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ABSTRACT Non-orthogonal multiple access (NOMA) technology is projected to significantly increase the
spectrum efficiency of the fifth-generation and subsequent wireless networks. Holographic reconfigurable
Intelligent surfaces (HRISs) are a revolutionary technology that can deliver excellent spectral and energy
efficiency at a cheap cost in wireless networks. In this letter, we investigate the short-packet communication
(SPC) with the NOMA-based HRIS system with the internet of things (IoT). A base station (BS)
communicates with two NOMA users by using HRIS in the proposed system to enhance spectral efficiency.
Furthermore, we derived the exact closed-form expression of the average block error rate (BLER) for two
NOMA users. To get more insight into the proposed system, the asymptotic BLER analysis was also carried
out at high signal-to-noise ratio regime. The numerical results validate the current analysis and show that
the presented NOMA strategy exceeds orthogonal multiple access-based approaches in terms of BLER and
throughput.

INDEX TERMS Holographic reconfigurable intelligent surfaces, NOMA, short-packet communication, IoT,
BLER.

I. INTRODUCTION
IoTs have allowed technologies for smart homes, smart
cities, IoVs, smart industry, and space information networks,
as well as plentiful device connections and sensors with many
uses [1], [2], [3]. Massively networked smart devices pose
difficult difficulties for the future of IoT B5G and mMTC [4].
As a consequence, the increased QoS demand for the 5G and
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future 6G communication networks has resulted in a shortage
of resources (i.e., time slots, frequencies, and bandwidth)
[5]. RIS has been deemed essential technology in many
communication systems, including wireless sensor networks,
and cellular networks, in order to support the connectivity of
mMTC with varying QoS requirements and provide notable
improvements in SE and EE [6], [7], [8]. Even so, RIS
still faces some important limitations. Specifically, since
RIS lacks signal processing capabilities, it cannot conduct
channel estimation or beam tracking. Furthermore, RIS is
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limited by the transmission bandwidth and hence the data
rate is limited [6]. Therefore, HRIS was recently presented
to surpass the aforementioned limitations [9], [10]. HRIS
is compatible with all of the features offered by traditional
RIS. In particular, HRISs are compatible with all of the
features offered by traditional RIS. In particular, compared to
conventional RIS, HRIS is able to support channel estimation
and act like continuous surfaces for larger amounts of
bandwidth [10], [11].

The technology known as URLLC has gained significant
importance for next-generation networks, including 5G and
6G [12]. This is especially because URLLC canmeet the high
requirements of IoT applications, which demand ultralow
latency (⩽ 1 ms) and high reliability (99.99%) [13], [14].
For low-latency systems, traditional analytical techniques
based on Shannon capacity are no longer appropriate [15].
To lower physical-layer transmission latency for URLLCs,
a novel transmission technique called SPC using FBL codes
has been developed [16]. BLER, a recently developed statistic
that has been extensively researched, is used to assess the
effectiveness of SPC systems [17], [18], [19].
NOMAwhich enables multiple users to transmit data in the

same resource block through different power allocations [20],
[21], [22], has emerged as a viable strategy in recent years for
enhancing the SE, reliability, and latency in future wireless
communications [23]. SC and SIC are two techniques used
by NOMA technology to service numerous users on the same
time-frequency resource block [24]. By boosting system
throughput through the simultaneous transmission of several
signals on the same resource block, it makes large-scale IoT
link communication possible [25].
Applying RIS technology to the NOMA system is strongly

recommended as it offers a novel way to improve the perfor-
mance of NOMA systems through the reconstruction of the
wireless environment [26]. To enhance RIS-assisted NOMA
systems’ performance, two different phase shift designs have
been studied [27]. Taking into account both ideal and non-
ideal scenarios, a novel technique is provided to determine
the maximum total rate of all users based on reflection
amplitude and phase shift [28]. The study [29] investigated
how well NOMA cellular networks use spectrum when
utilizing RIS to provide coordinated multipoint broadcasts.
References [30] and [31] examines a RIS-assisted two-
users NOMAnetwork’s energy efficiency, outage probability,
and coverage probability. In order to optimize user service
in each orthogonal spatial direction while taking hardware
limitations into account, the authors also suggest a RIS-
NOMA architecture [32]. The authors in [33] study how the
ergodic rate and outage probability are affected by faulty
consecutive interference cancellation. To bridge the gap
between RIS-assisted NOMA and user-relaying cooperation,
the study recommends that a RIS-assisted cooperative-
NOMA network should be investigated.

Based on the benefits obtained from the usage of
RIS and NOMA, researchers are in the early stages of

researching the combination of URLLC and RIS (URIS).
The authors of [34] investigated the effect of phase errors
and hardware impairments on the performance of URIS
systems, whereas the authors of [35] studied the system
with and without perfect CSI. In [36], an unmanned
aerial vehicle-integrated UIRS system was developed to
transport brief URLLC instruction packets between terrestrial
IoT devices. In [37], the authors introduced a fountain-
coded technique for cross-layer systems and improved PA
coefficient to reduce transmission delay. The author in [38]
derived the closed-form expression BLER under perfect and
imperfect SIC with two case random and optimal phase
shifts.

Most works only study the performance of RIS-
NOMA [26], [27], [28], [29], [30], [31], [32], [33], [39],
[40], HRIS-NOMA [41], [42], or ‘‘RIS-NOMA-integrated
URLLC systems’’ [34], [35], [36], [37], [38]. However, the
implementation of URLLC in HRIS-based NOMA systems
has not been fully explored. Based on the above motivation
and our knowledge to fill the existing gaps in the literature,
this work focuses on the system performance by analyzing
BLER. Table 1 summarizes the comparative novelty of
our article with the existing studies. Specifically, our main
contributions are summarized as follows:

• We proposed the HRIS-aided downlink NOMA IoT
network in SPC.

• The closed-form BLER for the HRIS-aided NOMA IoT
network is derived. Furthermore, to get more insight
into the proposed system, the asymptotic BLER and
throughput are also expressed.

• Monte Carlo simulation investigates the link between
the proposed system’s primary parameters and BLER
and throughput and gives important insights into the
influence of the main parameters on the BLER of the
NOMA IoT system.

The organization of the paper is as follows. Section II
presents the system model of the proposed HRIS-assisted
NOMA system. The analysis of BLER is developed in
Section III. The numerical results are provided in Section IV.
Section V concludes this paper. The abbreviations and
acronyms are presented in Table 2.

FIGURE 1. HRIS-assisted NOMA system.
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TABLE 1. Comparison between the novelty of our work and previous papers.

TABLE 2. Abbreviations and Acronyms.

II. SYSTEM MODEL
We consider a downlink situation in a wireless system with
HRIS assistance, as shown in Fig. 1. For example, BS
uses a single HRIS to interact with two end-nodes, i.e.,
user equipment near user (U1) and far user (U2). The BS-
HRIS, HRIS-U1 and HRIS-U2 connections are LoS, and it
is assumed that both the BS and the two users have a single
antenna, that perfect CSI can be obtained, and that a blocking

object preventing direct transmission between the two users
can be formed. Additionally, we assume that both the HRIS
and UEs as well as the BS and HRIS have highly directed
connections.

Let PS denote the BS transmit power, x1 and x2 are the
intended signals for the U1 and U2, respectively, which
satisfies E

{
|x1|2

}
= E

{
|x2|2

}
= 1, where E {.} is the

expectation operator. The BS transmits a composite signal,
which can be expressed as

x =

√
b1PSx1 +

√
b2PSx2, (1)

where b1 and b2 denote the power allocation coefficients with
b1 < b2 and b1 + b2 = 1 [50], [51], [52].
By assuming that the HRIS’smeta-atoms are highly linked,

selecting the beam split functionality, and employingNOMA,
the received signal at U1 and U2 may be produced as

qi = Aix + wi, i ∈ {1, 2}, (2)

where wi ∼ CN
(
0, σ 2

i

)
denotes AWGB with mean zero and

variance σ 2
i . Moreover, [9], [53],

A1 = h0h1, (3a)

A2 = h0h2, (3b)

where the complex channel coefficients of BS-HRIS, HRIS-
U1, and HRIS-U2 connections are indicated by h0, h1 and h2,
respectively. The network’s wireless connections are believed
to be independent non-selective block Rayleigh fading. The
distances for the BS-HRIS, HRIS-U1, and HRIS-U2 links are
denoted as d0, d1 and d2 respectively. α represents the path
loss coefficient

Applying (1) and (2) yields the following

q1 =
A1√
dα
0 d

α
1

(√
b1PSx1 +

√
b2PSx2

)
+ w1, (4a)

q2 =
A2√
dα
0 d

α
2

(√
b1PSx1 +

√
b2PSx2

)
+ w2, (4b)

Without loss of generality, we assumed that the channel
gains of HRIS-U1 and HRIS-U2 are ordered as |h2|2 < |h1|2;
therefore, |A2|

2 < |A1|
2 and, according to the NOMA

principle, b2 > b1. As a result, U2 directly decodes x2,
considering x1’s interference as noise; consequently, the
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instantaneous signal-to-interference-plus-noise ratio (SINR)
may be represented as

γ
x2
U2

=
PSb2|A2|

2

PSb1|A2|
2
+ dα

0 d
α
2 σ 2

2

=
ρSb2|A2|

2

ρSb1|A2|
2
+ dα

0 d
α
2

, (5)

We assume that ρS =
PS
σ 2
1

=
PS
σ 2
2
represents the average

transmit SNR. In contrast, U1 decodes x2 first before using
SIC to decode x1. Consequently, it is possible to write the
instantaneous SINR for decoding x2 at U1 as

γ
x2
U1

=
ρSb2|A1|

2

ρSb1|A1|
2
+ dα

0 d
α
1

. (6)

The SNR for decoding x1 in U1 after SIC may be found as

γ
x1
U1

=
ρSb1|A1|

2

dα
0 d

α
1

. (7)

III. ANALYSIS OF BLER IN SHORT PACKET
COMMUNICATION
In this section, we will begin by providing the channel
statistics and some preliminary information about SPC.
Following that, we will derive closed-form expressions for
the average BLER for both far and near users.

A. CHANNEL STATISTICS
The lemmas that follow each return the statistical characteri-
zation of |h0|2, |h1|2, and |h2|2.
The PDF and CDF of |h0|2 can be expressed as [54]

f
|h0|2

(x) =
1

λh0
e
−

x
λh0 , x > 0, (8a)

F
|h0|2

(x) = 1 − e
−

x
λh0 , x > 0, (8b)

where λh0 = E
{
|h0|2

}
is the mean of |h0|2.

Lemma 1: In this Lemma, the CDF of |A2|
2 can be derived

as

F
|A2|

2 (z) = 1 −
√
4ϕzK1

(√
4ϕz

)
. (9)

where K1 denotes the first-order modified Bessel function of
the second kind [55].

Proof: To be concise, the proof of Lemma 1 is presented
in Appendix A.
Lemma 2: The CDF of |A1|

2 can be expressed as

F
|A1|

2 (z) = 1 −

√
4z

λh0λh̄2
xK1

(√
4z

λh0λh̄2
x

)

−

√
4z

λh0λh̄1
xK1

(√
4z

λh0λh̄1
x

)
+
√
4ϕzxK1

(√
4ϕzx

)
. (10)

Proof: The proof of Lemma 2 is shown in
Appendix B.

B. PRELIMINARIES
SPC is gaining popularity and becoming an essential trend
in IoT. However, traditional Shannon theory, which was
developed under the assumption of unlimited blocklength,
is no longer directly applicable in the context of SPC.
In response to this challenge, Polyanskiy and his colleagues,
as documented in [16], pioneered the derivation of the highest
achievable rate for a given blocklengthL, SINR γ , and BLER
ε, as further discussed in [56].

R = log2 (1 + γ ) −
Q−1 (ε)

ln 2

√
V (γ )

L
, (11)

where V (x) = 1 − (1 + x)−2, Q−1 (x) =
1
2π

∫
∞

x e−
t2
2 dt is

the inverse of the Gaussian Q-function. From (26), we can
compute the instantaneous BLER of decoding the message
of Ui, i ∈ {1, 2} as follows:

εK ≈ Q

ln 2
log2 (1 + γK ) − R̃K√

V (γK )
/
LK

,K ∈ {U1,U2}

(12)

Here, we have R̃K = ηK
/
LK , where ηK represents the

number of information bits andLK represents the blocklength
for user K . For the sake of simplifying subsequent analysis,
LK can be approximated in a close and more manageable
manner as:

εK =


1 γK ≤ αK
1
2

− gK
√
LK (γK − hK ) αK < γK < βK

0 γK ≥ βK

(13)

where gK =
1√

2π
(
22R̃K −1

) , hK = 2R̃K −1,αK = hK−
1

2gK
√
LK

and βK = hK +
1

2gK
√
LK

.

From (28), the average BLER ε̃K
1
= E [εK ] is given by

ε̃K =

∞∫
0

εK fγK (x)dx = gK
√
LK

αK∫
βK

FγK (x)dx. (14)

C. AVERAGE BLER ANALYSIS OF NEAR USER
Proposition 1: The closed-form expression of the average

BLER for U1 is written as

ε̃U1 = 1 − 4gU1

√
LU1 ×

[
1
υ2

λ

(
4

υ2βU1

,
4

υ2αU1

)
+

1
υ1

λ

(
4

υ1βU1

,
4

υ1αU1

)
−

1
υ3

λ

(
4

υ3βU1

,
4

υ3αU1

)]
, (15)

where λ (x, y), as shown at the bottom of the next page, and
Hm,n:s,t:i,j
p,q:u,v:e,f (·) represents the extended generalized bivariate

Fox H-function (EGBFHF) in [57].
Proof: See Appendix C.
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D. AVERAGE BLER ANALYSIS OF FAR USER
Proposition 2: The approximate closed-form expression

of the average BLER for U2 is provided as

ε̃U2 ≈ 1 −
πgU2

√
LU2

(
βU2 − αU2

)
2W

×

W∑
w=1

√
1 − υ2

wG
2,0
0,2

(
ϕθ̂2 (χw)

∣∣∣∣ −

1, 0

)
, (17)

where W is the number of integration points, υw =

cos
(
2w−1
2W π

)
and χw = υw

(
βU2−αU2

2

)
+

(
αU2+βU2

2

)
.

Proof: See Appendix D.
However, the extended generalized bivariate Fox

H-function in (15) is hard to model and adds a significant
amount of computational complexity. To get around this
problem, we may use the midpoint approximation approach
to get an estimate for ε̃U1 and ε̃U2 in the following equation.
Given that there is not much of a difference between αK and
βK , K ∈ {U1,U2} in (46) and (54) [38], we can further
simplify

ε̃
App
U1

=

O∑
o=1

1
O

[
1 −

√
υ2ζ1,oK1

(√
υ2ζ1,o

)
−
√

υ1ζ1,o

×K1

(√
υ1ζ1,o

)
+
√

υ3ζ1,oK1

(√
υ3ζ1,o

)]
, (18)

and

ε̃
App
U2

=

O∑
o=1

1
O

[
1 −

√
φζ2,o

b2 − b1ζ2,o
K1

(√
φζ2,o

b2 − b1ζ2,o

)]
,

(19)

where ζ1,o = αU1 + (2o− 1)
(
βU1 − αU1

)/
2O, φ =

4ϕdα
0 d

α
2

ρS
,

ζ2,o = αU2 + (2o− 1)
(
βU2 − αU2

)/
2O and O implies the

complexity accuracy trade-off parameter.

E. AVERAGE ASYMPTOTIC BLER ANALYSIS
From (14), by utilizing the first-order Riemann integral
approximation, ε̃Ui , i ∈ {1, 2} can be approximated as

ε̃
Asym
Ui ≈ F

γ
xi
Ui

(
hUi
)
. (20)

Based on (45) analytical finding, the average asymptotic
BLER at U1 at high SNR is given by

ε̃
Asym
U1

= −
2θ̃1
λh0

[
1

λh̄2
ln

(√
θ̃1

λh0λh̄2

)
+

1
λh̄1

× ln

(√
θ̃1

λh0λh̄1

)
− λh0ϕ ln

(√
θ̃1ϕ

)]
, (21)

where θ̃1 =
hU1d

α
0 d

α
1

ρSb1
.

Remark 1: From the average asymptotic BLER at
U1 in (21), it provides some useful insight as follows: i) the
BLER at U1 is improved when increasing the transmit SNR
ρS , the power allocation b1 and the average of channel λh0 ,
λh̄1 and λh̄1 . ii) The diversity order of U1 is one.

Proof: Tomake the computation easier, we use the series
form of the Bessel function Kn (x) to approximate the high
SNR. Kn (x) can be approximated when n = 1 as

K1 (x) ≈
x
2
ln
(x
2

)
+

1
x
. (22)

It can be obtained (21) by putting (22) into (20),
respectively. The proof is finished.

Similarly, we may get the asymptotic expression for user
U1. the average asymptotic BLER equation that correlates to
the performance of user U2 is provided by

ε̃
Asym
U2

= −2θ̃2ϕ ln
(√

θ̃2ϕ

)
, (23)

where θ̃2 =
hU2d

α
0 d

α
2

ρS
(
b2−b1hU2

) .
Remark 2: From the average asymptotic BLER at

U2 in (23), it provides some useful insight as follows: i) the
BLER at U2 is improved when increasing the transmit SNR
ρS , the average of channel λh0 , λh̄1 and λh̄1 . ii) The BLER at
U2 satisfy b2 −b1hU2 > 0 otherwise The BLER at U2 is one.
iii) The diversity order of U1 is also one.

F. SYSTEM THROUGHPUT ANALYSIS
In order to illustrate the benefits of the investigated system
in terms of latency reduction over its orthogonal equivalent,
we also offer performance measures throughput, focusing on
the influence of the non-zero error probability on progres-
sively decoding the signals at the users. More specifically, the
metric to assess the efficiency of communication across the
constant channel coding rate, R̄Ui , is the throughput in nats per
channel usage (npcu). In mathematical terms, the throughput
is determined by multiplying R̄Ui by the packet that the user
is repeatedly decoding e2e

(
1 − ε̃U1

)
. Furthermore, the total

throughput of the system is represented as [44]

τsystem =
(
1 − ε̃U1

)
R̃U1 +

(
1 − ε̃U2

)
R̃U2 . (24)

IV. NUMERICAL RESULTS
In this section, Monte Carlo simulations (labeled as ‘‘Sim.’’)
are employed to validate the analytical computation, (labeled
as ‘‘Ana.’’), approximation curves (labeled as ‘‘Appr.’’), and
asymptotic results (labeled as ‘‘Asym.’’). These simulations
are conducted using the settings outlined in Table 3.
Additionally, the equivalent noise power at U1 and U2 was
calculated as σ 2

1 = σ 2
2 = N0 + 10 log (BW ) + NF [dBm]

in [47] and the complexity accuracy trade-off parameter is set

λ (a, b) = H0,2:1,0:0,1
2,0:1,1:1,1

(
(−1; 1, 1) ; (0; 1, 1)

−

∣∣∣∣ (1, 1)
(0, 1)

∣∣∣∣ (1, 1)
(0, 1)

∣∣∣∣ a, b) . (16)
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TABLE 3. Main parameters for our simulations.

FIGURE 2. Average BLER versus PS different L.

FIGURE 3. Average BLER versus ηU1
and ηU2

different PS .

to W = O = 100 to ensure a close approximation. Notably,
our code’s technological innovation lies in the utilization of
symbolic calculations withinMatlab, which has enabled us to
achieve highly accurate results. It should be noted that, in the
case of OMA, the SINR criteria for successful decoding are
specified as γOMAthi = 22Ri − 1, i ∈ {1, 2}.

FIGURE 4. Comparison of average BLER versus PS between HRIS/relay.

FIGURE 5. Average BLER versus blocklength (L), with ηU1
= 150,

ηU2
= 100 and PS =

{
5, 15

}
[dBm].

FIGURE 6. Average BLER versus b1 different L with PS = 15 dBm and
ηU1

= ηU2
= 100.

Fig. 2 shows the BLER versus PS [dBm] with varying the
blocklength for two NOMA users. First, we can observe
that the analytical points nearly match the simulation curves,
confirming the derivations’ correctness. Second, when PS

VOLUME 12, 2024 65271
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FIGURE 7. Average BLER of two users U1 and U2 with L = 200 and ηU1
= 100.

grows, the BLER of both U1 and U2 reduces dramatically.
This is because increasing PS increases the SINR of both
users, resulting in improved BLER performance. We can also
see that when blocklength increases, BLER falls, demon-
strating that short-packet transmission degrades reliability.
Additionally, BLER NOMA performance of U1 is always
better than BLER OMA in the high PS region. Furthermore,
the BLER NOMA performance of U2 is always better than
BLER OMA when LU2 = 100, and worse than BLER OMA
when LU2 = 200.

In Fig. 3, it plots the BLER of two users U1 and U2 versus
the number of information bits. It can be observed that the
BLER is increasing when the information bit is increasing
for two users. The BLER performance of short information
is better than that of the long information. In addition, the
BLER OMA is better than NOMA in short information.
When the information bit increases by 150, the BLERNOMA
is always better than OMA and BLER OMA goes to 1. Fig. 6
plots the BLER versus the power allocation factor b1 with
different blocklength L. First, we can observe that the BLER
of U1 drops when increasing b1. However, the BLER of
U2 keeps growing when increasing b1. It could be explained
that increasing b1 improves the power allocated to U1, which
improves the U1’s BLER. As a result, when increasing
b1 reduces the power provided to the U2, which raises
the BLER. Finally, Fig. 6 indicates that longer blocklength
improved BLER performance for various b1.
In Fig. 4, we compare the average BLER between the

HRIS-aided system and the relay-aided System. The results
show that the performance of the HRIS scheme is better
than the relay scheme. The reason for this is that by suitably
adjusting the phases of the reflecting element, the HRIS can
improve the received SNR and improve the channel quality.

Fig. 5 plots the average BLER of two users versus the
blocklength L = LU1 = LU1 . As can be observed in
Fig. 5, the average BLER of two users is improved when
increasing the blocklength L. In addition, the average BLER
is decreased when the transmit power at BS is increased as in
Fig. 2.

FIGURE 8. System throughput versus PS different L.

Fig 7 shows the BLER ofU1 andU2 versus the distance and
varying the power PS . First, we can easily observe in Fig 7a
and Fig 7b that when increasing the distance fromBS toHRIS
d0, from HRIS to U1 d1, and from HRIS to U2 d2 the BLER
is growing. This comes from the fact that whenU1 andU2 are
far from BS and RHIS, the SINR ofU1 andU2 detects its own
signal is difficult which means the SINR of two users will be
dropping. On the other hand, the BLER performance will be
improved when increasing the power at BS PS , which comes
from PS growth leading to SNR increasing.

Fig. 8 depicts the throughput of the system versusPS [dBm]
and different the blocklength L. As shown in Fig. 8, We can
see that the throughput increases as the transmit power
increases, indicating that increased transmit power also
improves transmission efficiency. Because of the restricted
packet length and quantity of information bits, increasing
transmit power cannot indefinitely improve throughput.
Additionally, decreasing the blocklength improves through-
put performance since it is based on the relation R̄Ui =

ηUi/LUi , where R̄Ui falls as LUi gets longer and the
throughput consequently declines continually.
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V. CONCLUSION
In this paper, we study the SPC in HRIS-aided downlink
NOMA IoT network, where HRIS supports transmitting the
FBL packets from BS to two users. The performance of the
proposed system in terms of BLER and throughput is inves-
tigated. The closed-form expression BLER and throughput
are derived by adopting the approximate Chebyshev-Gauss
quadrature and the EGBFHF, and verified by Monte Carlo
simulations. In terms of BLER, the performance of the
HRIS-NOMA system is compared to that of the HRIS-
OMA system. According to the results, the HRIS-NOMA
system outperforms the HRIS-OMA system. Furthermore,
the result shows the effect of the power allocation factor on
the performance of the proposed system, and the optimization
approach will be left for future development. Finally, the
packet length may be tuned to get the greatest ET of the
proposed system.

APPENDIX A
PROOF OF LEMMA 1
Assuming that

∣∣h̄1∣∣ and
∣∣h̄2∣∣ are independent random

variables with Rayleigh distribution parameters λh̄1 and λh̄2 ,
respectively, and that

∣∣h̄1∣∣ and ∣∣h̄2∣∣ are sorted, the CDF of
the ordered random variable |h2| = min

(∣∣h̄1∣∣, ∣∣h̄2∣∣) may be
computed as

F|h2| (y) = Pr (|h2| < y) = Pr
(
min

(∣∣h̄1∣∣ , ∣∣h̄2∣∣) < y
)
. (25)

This may be rewritten as

F|h2| (y) = 1 −
(
1 − Pr

(∣∣h̄1∣∣ < x
)) (

1 − Pr
(∣∣h̄2∣∣ < x

))
.

(26)

It is noted that, we can rewrite (26) as

F|h2| (y) = F|h̄1| (y) + F|h̄2| (y) − F|h̄1| (y)F|h̄2| (y) . (27)

By taking into account that
∣∣h̄1∣∣ and ∣∣h̄2∣∣ follow Rayleigh

distribution, (27) can be rewritten as

F|h2| (y) =

2∑
i=1

(
1 − e

−
y2
λh̄i

)
−

2∏
j=1

1 − e
−

y2
λh̄j

. (28)

where λh̄1 = E
{∣∣h̄1∣∣2} and λh̄2 = E

{∣∣h̄2∣∣2} are the mean

of the corresponding unordered random variables
∣∣h̄1∣∣2 and∣∣h̄2∣∣2, respectively. By setting y =

√
x, we have F

|h2|2
(x) =

F|h2|
(√

y
)
, the CDF of |h2|2 can be obtained as

F
|h2|2

(x) =

2∑
i=1

(
1 − e

−
x

λh̄i

)
−

2∏
j=1

(
1 − e

−
x

λh̄j

)
, (29)

From (3b), the CDF of F
|A2|

2 (z) is calculated as

F
|A2|

2 (z) = Pr
(
|h0|2|h2|2 < z

)
. (30)

Then, (30) is rewritten as follows

F
|A2|

2 (z) = Pr
(

|h2|2 <
z

|h0|2

)

=

∞∫
0

f
|h0|2

(x)
[
F

|h2|2

( z
x

)]
dx. (31)

Substituting (8a) and (29) into (31), F
|A2|

2 (z) can be
obtained by

F
|A2|

2 (z) =
1

λh0

∞∫
0

e
−

x
λh0

[
2∑
i=1

(
1 − e

−
z

xλh̄i

)

− −

2∏
j=1

(
1 − e

−
z

xλh̄i

) dx
= D1 (z) + D2 (z) − D3 (z) , (32)

we have D1 (z), D2 (z) and D3 (z) calculated as follows

D1 (z) =
1

λh0

∞∫
0

e
−

x
λh0

(
1 − e

−
z

xλh̄1

)
dx, (33a)

D2 (z) =
1

λh0

∞∫
0

e
−

x
λh0

(
1 − e

−
z

xλh̄2

)
dx, (33b)

D3 (z) =
1

λh0

∞∫
0

e
−

x
λh0

(
1 − e

−
z

xλh̄1

)(
1 − e

−
z

xλh̄2

)
dx.

(33c)

With the help of [55, Eq. (3.324.1)] and after some
algebraic manipulations, the CDF of F

|A2|
2 (z) can be

obtained by

F
|A2|

2 (z) = 1 −
√
4ϕzK1

(√
4ϕz

)
. (34)

The proof of Lemma 1 is completed.

APPENDIX B
PROOF OF LEMMA 2
Notice that |h1| = max

(∣∣h̄1∣∣ , ∣∣h̄2∣∣); thus, the CDF of |h1| can
be obtained as

F|h1| (y) = Pr (|h1| < y) = Pr
(
max

(∣∣h̄1∣∣ , ∣∣h̄2∣∣) < y
)
. (35)

By accounting for the independence of
∣∣h̄1∣∣ and

∣∣h̄2∣∣,
F|h1| (y) can be written as

F|h1| (y) = Pr
(∣∣h̄1∣∣ < y

)
Pr
(∣∣h̄2∣∣ < y

)
= F|h̄1| (y)F|h̄2| (y) .

(36)

It is able to be expressed as

F|h1| (y) =

(
1 − e

−
y2

λh̄1

)(
1 − e

−
y2

λh̄2

)
. (37)
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By setting y =
√
x, (37) returns as

F
|h1|2

(x) =

2∏
j=1

(
1 − e

−
x

λh̄j

)
. (38)

Next, the CDF of F
|A1|

2 (z) is calculated as follows

F
|A1|

2 (z) = Pr
(
|h0|2|h1|2 < z

)
. (39)

It is noted that we can rewrite (39) as

F
|A1|

2 (z) = Pr
(

|h1|2 <
z

|h0|2

)

=

∞∫
0

f
|h0|2

(x)
[
F

|h1|2

( z
x

)]
dx. (40)

Substituting (38) and (8a) into (40), the CDF of F
|A1|

2 (z)
is written as

F
|A1|

2 (z) =
1

λh0

∞∫
0

e
−

x
λh0

2∏
j=1

(
1 − e−

z
x

)
dx

=
1

λh0

∞∫
0

e
−

x
λh0 −

1
λh0

∞∫
0

e
−

x
λh0

×

e− z
xλh̄2 − e

−
z

xλh̄1 + e
−

z
x

(
1

λh̄1
+

1
λh̄2

) dx

= 1 − C1(z) − C2(z) + C3(z), (41)

in which

C1(z) =
1

λh0

∞∫
0

e
−

x
λh0

−
z

xλh̄2 dx, (42a)

C2(z) =
1

λh0

∞∫
0

e
−

x
λh0

−
z

xλh̄1 dx, (42b)

C3(z) =
1

λh0

∞∫
0

e
−

x
λh0

−
z
x

(
1

λh̄1
+

1
λh̄2

)
dx. (42c)

Applying [55, Eq. (3.324.1)] and some polynomial expan-
sion manipulations, C1, C2 and C3 can be calculated as

C1(z) =

√
4z

λh0λh̄2
xK1

(√
4z

λh0λh̄2
x

)
, (43a)

C2(z) =

√
4z

λh0λh̄1
xK1

(√
4z

λh0λh̄1
x

)
, (43b)

C3(z) =
√
4ϕzxK1

(√
4ϕzx

)
, (43c)

where ϕ =
1

λh0

(
1

λh̄1
+

1
λh̄2

)
.

Substituting (43c), (43b) and (43a) into (41), the CDF of
|A1|

2, is given by

F
|A1|

2 (z) = 1 −

√
4z

λh0λh̄2
xK1

(√
4z

λh0λh̄2
x

)

−

√
4z

λh0λh̄1
xK1

(√
4z

λh0λh̄1
x

)
+
√
4ϕzxK1

(√
4ϕzx

)
. (44)

The proof of Lemma 2 is complete.

APPENDIX C
PROOF OF PROPOSITION 2
From (10), we have CDF of F

γ
x1
U1

is given by

F
γ
x1
U1

(x) = 1 −
√

υ2xK1
(√

υ2x
)
−

√
υ1xK1

(√
υ1x

)
+

√
υ3xK1

(√
υ3x

)
, (45)

where υ1 =
4dα

0 d
α
1

ρSb1λh0λh̄1
, υ2 =

4dα
0 d

α
1

ρSb1λh0λh̄2
and υ3 =

4ϕdα
0 d

α
1

ρSb1
.

Next, the average BLER analysis of U1 in the HRIS-
assisted downlink NOMA system is given by

ε̃U1 = gU1

√
LU1

βU1∫
αU1

F
γ
x1
U1

(x)dx

= 1 − gU1

√
LU1

× [I (υ2, x) + I (υ1, x) − I (υ3, x)] , , (46)

Here I (a, x) =

βU1∫
αU1

√
axK1

(√
ax
)
dx.

According to (46), I (a, x) is obtained as follows

I (a, x) =

βU1∫
αU1

√
axK1

(√
ax
)
dx

=

∞∫
0

H
(∣∣∣∣ x

αU1

∣∣∣∣− 1
)
H
(
1 −

∣∣∣∣ x
βU1

∣∣∣∣)
×

√
axK1

(√
ax
)
dx, (47)

where H (x) denotes the Heaviside step function.
To solve the integrals (47), we utilize the following

transformations involving the Meijer G-function [58, Chpt.
8.4]:

H (1 − |x|) = G1,0
1,1

(
x

∣∣∣∣ 10
)

, (48)

H (|x| − 1) = G0,1
1,1

(
x

∣∣∣∣ 10
)

, (49)

Kv (x) xµ
= 2µ−1G2,0

0,2

(
x2

4

∣∣∣∣ −
1
2 (µ + v) , 1

2 (µ − v)

)
,

(50)
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∞∫
0

xλ−1Gm,0
p,q

(
ηx

∣∣∣∣ apbq
)
Gm2,n2
p2,q2

(
θxh

∣∣∣∣ cp2dq2

)
Gm3,n3
p3,q3

(
δxk

∣∣∣∣ ep3fq3

)
dx = η−λ

×H0,m:m2,n2:m3,n3
q,p:p2,q2:p3,q3

( (
1 − bq − λ; h, k

)(
1 − ap − λ; h, k

) ∣∣∣∣ (cp2 , 1)(
dq2 , 1

) ∣∣∣∣ (ep3 , 1)(
fq3 , 1

) ∣∣∣∣ θ

ηh
,

δ

ηk

)
. (51)

I (a, x) =

∞∫
0

G2,0
0,2

(
a
4
x

∣∣∣∣ −

1, 0

)
G1,0
1,1

(
1

βU1

x

∣∣∣∣ 10
)
G0,1
1,1

(
1

αU1

x

∣∣∣∣ 10
)
dx

=

(
4
a

)
H0,2:1,0:0,1
2,0:1,1:1,1

(
(−1; 1, 1) ; (0; 1, 1)

−

∣∣∣∣ (1, 1)(0, 1)

∣∣∣∣ (1, 1)(0, 1)

∣∣∣∣ 4
aβU1

,
4

aαU1

)
(52)

and the following connection established by using the identity
[57, Eq. (2.3)] and the connection [58, Eq. (8.3.2.21)] is
displayed on the next page.

In (51), as shown at the top of the page, Hm,n:s,t:i,j
p,q:u,v:e,f (·)

stands for the extended generalized bivariate Fox H-function
(EGBFHF) [57]. This function is easily assessed with math-
ematical tools such as Mathematica [59] and Matlab [60].
Substituting (50), (49) and (48) into (47) and using (51)

I (a, x) is given by (52), as shown at the top of the page.
Substituting (52) into (46), we can obtain (15).
The proof of Proposition 2 is completed.

APPENDIX D
PROOF OF PROPOSITION 3
Form (9), the CDF of F

γ
x2
U2

is given by

F
γ
x2
U2

(z) = 1 −

√
4ϕdα

0 d
α
2 z

ρS (b2 − b1z)
K1

√ 4ϕdα
0 d

α
2 z

ρS (b2 − b1z)

 .

(53)

The analytical formulations of the effective capacities
U2 are provided by

ε̃U2 =gU2

√
LU2

βU2∫
αU2

F
γ
x2
U2

(x)dx

=1 − gU2

√
LU2

βU2∫
αU2

√
4ϕθ̂2 (x)K1

(√
4ϕθ̂2 (x)

)
dx,

(54)

where θ̂2 (x) =
dα
0 d

α
2 x

ρS (b2−b1x)
.

The integral (54) is first solved by expressing the Besselk
function with the Meijer G-function using (50), and ε̃U2 is
obtained as

ε̃U2 = 1 − gU2

√
LU2

βU2∫
αU2

G2,0
0,2

(
ϕθ̂2 (x)

∣∣∣∣ −

1, 0

)
dx. (55)

Though obtaining a closed-form formula for (55) is
challenging, we can acquire an accurate approximation for
it. We have used the Gaussian-Chebyshev quadrature [61,
Eq. (25.4.38)], we have

b∫
a
F (x) dx =

1∫
−1

F
(
y
( b−a

2

)
+
( a+b

2

)) b−a
2 dy

≈
b−a
2

π
N

N∑
n=1

√
1 − υ2

wF
(
υw
( b−a

2

)
+
( a+b

2

)) , b < ∞

(56)

Substituting (56) into (55), we can obtain an approximation
of (17)

The proof of Proposition 3 is completed.
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