
Received 18 April 2024, accepted 2 May 2024, date of publication 6 May 2024, date of current version 13 May 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3397467

A C-ITS Architecture for MEC and Cloud
Native Back-End Services
JAVIER ARIN 1,2, GORKA VELEZ 1, AND PAUL BUSTAMANTE 2,3
1Fundación Vicomtech, Basque Research and Technology Alliance (BRTA), 20009 Donostia-San Sebastian, Spain
2Tecnun, Universidad de Navarra, 20018 Donostia-San Sebastian, Spain
3CEIT-Basque Research and Technology Alliance (BRTA), 20018 Donostia-San Sebastian, Spain

Corresponding author: Gorka Velez (gvelez@vicomtech.org)

This work was supported in part by the European Union’s Horizon 2020 Research and Innovation Program through the Project Monetizing
car & mobility data for new Entrants, Technologies and Actors (5GMETA) under Grant 957360.

ABSTRACT Advances in connectivity and computing infrastructure facilitate the introduction of innovative
Cooperative Intelligent Transport Systems (C-ITS) services. However, meeting the requirements of these
highly demanding services calls for novel computing architectures that handle extensive device connections,
minimize latency, and support multiple resource-intensive services concurrently. To overcome these
challenges, this work presents an architecture that comprises three layers: 1) on-board unit (OBU)mainly as a
data producer; 2) intermediate edge layer where low-latency backend services can be deployed; and 3) cloud
layer for non-real-time backend services. The OBU software stack implements the ETSI C-ITS standard
and supports multicast over the cellular network. The edge layer includes an in-memory database, and the
cloud layer a persistent database. Each layer has its own Application Programming Interface (API) for data
consumption. We conducted several experiments to demonstrate the feasibility of our proposed system that
ensures scalability and interconnection between vehicles, edge and cloud servers. We also assess the delay
caused by each of the elements of the architecture, and we discuss the potential solutions for the identified
issues.

INDEX TERMS V2X, C-V2X, 5G, MEC, cloud, C-ITS.

I. INTRODUCTION
In the rapidly evolving transportation landscape, the advent
of Cooperative Intelligent Transport Systems (C-ITS) has
led to a paradigm shift that holds unprecedented promise
for enhancing road network safety, efficiency, and sustain-
ability. By seamlessly integrating advanced communication
and information technologies into vehicles and infrastruc-
ture, C-ITS facilitates real-time data exchange, cooperative
decision-making, and dynamic coordination among all ele-
ments of the transportation ecosystem. The data exchange
between ITS stations such as cars, roadside units (RSU)
or even smart devices is handled by mature ad-hoc short-
range communication technologies like ETSI ITSG5 or IEEE
WAVE, both based on 802.11p and complemented by wide
area communication systems like 4G and 5G.

The associate editor coordinating the review of this manuscript and
approving it for publication was Shaohua Wan.

With advancements in connectivity and data handling
technology, along with the development of robust infras-
tructures, a wave of intriguing and innovative Intelligent
Transport Systems (ITS) services and applications has
emerged. Nevertheless, these novel services bring forth new
challenges, particularly in the realms of low latency and
high throughput. Addressing these demands necessitates the
creation of novel computing architectures capable of accom-
modating extensive device connectivity, ensuring minimal
latency, and supporting multiple resource-intensive services
concurrently.

This paper aims to demonstrate that it is possible to
build a three-layer architecture composed of On-Board Units
(OBUs), Multi-Access Edge Computing (MEC) and cloud
that is capable of gathering and providing timely data toMEC
and cloud-native back-end services.

The existing solutions are heterogeneous. Some are target-
ing only ad-hoc short-range communication technologies [1]

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 64531

https://orcid.org/0009-0001-7078-108X
https://orcid.org/0000-0002-8367-2413
https://orcid.org/0000-0003-3156-280X


J. Arin et al.: C-ITS Architecture for MEC and Cloud Native Back-End Services

and therefore, do not leverage MEC or Cloud technologies
that allow offloading computational tasks and deploying
advanced ITS services by third parties. Others actually
implement a MEC-Cloud based architecture. However, they
lack either storage capability [2] or explicit security measures
[3], [4], [5], [6]. Moreover, to the best of the authors’
knowledge, no work in the literature proposes an implemen-
tation of the C-ITS stack with multicast over the cellular
network.

The architecture proposed in the present work has several
key features that collectively enhance the Cooperative
Intelligent Transport Systems (C-ITS) framework, enabling
seamless communication and data exchange among OBUs,
MEC, and cloud. The key features can be summarised as
follows:

• Enhanced OBU Communication Stack: The proposed
OBU communication stack implements the ETSI C-ITS
standard and supports versatile ETSI Cooperative
Awareness Messages (CAMs) and Cooperative Position
Messages (CPMs) exchange options, including commu-
nication between OBUs throughMulticast over Ethernet
or 5G. The stack makes handling CAM and CPM
messages easier by converting binary messages to and
from the JSON text format and using MQTT as an
abstraction layer. Additionally, the stack incorporates
support for Single Hop Broadcast and implements
security mechanisms.

• MEC Access Network Application: This software mod-
ule for theMEC that acts as an access network efficiently
receives CAMs and CPMs in PER format from sources
such as Multicast over 5G and seamlessly relays them
to the ITS back-end service via MQTT. By bridging
communication between vehicular components and the
MEC, this application enhances data availability and
accessibility within the ecosystem.

• Dual ITS Back-End Service: A novel ITS back-end
service is proposed, offering extensive storage and
data delivery capabilities for CAMs and CPMs. The
data storage system is designed with a dual structure,
comprising cache databases situated within individual
MEC servers and a cloud-based database optimised
for handling substantial data volumes. The cache
databases ensure rapid data insertion and low-latency
retrieval, catering to real-time applications. On the other
hand, while managing significant data loads, the cloud
database prioritises efficiency over constant insertion
times and low latency, making it suitable for non-real-
time applications.

To the best of the authors’ knowledge, an architecture
including the mentioned features is not available in the
literature. Collectively, these features empower a C-ITS
architecture where OBUs, MEC, and cloud infrastructures
synergize to optimise data communication, storage, and
retrieval. The proposed architecture makes vehicle and
roadside infrastructure data accessible to MEC and cloud-
based back-end services, using standard vehicular messaging

formats. The study conducted in the present paper clari-
fies how such an architecture can be implemented using
open-source tools and identifies the impact of each architec-
ture element on the total pipeline latency.

The rest of the paper is organised as follows: Section II
reviews the related work, Section III describes the architec-
ture and implementation of the proposed system, Section IV
describes how the evaluationwas conducted, SectionV shows
the results obtained in the experimentation, and Section VI
concludes the paper.

II. RELATED WORK
This section presents an overview of the state of the art
about vehicular communications, C-ITS messaging, MEC
and cloud technologies. Then, it reviews the ITS messaging
architectures found in the literature, highlighting the differ-
ences with the present work.

A. VEHICULAR COMMUNICATION STANDARDS
The landscape of vehicular communication standards
is evolving, with a shift from Dedicated Short Range
Communication (DSRC) to Cellular Vehicle-to-Everything
(C-V2X) technology. While DSRC initially gained traction,
C-V2X is gaining momentum through hardware like
Qualcomm’s 9150 chipset, exemplified by Commsignia’s
ITS-RS4D and Cohda Wireless’ MK6, which supports both
DSRC, New Radio (NR), and Long Term Evolution (LTE)
C-V2X [7]. ITS-G5, the European standard for DSRC in ITS,
is optimized for cost and simplicity and inherently supports
distributed operation. This is what is commonly referred to
as V2X.

The performance of DSRC or ITS-G5 and LTE C-V2X
is compared in several studies. Maglogiannis et al. [8]
conducted an evaluation revealing that, for short-range
technologies, C-V2X PC5 generally exhibits a greater range
than ITS-G5. However ITS-G5 offers lower latency than
C-V2X PC5 in low-density scenarios. Zhao et al. [9]
performed simulations showing that the difference in com-
munication reliability between DSRC and LTE is small at
short communication distances. LTE ensures more reliable
communication when vehicle density is low, whereas DSRC
outperforms LTE in high-density scenarios. Additionally,
Petrov et al. [10] noted that LTE C-V2X is suitable for
most low-frequency Vehicle-to-Infrastructure (V2I) services
within a limited communication range (<600m) and for lower
traffic intensities.

Using NR V2X instead of LTE-based C-V2X offers
advantages like higher throughput, higher reliability, and
lower latency V2X services for new sidelink functions [11].
The results in [12] show that denser infrastructure deploy-
ments are very beneficial for both technologies and their
modes. In this study, the upgrade from 2 base stations to
4 base stations offered significant improvements for all the
considered V2I services as well as C-V2X technologies
and their modes, particularly in the case of 5G-based
C-V2X.

64532 VOLUME 12, 2024



J. Arin et al.: C-ITS Architecture for MEC and Cloud Native Back-End Services

B. C-ITS MESSAGING STANDARDS
In the realm of ad-hoc networks, conventional IP routing
faces limitations due to the dynamic nature of these networks,
necessitating alternative routing protocols. While an array
of routing protocols exists for IoT ad-hoc networks, the
European Telecommunications Standards Institute (ETSI)
undertook the development of a custom routing protocol
alongside a comprehensive standard. The standard encom-
passes multiple layers, mirroring the structure of the OSI
model, with each layer serving a distinct purpose: ‘‘Access’’
representing OSI layers 1 and 2, ‘‘Networking & Transport’’
representingOSI layers 3 and 4, and ‘‘Facilities’’ representing
OSI layers 5, 6 and 7 [13].

The first release of the standard addresses the technology-
agnostic aspects of the access layer and outlines spec-
ifications for the ETSI ITS G5 interface [14]. A sig-
nificant highlight of the C-ITS standard is its empha-
sis on compatibility. Existing ad-hoc routing protocols
often require convoluted adaptations to function with IP.
In contrast, the C-ITS standard natively supports IPv6 and
TCP/UDP. Furthermore, the standard introduces the GeoNet-
working protocol, which addresses routing challenges
inherent to ad-hoc networks while accommodating IPv6
compatibility.

GeoNetworking introduces innovative forwarding schemes
such as Single Hop Broadcast, Topologically Scoped Broad-
cast, GeoUnicast, GeoBroadcast, and GeoAnycast. These
schemes leverage geographical addressing and forwarding to
enable efficient packet delivery without the need for elaborate
routing tables.

To ensure low-latency, reliable, and efficient commu-
nications, the C-ITS standard employs mechanisms such
as Status Information Signaling, Priority and Buffering,
and Decentralized Congestion Control. Moreover, public
key infrastructure is harnessed to enhance security, with
cryptographic signatures serving as a safeguard against
potential security breaches.

Some works of the literature have addressed the limi-
tations of the infrastructure-based trust model defined in
the C-ITS standard and have proposed other approaches.
Liu et al. [15] proposed a trust cascading-based emergency
message dissemination model in VANETs, incorporating
entity-oriented trust values into data-oriented trust evalua-
tion. Entity-oriented trust models typically establish trust
relationships between vehicles through factors such as
similarity, experience, and role. Conversely, data-oriented
trust models prioritize assessing the trustworthiness of
received messages rather than the vehicle that broadcasts the
message. A Privacy-Preserving Reputation Updating (PPRU)
scheme for cloud-assisted vehicular networks is proposed
in [16]. A more complex network architecture is introduced
in [17], integrating space segment (including satellites, the
corresponding ground stations, etc.), air segment (including
Unmanned Aerial Vehicles (UAVs), airships, etc.), and
ground segment (including RSUs, BSs, vehicles, etc.). The
same work proposes a privacy-preserving trust management

scheme for emergency message dissemination in space-air-
ground integrated vehicular networks.

The network architecture prescribed by the C-ITS standard
is described in ETSI EN 302 636-3 [18]. A fundamental
distinction is drawn between internal and external networks
within the standard. The internal network of an ITS station
interconnects its constituent components, while external
networks facilitate interconnection between ITS stations and
other network entities.

Three primary external networks are identified within the
C-ITS standard:

• ITS ad-hoc network: Serving as the primary frame-
work, this network encompasses vehicle, roadside,
and personal ITS stations. It leverages short-range
communication technologies such as ITS-G5 (802.11p)
or cellular (LTE, NR) to enable ad-hoc communications.

• Access network:A dedicated network facilitating access
to specific ITS services and applications. It serves as
a bridge between the ad-hoc network and the core
network, enabling communication with road traffic
management centres and back-end services. Access
layers depend heavily on the technology used for
communications. Release 1 of the C-ITS standard
gives a technology-agnostic take on the access layer
as well as a specific implementation for the ITS-G5
communication technology.

• Core network: Offering legacy services akin to regular
internet, this network provides connectivity for services
such as www and email. At the core of the network
architecture resides the ITS station, functioning as both
a communication source and sink. The ITS station plays
a pivotal role in consuming and forwarding data, while
the internal network hosts the ITS stack.

C. MULTI-ACCESS EDGE COMPUTING (MEC)
The advent of 5G, Internet of Things (IoT), and Vehicle
Ad-hoc Networks (VANETs) is driving significant changes
in internet and service distribution. Emerging applications
demand enhanced Quality of Service (QoS), reduced energy
consumption, lower latency, and increased capacity [19].
This impetus has led to the emergence of novel computing
paradigms like fog computing and multi-access edge com-
puting (MEC) [20], [21].

MEC stands out in vehicular applications for its support
of high dynamicity and mobile clients [19], enabling diverse
applications within the context of C-V2X such as coop-
erative autonomous driving [22], collision avoidance [23],
platooning [24], [25], back situation awareness [3], video
streaming between vehicles [4], [5] or Edge Dynamic
Maps [6].
In the context of MEC, resource allocation for client

services is crucial, given real-time application requirements.
Innovative offloading algorithms [26], [27] and mobility-
aware strategies [28], [29], [30] are proposed to optimise
resource distribution and accommodate mobility challenges.

VOLUME 12, 2024 64533



J. Arin et al.: C-ITS Architecture for MEC and Cloud Native Back-End Services

D. CLOUD INFRASTRUCTURE
Cloud infrastructure has become increasingly important in
recent years as organizations have adopted cloud computing
to meet their computing needs. Cloud infrastructure offers
several benefits, including on-demand access to resources,
scalability, and cost savings compared to maintaining
in-house infrastructure [31].

1) ACCESSING CLOUD SERVICES
Many different paradigms have been developed to access
cloud services. The most used ones are Representational
State Transfer API (RESTful or REST API), Remote Pro-
cedure Call (RPC) and publish-subscribe (Pub/Sub) message
brokers [32].

REST APIs are based on the HTTP protocol and use
standard methods to retrieve or modify data, such as GET,
POST, PUT, and DELETE. They are typically request-
response based, with the client sending a request and the
server sending a response, they were first introduced in the
year 2000 [33] and have shaped the internet since [34].

RPC is a technology that enables a computer program
to initiate the execution of functions or procedures located
in a separate program or device as if they were accessible
and executable within the local program. It is often used
in distributed systems to enable communication between
components located on different machines or networks [35].
Pub/Sub message brokers are used for building real-time

data pipelines and streaming applications, as well as enabling
communication between microservices and other distributed
systems [36].

2) CLOUD DATA STORAGE
Data storage is one of the key components of cloud
computing [37]. The demand for high computing capabilities
often comes with the need for high data storage volumes.
When classifying data storage by data availability, we can
differentiate between

• In-Memory databases: in-memory or cache databases
are designed to be fast, with low latencies and high
read and write speeds. They use simple data models
like key-value but sacrifice data consistency for speed.
Examples of in-memory databases include Memcached
and Redis [38].

• Persistent databases: These databases support very
complex data models and queries and preserve data
consistency at the expense of speed. PostgresDb or
MongoDb are examples of persistent or non-cache
databases.

Another key classification between databases is if they are
relational or non-relational [39].

• Relational or SQL: They are based on the relational
model, which organises data into tables of rows and
columns. They excel at storing structured data.

• Non-relational or No-SQL: They are not based on the
relational model and can handle unstructured data. They

are more horizontally scalable than SQL databases but
do not offer transactions.

E. ITS MESSAGING ARCHITECTURES
Vehicular communication standards, C-ITS messaging stan-
dards, Edge, Cloud or in general, IoT technologies are
considered when building a messaging or data-sharing
architecture for ITS. In the literature, several approaches can
be found that combine these elements in different ways.

An approach to bridge C-ITS messages over MQTT
to Apache Kafka is presented in [40]. This facilitates a
topic mapping between MQTT and Kafka, from vehicles
and roadside units to a central application, and in the
opposite direction. This study validates the feasibility of
Kafka and MQTT as possible building blocks in a C-ITS
architecture. Several messaging technologies (Apache Kafka,
Eclipse Zenoh, Apache ActiveMQ, Apache Pulsar and
KubeMQ) applicable in vehicular data platforms are com-
pared in [41]. However, the study does not consider MQTT,
which is the messaging technology used in the present
paper.

An intra- and inter-vehicle sensory data collection system
is presented in [42]. The ETSI C-ITS stack is only
implemented for ITS-G5. The data is also shared with a
smartphone using WiFi and MQTT. The collected data by
the ITS-G5 station or the smartphone are sent to a cloud
platform using MQTT. ITS-G5 is also used in [43], in this
case for the communication between vehicles and RSUs.
The RSUs are deployed with a cellular link or fibre optics
connection, enabling connection to a cloud-based MQTT
broker. This work is continued in [44], proposing a secure
communication design based on a multi-layered blockchain
architecture.

A 5G and MEC-enabled Server Local Dynamic Map
(S-LDM), aimed at collecting information about vehicles,
based on standard-compliant messages, is presented in [45].
In the proposed architecture, AMQP is used for collecting
data, and REST API for making data accessible to other
MEC services. In the implemented infrastructure, a single
instance of the S-LDM is able to manage up to at least
550 vehicles. 5G and MEC technologies are also leveraged
in [2], where a novel Network Application concept applied
to the automotive domain is introduced. In the context of
this work, a Network Application is essentially a virtual
application that can be deployed in a 5G infrastructure
and can use 5G services. A Network Application platform
is proposed that includes the integration of mobile far-
edge resources. However, the work is purely theoretical and
no experimentation results are presented for comparison.
Other works [3], [4], [5], [6] also use 5G, MEC and cloud
technologies, and include storage capability, but they all lack
explicit security measurements and the implementation of
the C-ITS stack with multicast, as it is done in the present
paper.

To sum up, the present work differentiates from the
scientific literature (see Table 1) by 1) proposing an ETSI

64534 VOLUME 12, 2024



J. Arin et al.: C-ITS Architecture for MEC and Cloud Native Back-End Services

FIGURE 1. High-level system architecture.

C-ITS communication stack through Multicast over 5G,
2) proposing a 3-layer architecture based on OBU, MEC and
cloud that implements the security measures defined in the
ETSI C-ITS standard, 3) proposing a data storage system
with a dual structure, formed by a cache database in the
MEC and persistent database in the cloud, and 4) studying
in detail the impact of each architecture element on the
total pipeline latency, paving the way for future enhanced
architectures.

TABLE 1. Architecture elements and features implemented on each work.

III. ARCHITECTURE IMPLEMENTATION
Figure 1 shows the proposed system architecture. Vehicles
send standard ETSI C-ITS messages that are captured by the
MEC. The MEC inserts the received data into two different
databases: an in-memory database, and a persistent database.
The low-latency applications running in the MEC access the
in-memory database, while the cloud applications access the
persistent database. The proposed architecture is therefore
divided into different elements: On-board Unit (OBU) stack,
MEC hook, ITS back-end service, and Consumer APIs.
In the following subsections, each element is described in
detail.

A. OBU STACK
The OBU software contains the implementation of the
whole C-ITS communications stack, from the access layer
to the facilities layer, offering a usable API for appli-
cations. Due to the restricted resources found commonly
in OBU hardware, the programming language chosen is
C++11.

The software listens to multicast, raw ethernet or Cohda
Wireless MK5 OBU’s packets from the selected interface.

FIGURE 2. Complete stacks with different access layer implementations.

The original ETSI C-ITS standard does not specify a
multicast access layer. Due to the lack of support of the
standard by conventional routers, a multicast bridge is needed
for multi-network simulations, whereas the raw ethernet
access layer works in single-network simulations.

The proposed software architecture resembles the stan-
dard. It is divided into different sequential layers that act as
a pipeline. Each step of the pipeline has a set of specific
tasks. An MQTT message broker is used as an API between

VOLUME 12, 2024 64535



J. Arin et al.: C-ITS Architecture for MEC and Cloud Native Back-End Services

the facilities and the application layers. The facilities layer is
extendable to suit different use cases such as CAM message
generation and codification, CPMmessage reception or Local
Dynamic Map generation.

The OBU software architecture is greatly shaped by
Vanetza [46]. Vanetza implements some parts of the standard
as well as provides a framework to extend the stack
capabilities. It currently implements a GeoNetworking router
with SHB and GeoBroadcasting forwarding support. It can
also work with Basic Transport Protocol (BTP) which is
the connectionless transport protocol defined by the standard
as well as implementing a Public Key Infrastructure (PKI)
for the secure signing of the packets. Vanetza acts as the
base-building block for the entire OBU software.

Vanetza is designed to work as a single-thread event
loop. The proposed system is asynchronously listening for
incoming packets as well as listening for software timers.
These timers are used to start all the services that need to be
called periodically, such as the CAMmessage generation and
the CPM message generation.

1) THE EVENT LOOP
The event loop works by asynchronously polling different
event sources. Once one of these event sources triggers an
event, the event is posted in the loop and the loop takes care of
it. The loop forwards the event to the event dispatcher which
decides where which system should handle the event. In the
case of receiving a packet, the packet reception pipeline takes
care of processing the packet and forwarding it to the proper
facility. Figure 3 shows the flow architecture of the event loop
implemented.

FIGURE 3. Event loop architecture.

Depending on the timer source, the event dispatcher runs
the CAM generation and transmission pipeline or the CPM
transmission pipeline. Finally, if anMQTT event is issued, the
event dispatcher runs the pipeline dedicated to receiving the
CPM and storing the CPM until the next CPM transmission
is needed.

A scheduler was built to share resources for the periodical
tasks, such as updating the MQTT status or sending
CAMs/CPMs. While periodic tasks work in conjunction with
the scheduler, the packet reception is out of the scheduler and
always starts immediately.

2) PACKET RECEPTION PIPELINE
As the communications stack is bidirectional, we can separate
it into incoming packets and outgoing packets. A sequence
diagram of the reception pipeline is shown in Figure 4.
When a packet is received in the access layer, it is processed
considering the type of access layer used.

• For the Multicast access layers, the packet is received
and the IP/UDP Multicast headers are stripped by the
OS. The remaining packet is stored in a buffer and
passed to the network layer.

• For the raw Ethernet access layer, it depends on whether
it receives ITS-G5 packets using the Cohda Wireless
SDK or via Ethernet. When receiving ITS-G5 packets,
the ITS-G5 specific headers are removed by the Cohda
wireless SDK, and the packet is passed to the network
layer.We check and remove the Ethernet header and pass
the packet up to the network layer when using Ethernet.

Once on the network layer, GeoNetworking takes care of
the packet. GeoNetworking uses its own headers to know
whether the packet is for the current ITS station or for another
one. GeoNetworking packet header fields and structure can
be found in [47].

Vanetza currently only supports GeoBroadcast packets and
single hop broadcast (SHB). The forwarding of the packets is
handled by Vanetza in the following way:

1) First, the network layer receives an encoded packet
with the packet structure shown in Figure 5. If the
packet does not follow this structure in any of the
following steps, it is discarded.

2) The basic header is processed. It first checks the version
and then the NH parameter to see if the next header is
a secured header or not.

3) If the packet is not secured, it jumps to step 4.
Otherwise, it is passed to the security entity, where its
signature is validated. If the signature is invalid, the
packet is dropped, whereas if the signature is valid, the
common header is passed to the next step.

4) The common header is processed. First, the maximum
hop limit of the header is checked. Then all packets that
are pending forwarding are forwarded.

5) The Header Type (HT) of the packet is checked.

Different forwarding schemas are activated depending on
the packet’s HT field.

• If the HT parameter is 5, a single hop broadcast packet
has been received, and the SHB extended header is read
and directly sent to the transport layer.

• If the HT parameter is 4 the packet is processed by the
GeoBroadcasting mechanism

64536 VOLUME 12, 2024



J. Arin et al.: C-ITS Architecture for MEC and Cloud Native Back-End Services

FIGURE 4. Packet reception pipeline.

FIGURE 5. GeoNetworking packet structure.

1) The ITS station determines if it is inside the target
geographical area by consulting the GeoBroadcast
extended header.

2) If the ITS station is inside the area, the packet
payload is passed to the transport layer. If the
station is not inside the area, the packet is
forwarded to the next station that is the closest to
the target area.

Once on the transport layer, the protocol ruling the
next steps is the Basic Transport Protocol (BTP). BTP is
quite simple in that its only job is to provide for facility
demultiplexing. It is a 4-byte header protocol that requires
minimal processing and just stores the target and source ports.
It does not provide any reliability mechanism and assumes
other layers to provide reliability if needed.

The packets that are moved to this layer are demultiplexed
to the facility listening for the port that matches the BTP
port. So, packets belonging to CPM are delivered to the CPM
facility application, whilst CAM packets are handed to the
CAM facility application.

In packet reception, both facility applications work very
similarly. They decode the payload of the packet without
taking into account any header and store it in an intermediate
C++ representation object. then, RapidJSON is used to parse
the C++ object to a valid JSON which is dispatched to the
MQTT broker, and applications subscribed to it receive the
JSON.

3) PACKET GENERATION PIPELINE
The packet generation pipeline starts on the facility layer that
requests to send a message. Figure 6 shows the sequence

diagram of this pipeline. If the requested message is a
CAM, the facility layer generates a new CAM message
using the available parameters in a C++ object and encodes
it using Packed Encoding Rules (PER) encoding. If the
requested message is a CPM, the facility checks whether
a CPM has already been received or not. If a CPM has
already been received via MQTT, it is encoded. A default
CPM packet is generated and encoded if no CPM has been
received.

Once the packet is encoded, it is passed down to the
transport layer with an indication object containing the
desired destination. In the case of CPM and CAM messages,
the destination is always a single-hop broadcast.

The transport layer takes the encoded packet, adds
its source/destination port header to the head of the
packet and passes it down to the network layer with the
indication.

In the network layer, the following steps are followed:
1) A SHB extended header is added and filled.
2) A Common header is added and filled.
3) A Basic Header is added and filled.
4) The packet is signed, and a security header is added if

security is activated.
5) If there is any neighbour, it sends the packet to the

access layer. If there is no neighbour, it stores the packet
in the forwarding packet buffer instead.

Finally, in the access layer, the specific operations of the
selected layer are executed, and the packet is sent.

4) MQTT PIPELINE
TheMQTT can be subdivided into the diffusion and reception
pipes. These pipelines are shown in Figure 7. The diffusion
one is embedded in the packet reception pipeline and emits
packets received by the facility layers to the applications that
are subscribed to it.

The MQTT CPM reception pipeline starts in user appli-
cations. User applications that want to send a CPM generate
a JSON version of the CPM and send it through the MQTT
API to the CPM facility. The CPM facility stores the latest
received CPM. The stored CPM is not sent until the CPM

VOLUME 12, 2024 64537



J. Arin et al.: C-ITS Architecture for MEC and Cloud Native Back-End Services

FIGURE 6. Packet diffusion pipeline.

generation timer triggers by using the packet generation
pipeline.

FIGURE 7. MQTT pipeline.

B. MEC HOOK
The MEC hook is the software responsible for bridging the
VANET and the core network. It corresponds to the access
network and passes all the received data to the traffic back-
end services. It must handle high I/O loads and decode many
packets, but it would run on much more powerful hardware
than the OBUs.

The MEC hook uses the same architecture as the OBU
software except for packet decoding andMQTT transmission.
The OBU software is completely single-threaded, whereas

the MEC hook uses a hybrid approach. Due to the internal
structure of Vanetza, everything must be single threaded up to
the facility layer, so packets are captured and forwarded to the
facility layer sequentially in the main thread. In the facilities
layer, we use worker threads.

Many different approaches could be taken, but thread
pools give the best ratio between efficiency and scaling [48].
A thread pool would not let threads starve for resources and
would be able to process in parallel. Figure 8 shows the
functional structure of the thread pool.

We take advantage of the fact that each packet in the MEC
hook is independent of the others, so they can be processed
in parallel without having to worry about synchronisation.
The only synchronisation point is the message queue for the
MQTT. This queue stores themessages until theMQTT client
dispatches them.

C. ITS BACK-END SERVICE
The ITS back-end service stores all the CAM and CPM data
received by different MEC hooks. A central cloud computing
system stores the data for non-real-time applications, and a
distributed system temporarily caches the data for real-time
applications and then sends it to the central cloud.

The real-time option is only available to services running
inside the MEC. Eventually, all of the data will end up in
the cloud storage, so applications that need to process big
data should just use the cloud side or would need to build
a distributed system that would also work in a MEC native
architecture.

This back-end service manages the database instances and
moves the data around. Services are able to access the data via
HTTP APIs. In the proposed implementation, the service is
written in TypeScript and uses the NodeJS runtime. NodeJS
is based on an event loop and can handle heavy amounts of
I/O.

64538 VOLUME 12, 2024



J. Arin et al.: C-ITS Architecture for MEC and Cloud Native Back-End Services

FIGURE 8. MEC hook facility application architecture using the worker-pool executor.

1) IN-MEMORY DATABASE
The selected in-memory database needs to have strict timing
requirements for data insertion and retrieval, including low
latency and predictable access time.

For a hard disk drive access on a 1 GHz processor and
a million cycles, the time it takes to load a memory block
from a hard disk is around 1 ms [49], [50], and this access
is not guaranteed to contain the desired data. This makes
databases that store data outside of the RAM too slow for
our requirements, so we must select a cache database. Hard
disks also tend to be very inconsistent with access times as
they depend on the current position of the disk and the cursor,
as well as the fragmentation of the data.

As we need to be able to insert in constant predictable
times, insertion should be O(1) which means we need a very
big hashmap-like implementation. Redis and Memcached
both fulfil those requirements, and while Memcached is
faster [51], it lacks the ability to query by indexes, so it is
not suitable for our case. Redis has support for sharding and
replication, which are other requisites as these increase the
system availability and resilience to failure. Considering all
these points, Redis is chosen as the in-memory database.

2) PERSISTENT DATABASE
Storing large amounts of data in Redis would result in
a big RAM consumption. For example, a CAM message
formatted in JSON occupies around 4 KB. In a scenario of
10, 000 cars each sending a CAM every second for 30 days,
that would produce 103, 68 Terabytes of uncompressed data.
Data availability is also very important. Cache databases
lose all their information if the system goes down, while
non-cache databases do not.

Due to the flexibility of the data we are dealing with,
SQL databases are not a good choice. SQL databases depend
on fixed data structures to be efficient. However, C-ITS
messages contain optional fields only sent under certain
circumstances. The format of the messages will also probably
change with time as new versions of the standards are
released, so the rigidity of SQL databases will not help.

The two most common No-SQL databases are MongoDB
and Cassandra. Both are scalable and replicable using

different methods. Cassandra is multi-main, while MongoDB
is main-secondary based. Cassandra is column-based, while
MongoDB is document-based and supports JSON natively.
Both have their own query language and support transactions.
Performing a Yahoo Cloud Serving Benchmark (YCSB) test
on both returns mixed results [52], so finally MongoDB was
chosen because of its native support for JSON format.

3) SOFTWARE ARCHITECTURE
The software architecture is designed to be horizontally
scalable and flexible. Figure 9 shows the overall structure of
the system with the Consumer APIs attached to the sides and
Figure 10 shows the flow of data inside the software.
The system is divided into different interfaces. These

interfaces are agnostic to the technologies used and the
communication methods. They are designed so changes in
the message system or the databases do not change the rest
of the service while also allowing parts of the service to sit
in different servers in a micro-service-like architecture. The
interfaces are:

• Message manager: Implementations of this interface
are responsible for tapping into the message broker
and receiving the data. It passes this data into the DB
manager for further storage.

• In-Memory controller: The In-Memory controller imple-
mentation manages the creation of the indexes in the
in-memory database as well as inserting the data in
the proper internal database representation of it. It also
retrieves data in a streaming or non-streaming manner to
rebase it to the persistent database. The implementation
in this work is adapted to Redis.

• Persistent controller: This interface’s implementation
creates database collections and indexes for the CAM
and CPM. They must accept in-memory data streams to
fill the database with the rebase data. The implementa-
tion in this work is adapted to MongoDB.

• DB manager: The DB manager is responsible for
creating the controller instances and creating the rebase
pipeline and scheduling the rebase interval. There should
be 1 DB Manager per In-Memory database instance.

VOLUME 12, 2024 64539



J. Arin et al.: C-ITS Architecture for MEC and Cloud Native Back-End Services

FIGURE 9. Back-end service software architecture with data access APIs.

FIGURE 10. Back-end service data flow diagram.

• Main Controller: The main controller creates the DB
manager and message manager instances and connects
them.

Besides moving data around, the in-memory and persistent
controllers must make some transformations to the data to
place it in the database. For example, we use the RedisSearch
module to create indexes and query the data. RedisSearch
manages the indexes internally by dividing inputs into
different hash tables for the different indexes achieving high
speeds, but this requires us to extract some data from the
message previously. So, we finally store the whole message
string with a duplicate of the timestamp, the position, the

MAC and the type. While this redundancy can seem odd at
first, this would also let us compress the message string in
the future if it is needed.

Just as with Redis, MongoDB also has its internal
representation of the messages, so when rebasing the data,
it has to be transformed again. The difference between
the Redis and MongoDB representations is the position
coordinates. MongoDB supports GeoJSON, so the position
must be transformed into a GeoJSON position.

It may be the case that when the rebasing is triggered,
there are thousands or hundreds of thousand messages to
migrate from the in-memory to the persistent. Given a

64540 VOLUME 12, 2024



J. Arin et al.: C-ITS Architecture for MEC and Cloud Native Back-End Services

JSON representation of 4KB, 100, 000 documents would
weigh 400 MB. NodeJS has a heap limit of 700 MB,
effectively consuming almost all the available memory, even
in the case of leaking memory. We also would like to limit the
amount of RAM the service uses as it is the critical resource
for the in-memory databases.

To tackle the memory issues, NodeJS and TypeScript add
the notion of streams. Streams work in a producer-consumer
architecture with an intermediate buffer with limitedmemory.
The producer pushes information to the buffer until it is
filled up and then waits until there is more room to push
data. The consumer consumes the information from the buffer
as fast as possible in an asynchronous manner. This way,
memory usage is limited, and during the idle times of either
the producer or the consumer, other tasks are scheduled and
executed. Streams also have the notion of transformers that
act as middleware between the producer and the consumer
and transform the data

This stream implementation has been added to the
controllers in order to save resources and increase the
performance of the back-end service. This was necessary
as rebases larger than 10, 000 resulted in crashes from
the NodeJS memory allocator due to internal memory
requirements.

4) SCALING OUT
One of the requisites of the service is the ability to be
horizontally scalable. A microservice architecture aims to
provide scalability using the Single Responsibility Principle
(SRP), loose coupling and decentralisation.

The SRP states that entities or services should only do one
function. Here, we divided the interface implementation by
different objectives; for example, database controllers only
store or load data.

Loose coupling means that each service should not know
much about the others yet be able to work with them.
In our architecture, we expose some general interfaces that
do not require the knowledge of the actual implementation
to work. The persistent database should not care about
the internal representation of the Redis data. It expects
to receive a generic in-memory item type and work with
it.

Finally, every component is decentralised in the sense that
it can be instantiated in different machines and work as a
single entity by using RPC.

This microservices approach allows us to use load-
balancing techniques to generate a seamlessly connected
system that is scalable and resistant to failure.

D. CONSUMER APIS
For other ITS services to consume the data we gather
and store, we need to provide them with an API. While
there are many ways of making APIs, nowadays, REST
APIs dominate the internet. REST APIs use HTTP 1.1 to
communicate with the server, notify the intent, and append
data.

There are two consumer APIs, one dedicated to the
in-memory database for all the services running in the same
MEC as the in-memory database, and another one for the
persistent one in the cloud. These APIs answer user queries
with the proper JSON objects.

Both web APIs are created in TypeScript using NodeJS
as runtime and ExpressJS as the REST API framework.
ExpressJS is a minimal and flexible NodeJS web server
framework that provides a robust set of features for web and
mobile applications. It is middleware based, whichmeans that
it acts as a configurable pipeline where you can create new
steps to transform and process the data of the pipeline. Its
native support for the TypeScript AsyncAPImakes it ideal for
handling multiple clients, as web services are usually heavy
on I/O which yields long waits.

The consumer API also provides a cluster manager.
NodeJS implements a load-balancing library that lets the
programmer define a cluster that executes as many service
instances as required and balances the requests between them,
scaling even further the capabilities of the APIs.

Both APIs parse the query and use a reduced version of the
in-memory/persistent controller implementation to retrieve
the data and send it back to the user as a JSON HTTP
response.

IV. EVALUATION
This section describes how the evaluation tests were per-
formed, while the results are in Section V.

A. OBU STACK
Several tests were set up to measure the performance of
different scenarios. The OBU used for the tests was the Cohda
Wireless’MK5OBU. TheMK5OBU is shippedwith anNXP
i.MX6 DL@ 600 MHz processor and 1 GB of SDRAM. The
tests measured the Round Trip Time (RTT) following the flow
depicted in Figure 11.

1) OBU - OBU COMMUNICATION OVER ETHERNET
In order to measure the impact of the access layer specified
by the standard, a Round Trip Time (RTT) test was
performed. In this RTT test, the processing time of each
layer and the MQTT time were measured. To do so, we used
the stack shown in Figure 2b in the setup depicted in
Figure 12.
As ETSI CAM and CPM messages are sent at a maximum

of 10 Hz, we have a 100 ms margin for sending and receiving
the information. While OBU-OBU trips under 100ms would
be acceptable, the lower we can get that number, the
better.

2) OBU-OBU UDP COMMUNICATION OVER ETHERNET
This test was conducted under the same scenario as
OBU - OBU communication over Ethernet but with the
multicast UDP access layer. The stack from Figure 2a was
used in the setup depicted in Figure 13.

VOLUME 12, 2024 64541



J. Arin et al.: C-ITS Architecture for MEC and Cloud Native Back-End Services

FIGURE 11. Sequence diagram to measure the OBU-OBU delay.

FIGURE 12. OBU-OBU ethernet test setup.

FIGURE 13. OBU-OBU UDP test setup.

3) OBU-OBU UDP COMMUNICATION OVER 5G
This test was conducted under the same scenario as
OBU - OBU UDP communication over Ethernet, but using
a 5G network. A 5G modem was connected to each of the
OBUs and a 5G network was generated using Amarisoft’s
AMARI Callbox Mini as the base station. Figure 14 shows
the setup.

4) SECURITY POLICIES
Using the test setup described in IV-A2, we tested the network
layer performance using three different security policies:
none, dummy and certs. We generated the necessary keys and
certificates using Vanetza’s Certify tool.

The tested security policies work in the following way:
• None: does not check if the packets are secured and just
decodes them, ignoring signatures.

FIGURE 14. OBU-OBU 5G test setup.

• Dummy: checks whether packets are secured but does
not validate the packet signature.

• Certs: checks if packets are secured and drops them if
their signatures are not valid according to the supplied
root certificates.

5) MAXIMUM NUMBER OF SIMULTANEOUS VEHICLES
Finally, we conducted a load test on one of the OBUs by
connecting it via Ethernet to a synthetic CAM generator
that sent an increasing number of messages per second
with random intervals between them to test the maxi-
mum messages per second the application is capable of
processing.

B. MEC HOOK
As the only difference between the OBU software and the
MEC hook is the support for multithreaded packet processing
in the MEC hook, the only parameter that can vary between
them is the maximum simultaneous vehicles. To test it,
we performed the same test as Section IV-A5. TheMEC hook
is tested in aQuadCore I5-7500@3GHz processor and 8GB
of DRAM.

C. BACK-END SERVICE
The most relevant tests on the back-end service are the
database tests. We performed stress tests on the databases
to assess their limits and behaviour under different circum-
stances.

Due to the memory limits on the node runtime,
we first checked the difference in performance between the
stream-based implementation and the direct one.

Then, we tested both databases. In order to test them,
a synthetic data generator was created that, using the
Fisher-Yates shuffling algorithm could create statistically
uniform independent data with well-known proportions.
All back-end and consumer API tests were performed on
a 14 core Intel Core i9-7940X @ 3.10 GHz processor
and 64 GB of DRAM.

64542 VOLUME 12, 2024



J. Arin et al.: C-ITS Architecture for MEC and Cloud Native Back-End Services

In order to test the databases, the following tests were
conducted:

• Test the timestamp index by randomly querying
100 elements in a growing database of 1, 000, 10, 000,
100, 000 and 1, 000, 000 messages.

• Test the timestamp index by randomly querying 100,
1, 000, 10, 000 and 100, 000 elements in a fixed-size
database of 1, 000, 000 messages.

• Test the Mac ID index by randomly querying 100 ele-
ments in a growing database of 1, 000, 10, 000,
100, 000 and 1, 000, 000 messages.

• Test the Mac ID index by randomly querying 100,
1, 000, 10, 000 and 100, 000 elements in a fixed-size
database of 1, 000, 000 messages.

• Test the Position index by randomly querying 100 ele-
ments in a growing database of 1, 000, 10, 000,
100, 000 and 1, 000, 000 messages.

• Test the Position index by randomly querying 100,
1, 000, 10, 000 and 100, 000 elements in a fixed-size
database of 1, 000, 000 messages.

• Test the insertion of one element in the case of
Redis and 10 elements in the case of MongoDB in
a growing database of 1, 000, 10, 000, 100, 000 and
1, 000, 000 messages.

D. CONSUMER APIS
We performed two stress tests on the consumer APIs,
one for the in-memory database API and one for the
persistent database API. To execute these tests, we used
Artillery.io. Artillery.io is a JavaScript framework for test-
ing REST APIs capable of generating different workload
scenarios.

We set up the same three scenarios for both APIs, but using
GET requests in the in-memory database API and POST
requests in the persistent database API:

• Timestamp: query 100 elements per request with
different timestamps

• Mac ID: query 100 elements per request with different
Mac IDs.

• Position: query 100 elements per request with different
positions

and the flow of the test was

1) Warm up phase: start with 100 requests per second for
15 seconds to warm up the system.

2) Ramp up phase: linearly increase the requests per
second to 300 along 60 seconds to measure the
behaviour of the system under an increasing workload.

3) Hold 300 phase: hold the workload at 300 requests per
second for 60 seconds to measure the behaviour of the
system under a static workload.

4) Hold 150 phase: switch the rate to 150 requests per
second to test the system for abrupt workload changes
for 60 seconds.

5) Full stress: linearly increase the request per second rate
from 150 requests to 1000 requests over 60 seconds.

V. RESULTS
In this section, the results of the evaluation tests defined in
Section IV are presented and discussed.

A. OBU STACK
1) OBU-OBU COMMUNICATION OVER ETHERNET
This test measures the time each layer spends processing
the packets. Three Domains are separated for the results:
the communication stack, the physical network delay and the
MQTT communication delay. A total of 1000 packets are sent
and measured.

FIGURE 15. OBU-OBU communication over Ethernet: mean C-ITS stack
delays for incoming and outgoing packets. Lines represent the 95%
confidence interval.

Figure 15 shows the mean value of the stack layers under
outgoing and incoming packet directions.

As expected, the processing times for the different layers
are very low. The facilities layer is themost efficient one, even
if it needs the convert the packets from PER-encoded bytes
to JSON. RapidJSON does a good job at managing memory
for repeated packet types using arena allocators and move
semantics. The memory access is also cache-friendly as PER-
encoded packets have a size of 256 bytes and are arranged
contiguously.

Raw Ethernet packets over a wired Ethernet network were
sent to study the physical network delay. These packets are
the most lightweight of all the OBU-OBU performed tests
due to not bridging to conventional IP. These packets have
negligible physical delays, as can be seen in Figure 16.

The delay introduced by theMQTT is studied in Figure 17.
The results are surprisingly slow compared to the rest of the
processing times. It is two orders of magnitude bigger
than the rest. The MQTT broker is the Mosquitto MQTT
broker 2.0.15. This high latency seems to be produced by
Mosquitto’s Nagle algorithm which tries to gather multiple
packets to reduce the overall number of packets sent by
the interface, which yields higher throughput at the expense
of latency. This is a common problem in MQTT where
throughput is prioritised against latency.

VOLUME 12, 2024 64543



J. Arin et al.: C-ITS Architecture for MEC and Cloud Native Back-End Services

TABLE 2. OBU-OBU communication over Ethernet: statistics for delays.

FIGURE 16. OBU-OBU communication over Ethernet: physical network
delay distribution.

FIGURE 17. OBU-OBU communication over Ethernet: MQTT delay
distribution.

A table summarising the results can be found in Table 2,
including the following metrics: mean, standard deviation
(SD), 95% confidence interval (CI), 99% CI and maximum

value. The total delay of the complete chain is well
below the target limit of 100 ms, even in the worst
case.

2) OBU - OBU UDP COMMUNICATION OVER ETHERNET
This test is identical to the previous one, with a change in the
access layer. This change in the access layer affects the access
layer timing and the physical network delay. The access layer
timing changes due to the need to construct a UDP packet
on top of the C-ITS stack, and the network layer changes
due to the possible need for routing and the bigger payload
size.

The access layer processing times increase a bit, as can
be seen in Figure 18, which in worst-case scenarios
can add up to a millisecond to the previous worst
time.

FIGURE 18. OBU - OBU UDP communication over Ethernet: mean C-ITS
access layer delays for incoming and outgoing packets. Lines represent
the 95% confidence interval.

The effect on the network delay is analysed in Figure 19.
The whole distribution is shifted 0.1 ms with respect to the
physical network delay introduced by raw Ethernet, with a
maximum delay of 0.2003 ms. In the worst case, this setup
is 1.2003 ms slower than the raw Ethernet. Still, far enough
from the 100 ms limit.

3) OBU - OBU UDP COMMUNICATION OVER 5G
Finally, the same tests are performed using the 5G infras-
tructure described in Section IV-A. The only difference
between the previous and current setup is the physical

64544 VOLUME 12, 2024



J. Arin et al.: C-ITS Architecture for MEC and Cloud Native Back-End Services

FIGURE 19. OBU - OBU UDP communication over Ethernet: physical
network delay distribution.

layer used, so only the physical network delay is affected.
The latency generated by the physical layer is depicted in
Figure 20. Table 3 shows the total delay time of the complete
chain.

FIGURE 20. OBU - OBU UDP communication over 5G: physical network
delay distribution.

The obtained physical layer delay can be reduced using
an improved 5G network configuration, for instance, using
a terahertz frequency range that has been demonstrated to
achieve ultra-low latency (less than 1 ms) [53]. In any case,
the obtained total delay time is less than the target limit of
100 ms.

TABLE 3. OBU - OBU UDP communication over 5G: total delay time.

FIGURE 21. Delay added in the network layer by the different security
policies.

4) SECURITY POLICIES
The delay added by the security policies for incoming and
outcoming packets is depicted in Figure 21. The security
policies affect the operations made in the network layer.
The None security policy does not perform any check on
the packets, the Dummy security policy checks if a secured
header exists and the Cert policy checks the cryptographic
signature of the packet.

VOLUME 12, 2024 64545



J. Arin et al.: C-ITS Architecture for MEC and Cloud Native Back-End Services

FIGURE 22. Comparison between Redis and MongoDB query performance for different database sizes.

FIGURE 23. Comparison between Redis and MongoDB query performance in a fixed-size database.

While the first two policies have nearly no impact on
the processing time, signing and checking packet signatures
are expensive operations. It is important to note that the
tested implementation does not use any hardware acceleration
to perform packet signing. While this does not have much
impact on outgoing packets, it adds a significant delay in
incoming packets.

5) MAXIMUM NUMBER OF SIMULTANEOUS VEHICLES
The maximum number of simultaneous vehicles for an OBU
has been tested. The choke point for the OBU software
is located at 682 vehicles sending messages at a rate of
10 messages per second. This performance is good enough
as we do not expect cars to receive that much information in
any case.

B. MEC HOOK
The number of concurrent vehicles supported by the MEC
hook is 786 under the same conditions as the OBU. One can
think that this result is worse than expected if we consider the
facility layer and the JSON transcoding as the bottlenecks.
However, we found that the synchronised queue and the
MQTT are the actual bottlenecks.

From the point of view of software engineering, this
limit could be surpassed using load balancers and multi-
ple instancing. A connection-per-thread architecture could
also improve performance. More computationally capable
hardware can also improve the obtained result. In any case,
the number of supported concurrent vehicles is higher than
the 550 vehicles supported by the infrastructure presented
in [45].

64546 VOLUME 12, 2024



J. Arin et al.: C-ITS Architecture for MEC and Cloud Native Back-End Services

C. BACK-END SERVICE
The first step in the back-end service testing was to
test whether the non-stream-based implementation could
support the load. For queries bigger than 5000 elements, the
virtual machine node would overload and crash, while the
stream-based implementation was able to perform fine with
more than 1,000,000 elements, making this the only viable
option.

Then, the performance of both databases, the in-memory
database (Redis) and the persistent database (MongoDB),
was tested. In the first test, the timestamp, MAC and position
queries were testedwith a query size of 100 items for different
database sizes. A side-by-side comparison between Redis and
MongoDB performance can be seen in Figure 22. Note that
the figure is at a logarithmic scale.

As expected, with Redis the size of the database does not
have much impact on the timestamp and MAC query times,
which grow linearly with the number of elements. However,
when querying position values, we see a logarithmic-like
growth in the query time as the total number of elements in
the database grows. This is because position queries have an
O(n log(n)) complexity.

Unlike Redis, MongoDB treats MAC IDs as text, which
results in higher query times, as Figure 22 shows. A way
to tackle this would be to hash the MAC IDs to optimise
comparisons, as text searches usually show linear complexity,
which can be seen in the plots.

In MongoDB, the complexity of spatial queries is not
On log(n), as dynamic spatial subdivisions are performed,
greatly decreasing query times. Figure 22 shows no increase
in the position query times by the total number of items while
having a bigger initial cost than the Redis counterpart.

Figure 23 shows a linear growth on both database types as
the number of query items grows. Note that Redis failed to
deliver more than 50,000 elements per query. This is a hard
limit we cannot avoid, but we expect services that require that
much data do not belong to the real-time domain.

A comparison of insertion times between Redis and
MongoDB for different database sizes can be found in
Figure 24. A constant insertion time independent of the total
database size can be appreciated in Redis, which was one
of the goals we were trying to achieve by using a hashmap-
like database. These insertions should not be affected by
multiple clients writing simultaneously because of Redis’ use
of distributed lock managers that prioritise being lock-free at
the cost of eventual consistency. In MongoDB, the insertion
times are also higher than in Redis and slightly increase with
the database size.

D. CONSUMER API
Both consumer APIs were tested using Artillery and were
subjected to the same stress test flow. First, the Redis database
was tested with no incorrect response.

In the worst-case scenario, the REST consumer API
response time for the in-memory database does not exceed
the 100 ms threshold for up to 700 requests per second

FIGURE 24. Comparison between Redis and MongoDB insertion times.

while letting big timing margins 95% of the time. Once
the number of concurrent requests is big, the growth of the
response times becomes exponential as more time is spent in
switching contexts. However, the response times are stable
and predictable for a low number of requests per second,
which was one of the requirements. Figure 25 shows the
results in detail.

While the Redis consumer API is efficient and predictable,
MongoDB has more chaotic results. Figure 26 shows the
results. This consumer API can handle in predictable ways
less load than the Redis one. This was expected as the
MongoDB database needs to load data from disk which
depends on the current state of the disk as well as the different
sectors that are currently loaded in memory. The performance
of the system also depends on the evolution of the load.
Abrupt changes in the load really hurt the performance. The
advantage that this consumer API offers is much richer query
capabilities, as well as the increase in the maximum number
of items clients are able to request per query.

VOLUME 12, 2024 64547



J. Arin et al.: C-ITS Architecture for MEC and Cloud Native Back-End Services

FIGURE 25. Redis consumer API stats, 100 elements returned per request with linear regression and 95% CI.

FIGURE 26. MongoDB consumer API stats, 100 elements returned per request with linear regression and 95% CI.

VI. CONCLUSION
This paper proposes a novel C-ITS architecture that makes
vehicle data accessible to MEC and cloud-native services.
The major contributions of this work can be summarised
as follows. Firstly, we have introduced an ETSI C-ITS
communication stack using Multicast over 5G. Secondly,
we have presented a three-layer architecture comprising
OBU, MEC, and cloud components, which effectively
implements the security protocols outlined in the ETSI C-ITS
standard. Thirdly, we have proposed a dual-structured data
storage system, comprising an in-memory database within
the MEC and a persistent database in the cloud. This hybrid
architecture is designed to maximise the number of supported
use cases. Lastly, we have meticulously examined the impact
of each architectural element on the overall pipeline latency,
thus laying the groundwork for the development of more
advanced architectures in the future.

We have shown the different bottlenecks MQTT, 5G and
packet signing produced in the communication pipeline.

In order to address theMQTT bottleneck, we should switch to
another Pub/Submessage broker that can offer better scalabil-
ity and performance, like Kafka or RabbitMQ. To reduce the
effect of packet signing and signature validation, we should
change the security back-end to a hardware-accelerated one,
as it would speed up the calculations reducing the impact.
The lower the time we spend communicating the packets, the
more time clients can spend on their own processing.

An efficient MEC native back-end service has been
developed and tested with very positive results. It can handle
up to 786 concurrent vehicles which is 115,24% better than
the OBU implementation. We expected a bigger increase in
the capacity due to the parallelisation of the facility layer,
but in the end, it turned out to be the fastest layer of all
which translated into a lower gain. In order to fix this,
a lock-free approach to the synchronised queue should be
taken. Additionally, a message broker connection per thread
in the thread pool could also be used to make the MQTT
transmission, which is the most expensive one, independent

64548 VOLUME 12, 2024



J. Arin et al.: C-ITS Architecture for MEC and Cloud Native Back-End Services

from each thread, reducing the lock times and thus greatly
increasing the efficiency at the cost of more connections to
the broker.

The proposed architecture uses cache databases for
real-time data processing and persistent databases for the
rest. Redis and MongoDB were chosen for the cache and
the persistent database respectively. As expected, Redis had
better base performance and predictability than MongoDB in
every type of query or insertion, but the growth of the cost by
the number of elements was much worse than MongoDB’s.
Tests also showed poor behaviour from MAC IDs in the
MongoDB. Since we were storing the MAC IDs as text, the
complexity of the queries grew linearly with the number of
elements in the database which is undesirable. A much better
approach could be made by hashing the MAC ID, so it can be
stored as a number instead of a text string in MongoDB.

Two consumer REST APIs using NodeJS and ExpressJS
serve as access APIs for the cache and persistent data. The
Redis API offers more scalability and predictability, while
the other offers richer query capabilities. As these APIs are
based on middleware they are easily extendable to include
authentication, routing or other mechanisms.

The present study is limited to handling ETSI CAM and
CPM messages. However, the architecture can easily be
extended for accommodating other ETSI message formats.
As future work, other message types beyond the ones
defined in the ETSI C-ITS standard could be studied
and implemented. For instance, camera images could be
embodied in messages and shared in a similar way.

ACKNOWLEDGMENT
Content reflects only the authors’ view and the European
Commission is not responsible for any use that may be made
of the information it contains.

REFERENCES
[1] M. U. Ghazi, M. A. K. Khattak, B. Shabir, A.W.Malik, andM. S. Ramzan,

‘‘Emergency message dissemination in vehicular networks: A review,’’
IEEE Access, vol. 8, pp. 38606–38621, 2020.

[2] K. V. Katsaros, E. Liotou, F. Moscatelli, T. Rokkas, G. Drainakis,
E. Bonetto, D. Brevi, D. Klonidis, I. Neokosmidis, and A. Amditis,
‘‘Enabling far-edge intelligent services with network applications: The
automotive case,’’ IEEE Internet Things Mag., vol. 5, no. 4, pp. 122–128,
Dec. 2022.

[3] N. Slamnik-Kriještorac, F. Z. Yousaf, G. M. Yilma, R. Halili, M. Liebsch,
and J. M.Marquez-Barja, ‘‘Edge-aware cloud-native service for enhancing
back situation awareness in 5G-based vehicular systems,’’ IEEE Trans.
Veh. Technol., vol. 73, no. 1, pp. 660–677, Jan. 2024.

[4] G. Velez, J. Perez, and A. Martin, ‘‘5G MEC-enabled vehicle discovery
service for streaming-based CAM applications,’’ Multimedia Tools Appl.,
vol. 81, no. 9, pp. 12349–12370, Apr. 2022.

[5] Z. Fernández, A. Martín, J. Pérez, M. García, G. Velez, F. Murciano,
and S. Peters, ‘‘Challenges and solutions for service continuity in inter-
PLMN handover for vehicular applications,’’ IEEE Access, vol. 11,
pp. 8904–8919, 2023.

[6] M. García, G. Velez, J. Pérez, Á. Martín, Z. Fernández, and N. Aginako,
‘‘Edge dynamic map architecture for C-ITS applications,’’ 2023,
arXiv:2308.02197.

[7] K. Kiela, V. Barzdenas, M. Jurgo, V. Macaitis, J. Rafanavicius,
A. Vasjanov, L. Kladovscikov, and R. Navickas, ‘‘Review of V2X-IoT
standards and frameworks for ITS applications,’’ Appl. Sci., vol. 10, no. 12,
p. 4314, Jun. 2020.

[8] V. Maglogiannis, D. Naudts, S. Hadiwardoyo, D. van den Akker,
J. Marquez-Barja, and I. Moerman, ‘‘Experimental V2X evaluation for
C-V2X and ITS-G5 technologies in a real-life highway environment,’’
IEEE Trans. Netw. Service Manage., vol. 19, no. 2, pp. 1521–1538,
Jun. 2022.

[9] J. Zhao, X. Gai, and X. Luo, ‘‘Performance comparison of vehicle
networking based on DSRC and LTE technology,’’ in Proc. 6th Int. Conf.
Intell. Transp. Eng. (ICITE), Z. Zhang, Ed. Singapore: Springer, 2022,
pp. 730–746.

[10] T. Petrov, L. Sevcik, P. Pocta, andM.Dado, ‘‘A performance benchmark for
dedicated short-range communications and LTE-based cellular-V2X in the
context of vehicle-to-infrastructure communication and urban scenarios,’’
Sensors, vol. 21, no. 15, p. 5095, Jul. 2021.

[11] M. Tabassum, F. H. Bastos, A. Oliveira, and A. Klautau, ‘‘NR sidelink
performance evaluation for enhanced 5G-V2X services,’’ Vehicles, vol. 5,
no. 4, pp. 1692–1706, Nov. 2023.

[12] T. Petrov, P. Pocta, and T. Kovacikova, ‘‘Benchmarking 4G and 5G-
based cellular-V2X for vehicle-to-infrastructure communication and urban
scenarios in cooperative intelligent transportation systems,’’ Appl. Sci.,
vol. 12, no. 19, p. 9677, Sep. 2022.

[13] Intelligent Transport Systems (ITS); Communications Architecture, docu-
ment EN 302 665 Version 1.1.1, ETSI, European Norm, 2010.

[14] Intelligent Transport Systems (ITS); Cooperative ITS (C-ITS); Release 1,
document TR 101 607, Version 1.2.1, ETSI, 2020.

[15] Z. Liu, J. Weng, J. Ma, J. Guo, B. Feng, Z. Jiang, and K. Wei,
‘‘TCEMD: A trust cascading-based emergency message dissemination
model in VANETs,’’ IEEE Internet Things J., vol. 7, no. 5, pp. 4028–4048,
May 2020.

[16] Z. Liu, L. Wan, J. Guo, F. Huang, X. Feng, L. Wang, and J. Ma,
‘‘PPRU: A privacy-preserving reputation updating scheme for cloud-
assisted vehicular networks,’’ IEEE Trans. Veh. Technol., early access,
2023, doi: 10.1109/TVT.2023.3340723.

[17] Z. Liu, J. Weng, J. Guo, J. Ma, F. Huang, H. Sun, and Y. Cheng, ‘‘PPTM:
A privacy-preserving trust management scheme for emergency message
dissemination in space–air–ground-integrated vehicular networks,’’ IEEE
Internet Things J., vol. 9, no. 8, pp. 5943–5956, Apr. 2022.

[18] Intelligent Transport Systems (ITS); GeoNetworking; Part 3: Network
Architecture, ETSI Standard EN 302 636-3, Version 1.1.2, ETSI, Sophia
Antipolis, France, 2014.

[19] L. Hou, M. A. Gregory, and S. Li, ‘‘A survey of multi-access
edge computing and vehicular networking,’’ IEEE Access, vol. 10,
pp. 123436–123451, 2022.

[20] S. Ketu and P. K. Mishra, ‘‘Cloud, fog and mist computing in IoT:
An indication of emerging opportunities,’’ IETE Tech. Rev., vol. 39, no. 3,
pp. 713–724, May 2022.

[21] P. Porambage, J. Okwuibe, M. Liyanage, M. Ylianttila, and T. Taleb,
‘‘Survey on multi-access edge computing for Internet of Things real-
ization,’’ IEEE Commun. Surveys Tuts., vol. 20, no. 4, pp. 2961–2991,
4th Quart., 2018.

[22] H. Ma, S. Li, E. Zhang, Z. Lv, J. Hu, and X. Wei, ‘‘Cooperative
autonomous driving oriented MEC-aided 5G-V2X: Prototype system
design, field tests and AI-based optimization tools,’’ IEEE Access, vol. 8,
pp. 54288–54302, 2020.

[23] W. Hammedi, B. Brik, and S. M. Senouci, ‘‘Toward optimal MEC-based
collision avoidance system for cooperative inland vessels: A federated
deep learning approach,’’ IEEE Trans. Intell. Transp. Syst., vol. 24, no. 2,
pp. 2525–2537, Feb. 2023.

[24] C. Quadri, V. Mancuso, M. A. Marsan, and G. P. Rossi, ‘‘Edge-based
platoon control,’’ Comput. Commun., vol. 181, pp. 17–31, Jan. 2022.

[25] P. Sroka and A. Kliks, ‘‘Towards edge intelligence in the automotive
scenario: A discourse on architecture for database-supported autonomous
platooning,’’ J. Commun. Netw., vol. 24, no. 2, pp. 192–208, Apr. 2022.

[26] H. A. Alameddine, S. Sharafeddine, S. Sebbah, S. Ayoubi, and C. Assi,
‘‘Dynamic task offloading and scheduling for low-latency IoT services in
multi-access edge computing,’’ IEEE J. Sel. Areas Commun., vol. 37, no. 3,
pp. 668–682, Mar. 2019.

[27] Z. Wang, G. Sun, H. Su, H. Yu, B. Lei, and M. Guizani, ‘‘Low-latency
scheduling approach for dependent tasks in MEC-enabled 5G vehicular
networks,’’ IEEE Internet Things J., vol. 11, no. 4, pp. 6278–6289,
2023.

[28] B. Li, F. Chen, Z. Peng, P. Hou, and H. Ding, ‘‘Mobility-aware dynamic
offloading strategy for C-V2X under multi-access edge computing,’’ Phys.
Commun., vol. 49, Dec. 2021, Art. no. 101446.

VOLUME 12, 2024 64549

http://dx.doi.org/10.1109/TVT.2023.3340723


J. Arin et al.: C-ITS Architecture for MEC and Cloud Native Back-End Services

[29] S. D. A. Shah, M. A. Gregory, S. Li, R. d. R. Fontes, and L. Hou,
‘‘SDN-based service mobility management in MEC-enabled 5G and
beyond vehicular networks,’’ IEEE Internet Things J., vol. 9, no. 15,
pp. 13425–13442, Aug. 2022.

[30] B. Cao, Z. Li, X. Liu, Z. Lv, and H. He, ‘‘Mobility-aware multiobjective
task offloading for vehicular edge computing in digital twin environment,’’
IEEE J. Sel. Areas Commun., vol. 41, no. 10, pp. 3046–3055, Oct. 2023.

[31] R. J. Kauffman, D. Ma, and M. Yu, ‘‘A metrics suite of cloud computing
adoption readiness,’’ Electron. Markets, vol. 28, no. 1, pp. 11–37,
Feb. 2018.

[32] Z. Jin, Y. Zhu, J. Zhu, D. Yu, C. Li, R. Chen, I. E. Akkus, and Y. Xu,
‘‘Lessons learned from migrating complex stateful applications onto
serverless platforms,’’ in Proc. 12th ACM SIGOPS Asia–Pacific Workshop
Syst., Aug. 2021, pp. 89–96.

[33] R. T. Fielding, ‘‘Architectural styles and the design of network-based
software architectures,’’ Ph.D. thesis, Dept. Inf. Comput. Sci., Univ.
California Irvine, Irvine, CA, USA, 2000.

[34] A. Neumann, N. Laranjeiro, and J. Bernardino, ‘‘An analysis of public
REST web service APIs,’’ IEEE Trans. Services Comput., vol. 14, no. 4,
pp. 957–970, Jul. 2021.

[35] L. D. S. B. Weerasinghe and I. Perera, ‘‘Evaluating the inter-service
communication on microservice architecture,’’ in Proc. 7th Int. Conf. Inf.
Technol. Res. (ICITR), Dec. 2022, pp. 1–6.

[36] Z. Kegenbekov and A. Saparova, ‘‘Using the MQTT protocol to transmit
vehicle telemetry data,’’ Transp. Res. Proc., vol. 61, pp. 410–417,
Jan. 2022.

[37] N. Jain, ‘‘The future of database services: Cloud database,’’ in Proc.
Int. Conf. Algorithms, Methodol., Models Appl. Emerg. Technol. (ICAM-
MAET), Feb. 2017, pp. 1–5.

[38] J. Yang, L. Chen, and J. Bai, ‘‘Redis automatic performance tuning based
on eBPF,’’ in Proc. 14th Int. Conf. Measuring Technol. Mechatronics
Autom. (ICMTMA), Jan. 2022, pp. 671–676.

[39] K. Sahatqija, J. Ajdari, X. Zenuni, B. Raufi, and F. Ismaili, ‘‘Comparison
between relational and NOSQL databases,’’ in Proc. 41st Int. Conv.
Inf. Commun. Technol., Electron. Microelectron. (MIPRO), May 2018,
pp. 216–221.

[40] Å. Hugo, B. Morin, and K. Svantorp, ‘‘Bridging MQTT and Kafka to
support C-ITS: A feasibility study,’’ in Proc. 21st IEEE Int. Conf. Mobile
Data Manage. (MDM), Jun. 2020, pp. 371–376.

[41] B. Ayaz, N. Slamnik-Kriještorac, and J. Marquez-Barja, ‘‘Data manage-
ment platform for smart orchestration of decentralized and heterogeneous
vehicular edge networks,’’ in Proc. ACM Conf. Inf. Technol. Social Good.
New Yorkth, NY, USA: Association for Computing Machinery, Sep. 2022,
pp. 118–124.

[42] D. Rocha, G. Teixeira, E. Vieira, J. Almeida, and J. Ferreira, ‘‘A
modular in-vehicle C-ITS architecture for sensor data collection, vehicular
communications and cloud connectivity,’’ Sensors, vol. 23, no. 3, p. 1724,
Feb. 2023.

[43] E. Vieira, J. Almeida, J. Ferreira, T. Dias, A. V. Silva, and L. Moura,
‘‘A roadside and cloud-based vehicular communications framework for
the provision of C-ITS services,’’ Information, vol. 14, no. 3, p. 153,
Mar. 2023.

[44] E. Vieira, J. Almeida, J. Ferreira, and P. C. Bartolomeu, ‘‘VERCO: A pri-
vacy and data-centric architecture for verifiable cooperative maneuvers,’’
Veh. Commun., vol. 42, Aug. 2023, Art. no. 100614.

[45] F. Raviglione, C. M. R. Carletti, C. Casetti, F. Stoffella, G. M. Yilma, and
F. Visintainer, ‘‘S-LDM: Server local dynamic map for vehicular enhanced
collective perception,’’ in Proc. IEEE 95th Veh. Technol. Conf. (VTC-
Spring), Jun. 2022, pp. 1–5.

[46] R. Riebl. Vanetza. Accessed: Mar. 27, 2024. [Online]. Available:
https://web.archive.org/web/20221020125303/

[47] Intelligent Transport Systems (ITS); Vehicular Communications; GeoNet-
working; Part 4: Geographical Addressing and Forwarding for Point-to-
Point and Point-to-Multipoint Communications, ETSI Standard EN 302
636-4-1, Version 1.2.0, ETSI, Sophia Antipolis, France, 2014.

[48] A. M. A. Sai, D. Reddy, P. Raghavendra, G. Y. Kiran, and R. V. Rejeenth,
‘‘Producer-consumer problem using thread pool,’’ in Proc. 3rd Int. Conf.
Emerg. Technol. (INCET), Dinesh Reddy, Peru, May 2022, pp. 1–5.

[49] J. L. Hennessy and D. A. Patterson,Computer Architecture: A Quantitative
Approach. San Mateo, CA, USA: Morgan Kaufmann, 2012.

[50] Intel® 64 and IA-32 Architectures Optimization Reference Manual, Intel,
Santa Clara, CA, USA, 2023.

[51] A. T. Kabakus and R. Kara, ‘‘A performance evaluation of in-memory
databases,’’ J. King Saud Univ. Comput. Inf. Sci., vol. 29, no. 4,
pp. 520–525, Oct. 2017.

[52] V. Abramova and J. Bernardino, ‘‘NoSQL databases: MongoDB vs
Cassandra,’’ in Proc. Int. Conf. Comput. Sci. Softw. Eng., Jul. 2013,
pp. 14–22.

[53] R. Ford, M. Zhang, M. Mezzavilla, S. Dutta, S. Rangan, and M. Zorzi,
‘‘Achieving ultra-low latency in 5G millimeter wave cellular networks,’’
IEEE Commun. Mag., vol. 55, no. 3, pp. 196–203, Mar. 2017.

JAVIER ARIN received the bachelor’s degree in
communications electronic engineering and the
master’s degree in telecommunications engineer-
ing from the University of Navarra, Spain, in
2021 and 2022, respectively. During the bach-
elor’s degree, he was an Intern Student with
the Electronics and Communications Department.
During his internship at Vicomtech, he worked on
the master’s thesis about C-ITS communications
and data sharing. His research interests include

embedded computing, software engineering, and low-level firmware.

GORKA VELEZ received the M.Sc. degree in
electronic engineering from the University of
Mondragon, Spain, in 2007, and the Ph.D.
degree from the University of Navarra, Spain,
in 2012. He is currently leading the connected
and cooperative situation awareness research line
at the Intelligent Transportation Systems (ITS)
and Engineering Department, Vicomtech. He is
a Technical Coordinator of the H2020 project
5GMETA funded by the European Commission.

He is also involved in several other CCAM research projects, including
5G-IANA and PoDIUM.

PAUL BUSTAMANTE is currently a Researcher
with the CEIT-Basque Research and Technol-
ogy Alliance (BRTA). He is also an Associate
Professor in informatics and telecommunications
systems with the School of Engineering at San
Sebastián (Tecnun), University of Navarra. He had
been working in some industrial companies. He is
involved in the intelligent systems for Industry
4.0 Group, CEIT, where his experience is mainly
in the design of wireless sensor networks (WSNs),

developing both hardware and software using standard protocols, such
as ZigBee or Bluetooth, or developing ad-hoc communications protocols.
Moreover, he has been involved in national and international projects of RF
design, communications systems with GSM/GPRS, and internet protocols.
He is authoring some articles in journals and conferences.

64550 VOLUME 12, 2024


