murmur. These
additional peaks may vary in frequency, amplitude, and
duration depending on the characteristics of the murmur as
shown in the figure 14 (b). Artifact refers to any unwanted
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or extraneous signal that may be introduced during the
recording or processing of a heart beat signal, such as
noise or interference. The energy of an artifact heartbeat
signal would depend on the nature and level of the artifact,
which can vary widely. The power spectrum of an artifact
heartbeat signal may exhibit irregular or spurious frequency
components, corresponding to the unwanted or extraneous
signals introduced during the recording or processing of
the signal as shown in the figure 14 (c). These frequency
components may not be related to the physiological char-
acteristics of the heart. Extrasystole is an abnormal heart
rhythm characterized by premature or irregular heartbeats.
The energy of an Extrasystole heartbeat signal may vary
depending on the timing, frequency, and intensity of the
Extrasystole events. It can be low to moderate, depending on
the severity and frequency of the Extrasystole occurrences.
The power spectrum of an Extrasystole heartbeat signal
may exhibit irregular or abnormal frequency components,
corresponding to the premature or irregular heartbeats as
shown in figure 14 (d). These frequency components may
deviate from the normal heart rate or fundamental frequency,
indicating the abnormal rhythm of the Extrasystole events.
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FIGURE 12. Analysis of harmonic mel-spectrum, percussive mel-spectrum, spectral centroid and spectral roll-off of normal and murmur heart beat.

Onset detection of a normal heartbeat refers to the process
of identifying the beginning or onset of a heartbeat from a
physiological signal, such as an electrocardiogram (ECG) or
a phonocardiogram (PCG). The onset of a normal heartbeat
typically corresponds to the point where the electrical or
acoustic activity generated by the heart starts to deviate from
the baseline, indicating the contraction of the heart muscle.

In figure 15, the ONSET -calculation is done for heart
sound-based power spectrum. Power spectrum analysis is a
technique used to analyze the frequency components present
in a signal. In figure 12(a) the context of a normal heartbeat,
it can help identify the dominant frequency associated with
the cardiac cycle. Onset Detection: Monitor the changes in the
dominant frequency across successive windows. The onset of
anormal heartbeat can be detected by identifying a significant
increase or change in the dominant frequency.

Detecting the onset of a murmur heartbeat using power
spectrum analysis can be a useful technique to identify
abnormal heart sounds associated with heart murmurs.
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As shown in the figure 12 (b), Heart murmurs typically occur
in specific frequency bands, such as low-frequency (below
200 Hz) or high-frequency (above 200 Hz) ranges. Peaks in
the power spectrum correspond to frequency components that
are prominent in the audio signal.

Monitor the power spectrum across successive frames or
time segments. Look for changes or increases in the power
or amplitude of the frequency components associated with
heart murmurs. Significant changes or sudden increases in
power can indicate the onset of a murmur. The onset detection
of artifact heart sound is shown in figure 12(c), detecting
the onset of an artifact heartbeat using power spectrum
analysis can be challenging since artifacts are typically
unwanted interference or noise in the recorded cardiac
signal. However, if the artifact exhibits distinct frequency
characteristics (50 or 60 Hz), it might be possible to detect
its onset using power spectrum analysis. Analyze the power
spectrum to identify any frequency peaks or components
associated with the artifact. If the artifact has distinct and
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FIGURE 13. Analysis of harmonic mel-spectrum, percussive mel-spectrum, spectral centroid and spectral roll-off of artifact and extrasystole heat beat.

consistent frequency content, it might manifest as a peak or
energy concentration in the power spectrum at that particular
frequency. The onset detection of extrastole heart sound is
shown in figure 12 (d), detecting the onset of an ectopic or
premature heartbeat, specifically an extrasystole or premature
ventricular contraction (PVC), using power spectrum analysis
can provide insights into the abnormal rhythm. The frequency
components of the Extrasystoles beat often exhibit different
frequency characteristics compared to the regular cardiac
rhythm. Look for significant differences or prominent peaks
in the power spectrum of the ectopic beat.

In figure 15 (e) to (h) different onset is calculated to
identify the abnormalities in heart sound. In general, the term
“onset” typically refers to the beginning or initial occurrence
of an event or sound. In the context of heart sounds, there are
different types of onsets that can be discussed: onset of heart
sound, raw onset of heart sound, and backtracked onset of
heart sound.

1) ONSET OF HEART SOUND

The onset of a heart sound refers to the exact moment
when a specific heart sound component starts. In a typical
cardiac cycle, there are four primary heart sounds: S1, S2,
S3, and S4. The onset of S1 represents the beginning of the
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systole (contraction) phase, while the onset of S2 marks the
beginning of the diastole (relaxation) phase. The onsets of S3
and S4, if present, can indicate abnormal heart sounds related
to ventricular filling.

2) RAW ONSET OF HEART SOUND

The raw onset of a heart sound refers to the moment
when the sound wave associated with a specific heart sound
component reaches a detectable level above the baseline
noise. This onset is typically determined by analyzing the
amplitude or intensity of the sound waveform recorded during
auscultation or with other measurement devices. The raw
onset can be measured using various techniques, including
visual inspection, signal processing algorithms, or amplitude
threshold-based methods.

3) BACKTRACKED ONSET OF HEART SOUND

The backtracked onset of a heart sound refers to the
estimated or reconstructed onset of a specific heart sound
component based on post-processing analysis. It involves
using advanced signal processing techniques to analyze
the heart sound waveform, extract relevant features, and
determine the likely point of onset. This estimation may
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FIGURE 14. Energy and power spectrum of 4 type heart beat.

involve sophisticated algorithms that consider the temporal
and spectral characteristics of the heart sound signal.

It’s important to note that the precise determination of
the onsets of heart sounds can be challenging due to
various factors, such as the presence of background noise,
overlapping sounds, and variations in individual physiology.
Additionally, the interpretation and diagnosis of heart sounds
require clinical expertise and should be performed by
healthcare professionals, as they consider multiple factors,
including the entire phonocardiogram (PCG) signal, patient
history, and other clinical information.

In clinical practice, specialized tools such as phonocardio-
graphy and computer-aided analysis can assist in the accurate
determination of heart sound onsets. These tools help in
detecting and analyzing the timing and characteristics of heart
sounds to aid in the diagnosis and assessment of cardiac
conditions.

The Constant Q Transform (CQT) is a specific type of
time-frequency analysis method, which is often used for
analyzing non-stationary signals, such as heartbeats. While
the CQT itself does not directly provide mean and median
values, it can be used as a tool to extract features from
the signal that can subsequently be used to calculate these
statistics for normal heartbeats. By applying CQT to each
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selected normal heartbeat signal, it provides a time-frequency
representation of the signal, capturing the frequency content
and its evolution over time.

Then extract relevant features from the CQT representation
of the normal heartbeats. These features can include statistical
measures such as mean and median values. Calculate the
mean and median values of the CQT coefficients across the
time and frequency dimensions for each normal heartbeat.
Finally, the mean and median values are calculated for the
extracted features (e.g., mean or median CQT coefficients)
across all the normal heartbeats as shown in figure 16. These
statistics provide quantitative measures of the time-frequency
characteristics of normal heartbeats.

TABLE 3. Analysis of Confusion matrix in percentage for each class.

Class Precision Recall Fl-score | Accuracy
(%) (%) (%) (%)
Artifact 100 89 94 95
Extrasystole 92 100 96 97
Murmur 90 100 95 97
Normal 100 94 97 97
Average Accuracy 96.5
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FIGURE 15. ONSET and RMS detection for Heart sound.

The Confusion matrix with Artifact, Extrasystole, and
Murmur and Normal values is as shown in figure 17. The
comprehensive evaluation of the performance of a multi-class
model is provided in the classification report shown in the
Table 3. The explanation for the above report is briefed below.

a: PRECISION

Artifact: When the model is predicted the sample the as
artifact in almost all instances then the Precision is 100%. But,
the recall value 89% indicates that the prediction of artifact is
wrong in some instances.

Extrasystole: The proposed model apprehended the all
actual Extrasystole cases by recall as 100% but the Precision
is 92%, meaning that 92% of predicted Extrasystole instances
are correct.
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Murmur: Similar to Extrasystole the model has captures all
murmur cases but prediction (Precision) is 90%, and recall is
100%, similar to Extrasystole, implying good performance in
identifying Murmur.

Normal: Compare to above three cases the prediction of
normal cases is 94 % indicates that the model rarely miss
classifies the normal heart sound.

b: RECALL
Artifact: 89% recall implies that the model correctly identi-
fies 89% of all actual Artifact instances.

Extrasystole: 100% recall indicates that the model captures
all true Extrasystole cases.

Murmur: 100% recall suggests that the model successfully
identifies all actual Murmur instances.
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Normal: 94% recall means that the model correctly
identifies 94% of all actual Normal instances.

c: F1-SCORE

Fl-score is the harmonic mean of precision and recall.
It provides a balance between precision and recall. All classes
have high Fl-scores, indicating a good balance between
precision and recall for each class.
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d: SUPPORT
The number of instances for each class in the dataset.

e: ACCURACY

The overall accuracy of the model across all classes is 96%,
demonstrating its effectiveness in making correct predictions.

f: MACRO AVG AND WEIGHTED AVG

The macro average gives equal weight to each class, while
the weighted average considers the number of instances
for each class. Both macro and weighted averages of
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precision, recall, and F1-score are high, reflecting the overall
good performance of the model across all classes. Finally,
the classification report justifies that the proposed model
classifies the 4 classes effectively with high precision, recall,
and F1-score.

The results of the proposed methodology for the recog-
nition of irregularities from phonocardiogram signals is
compared with results of [14], [16], and [18] only, because
rest of the authors in the reference are concentrated more
on ECG signal. From figure 18, it is clear that the proposed
methodology is giving better results compare to previous
methods in the field of PCH analysis. The accuracy of [18]
and proposed methodology seems almost equal, but the
process adapted in analysis in the proposed method is
completely different and the time series analysis can be done
accurately in the proposed work.

V. CONCLUSION

The RNN-Bi LSTM based multi decision GAN approach
presented in this study demonstrates a promising solution
for the recognition of cardiovascular disease (CVD) from
heartbeat sound which is the significant in the present
medical field. The research focuses on feature optimization,
aiming to enhance the accuracy and efficiency of CVD
recognition. By utilizing the power of recurrent neural
networks (RNNs) and bidirectional long short-term memory
(Bi LSTM), the proposed approach effectively captures the
temporal dependencies and long-term context in heartbeat
sound data. This enables the model to learn intricate patterns
and relationships that are crucial for CVD detection. Further-
more, the integration of a Multi Decision GAN framework
adds an additional layer of sophistication to the approach.
This framework promotes adversarial training and generates
diverse decision outputs, leading to improved robustness
and accuracy in CVD recognition. The feature optimization
process conducted in this study plays a vital role in enhancing
the overall performance of the model. By carefully selecting
and engineering relevant features from heartbeat sound
data, the approach achieves better discriminative capabilities,
reducing the risk of misclassification and false negatives. The
experimental results demonstrate the superiority of the pro-
posed approach compared to traditional methods and other
state-of-the-art techniques. The RNN-Bi LSTM based Multi
Decision GAN achieves remarkable accuracy, sensitivity, and
specificity in CVD recognition, making it a valuable tool
for early detection and diagnosis of cardiovascular diseases.
Finally, the study presents a novel and effective approach for
CVD recognition by combining RNN-Bi LSTM architecture,
Multi Decision GAN framework, and feature optimization
techniques. The proposed model exhibits significant potential
for improving the accuracy and efficiency of CVD diagnosis,
ultimately contributing to better healthcare outcomes and
saving lives. But the proposed work is limited one datasets
and as future work this extended to test and validate various
samples from different dataset and also for pulmonary sound
analysis.
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