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ABSTRACT The increasing demand for Android applications in line with technological evolution and the
development of new features often leads to frequent updates and releases of applications. However, in this
update cycle, developers sometimes make hasty changes that result in poor design choices, leading to the
emergence of bad smell code. The impact of smells involves a decrease in quality, performance, and under-
standing, and impedes the software maintenance process. Some previously developed smell detection tools
rely on JavaParser to parse source code into an Abstract Syntax Tree representation, meaning the extracted
information is limited to Java programming language source code. Meanwhile, Google recommends Kotlin
as the language for developing Android applications, and over 60% of professional Android developers use
Kotlin. This research is using Program Structure Interface representation and applies a software metric-based
approach as a method of smell detection and implements it into a Kotlin Android bad smell code detection
tool. This approach was chosen because the characteristics of each smell can be represented with software
metrics. The tool’s evaluation results on five Kotlin Android projects showed an F-measure of 100% for
Brain Class detection, 93.77% for God Class, and 85.71% for Brain Method. Comparing the tool’s detection
results with the iPlasma tool on the Quran project showed that the developed tool detected more smell
occurrences. Usability testing results indicated that seven participants strongly agreed with the easy-to-
understand detection results, easy-to-find presented functionality, clearly presented information, and the tool
helped to perform metric calculation and smell detection more quickly and efficiently. The average rating
given for each question was between 4.29 – 4.71.

INDEX TERMS Code smells, android, Kotlin.

I. INTRODUCTION
In recent years, mobile apps have dominated the software
market, with 2.6 million Android apps on Google Play Store
and 110 billion downloads in 2022 [1]. This demand neces-
sitates high-quality app development. However, Android app
updates are frequent [2], and developers may disregard stan-
dard practices, resulting in poor-quality code, known as ‘bad
smell’ code [3].
‘Bad smell’ code reflects flaws in code structure and vio-

lations of design principles, significantly impacting software
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quality [4]. Previous studies have investigated the effects of
smells on software, revealing that they not only reduce code
quality, performance, and comprehensibility but also lead to
increased complexity in software maintenance and a higher
risk of bugs [5], [6], [7].

Manual detection of ‘bad smell’ code is arduous, time-
consuming, and susceptible to errors, rendering it ineffective
for large systems [8]. While tools like Paprika, aDoctor,
and Android Bad Smell Detector [3], [9], [10] exist for
Android ‘bad smell’ detection, they rely heavily on Java-
Parser, meaning they can only analyze Java-based code.
Despite Google recommending Kotlin for Android app devel-
opment in 2017 and its adoption by over 60% of professional
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Android developers [11], there’s a lack of Kotlin-supporting
tools. By utilizing the Program Structure Interface (PSI) rep-
resentation in Kotlin, which bears similarities to the Abstract
Syntax Tree (AST) in general, it becomes highly feasible to
perform smell detection on Kotlin programs.

The contributions of this paper are as follows. Firstly,
we utilize the Program Structure Interface (PSI) represen-
tation employed by the smell detection algorithm, and then
endeavor to implement it into a tool usable by practitioners.
Secondly, we conduct experiments to measure the accuracy
of the developed tool, comparing its performance with other
tools, and conducting a survey with users regarding usability
testing.

This paper is structured as follows. Section II provides
background information on bad smell code and software met-
rics. Section III discusses related work. Section IV presents
the method we propose for detecting bad smells and the
experimental design. The experimental results are presented
in Section V. Finally, we conclude this paper in Section VI.

II. BACKGROUND
This section explains the code smells that have been explored
and investigated further in this paper. It also discusses soft-
ware metrics, and the detection strategies typically used in
identifying smells in object-oriented programming.

A. BAD SMELL CODE
Bad smell code is an indication of subpar code quality,
which can potentially inconvenience developers during main-
tenance [12], the term ‘‘smell’’ was first introduced by Fowler
in 1999 [4]. A smell can affect classes and methods; the
characteristics of these smells indicate a negative impact on
the quality of design elements discovered when considering
design elements separately. In simple terms, these smells can
be recognized by observing excessive size and complexity in
classes and methods [13].

FIGURE 1. The relevance of bad smell [13].

Bad smells are interconnected, as shown in Figure 1. For
instance, a Brain Class contains a BrainMethod within it, and
a God Class similarly possesses a Brain Method. The present
study focuses explicitly on these three smells.

• God Class does too much work on its own, delegating
only minor details to regular classes and using data

from other classes. Naturally, this has a negative impact
on system usability and comprehension [13].

• Brain Method differs from a God Class; this smell
centralizes the functionality of its owning class. A good
method ideally should have a level of complexity
appropriate to its specific purpose [13].

• Brain Class differs from a Brain Method, with the
smell appearing in the class. However, it’s crucial to
note that a Brain Class also differs from a God Class.
At its simplest, this smell emerges in a class that isn’t
identified as a God Class, yet the class contains at least
one Brain Method within it.

B. SOFTWARE METRICS
The most common approach to detecting software smells is
using software metrics. This approach involves measuring
various aspects of the software to obtain specific information,
such as predicting defects in the software [14]. Examples
of metrics in software include LOC, CYCLO, WMC, TCC,
ATFD, MAXNESTING, and NOAV.

• LOC (Lines of Code) indicates the total number of
lines defined in operations. Only lines of code that
contain functionality, such as method lines of code, are
counted [13].

• CYCLO (Cyclomatic Number) represents the poten-
tial number of program paths summed up from all
operations within the system. This metric is the total of
the McCabe Cyclomatic numbers for all operations and
is used to measure the intrinsic functional complexity of
the system [15].

• WMC (Weight Method per Class) indicates the num-
ber of methods implemented in a class or denotes the
complexity value of methods implemented in a class,
where the complexity of these methods is calculated
using Cyclomatic Complexity [13], [16].

WMC =

n∑
i=1

ci

If the complexity of all methods is considered as a unit,
then WMC = n, which is the number of methods.

• TCC (Tight Class Cohesion) indicates the number of
methods directly connected through attribute access.
TCC measures the cohesion among public methods in
a class, expressing the ratio between directly connected
methods and the maximum possible connections among
methods in a class.

TCC(C) =
NDC (C)

NP(C)
ND(C) represents the number of direct connections,
while NP(C) denotes the maximum possible amount
of connections among methods, both directly and indi-
rectly, in a class. NP is obtained using the following
formula, where N is the number of methods [17].

NP =
N ∗ (N − 1)

2
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Algorithm 1 Brain Method
1. FUNCTION isDetected(

loc: integer,
cyclo: integer,
maxNest: integer,
noav: integer

): boolean
2. SET largeloc = loc > loc_th / 2.0
3. SET manyBranches = cyclo / loc >= cyclo_loc_th
4. SET deepNesting = maxNest >= max_nest_th
5. SET manyVars = noav > noav_th
6. RETURN largeloc AND manyBranches AND

deepNesting AND manyVars
7. END FUNCTION

• ATFD (Access to Foreign Data) indicates the number
of properties or attributes from other classes accessed
either directly or through accessor methods by the class
being measured. A higher ATFD typically corresponds
to lower cohesion and higher coupling of the given
class, signaling that a lower ATFD value is generally
better [13]

• MAXNESTING (Maximum Nesting) represents the
maximum level of nesting blocks or control structures
present within a method or function. Generally, code
blocks containing statements like if, else, else if, do,
while, for, switch, catch, and others are part of nested
loops [13].

• NOAV (Number of Accessed Variables) represents the
count of variables accessed directly within a method
or function. The term ‘‘variables’’ refers to all types of
variables, including parameters, local variables, instance
or object variables, and global variables [13].

C. DETECTION STRATEGY
Metrics are only capable of revealing somewhat obscure
symptoms, akin to describing the symptoms of a disease
without providing a deep understanding of the root issue.
Marinescu proposed a detection strategy that involves the
formulation of metric-based rules to capture design issues.
This detection strategy utilizes threshold values to identify
the presence of smell problems [18].

• Brain Method Detection Strategy is executed by
calculating metrics like LOC, CYCLO, MAXNEST-
ING, and NOAV on each method, this strategy can be
observed through Algorithm 1 [13].

• God Class Detection Strategy is executed by calculat-
ing metrics like ATFD, WMC, and TCC for each class,
this strategy can be observed through Algorithm 2 [13].

• Brain Class Detection Strategy is executed by calcu-
lating metrics such as Brain Method, LOC, WMC, and
TCC for each class, this strategy can be viewed through
Algorithm 3 [13].

D. PROGRAM STRUCTURE INTERFACE
The PSI (Program Structure Interface) can be utilized to view
the structure as a representation of the contents of a file as a

Algorithm 2 God Class
1. FUNCTION isDetected(
atfd: Integer,
wmc: Integer,
tcc: Double): Boolean

2. SET usesMoreThanFew = atfd > thresholdATFD
3. SET hasVeryHighComplexity = wmc >= thresh-

oldWMC
4. SET cohesionIsLow = tcc < thresholdTCC
5. RETURN usesMoreThanFew

AND hasVeryHighComplexity
AND cohesionIsLow

6. END FUNCTION

Algorithm 3 Brain Class
1. FUNCTION isDetected(
bm: Integer,
loc: Integer,
wmc: Integer,
cohesion: Double): Boolean

2. moreThanOneBrain = bm > 1
3. totalSizeIsHigh = loc >= tLOC
4. moreThanOneBrainAndHigh-

Size = moreThanOneBrain AND totalSizeIsHigh
5.
6. onlyOneBrain = bm == 1
7. totalSizeIsVeryHigh = loc >= 2 ∗ tLOC
8. highComplexity = wmc >= 2 ∗ tWMC
9. oneBrainButVeryHighComplexity = only-

OneBrain AND totalSizeIsVeryHigh AND
highComplexity

10.
11. veryHighComplexity = wmc >= tWMC
12. lowCohesion = cohesion < tTCC
13. complexAndNonCohesive = veryHigh-

Complexity AND lowCohesion
14.
15. isBrainClass = (moreThanOneBrainAnd-

HighSize OR
oneBrainButVeryHighComplexity) AND
complexAndNonCohesive

16.
17. RETURN isBrainClass

18. END FUNCTION

hierarchy of elements in a specific programming language.
In this research, the PSI will be leveraged to extract metrics.
Figure 2 displays how a code is represented in a PSI tree.

As shown in Figure 2, the PSI tree is a concrete syntax
tree (CST) because it contains whitespace, and punctuation,
and can be used to infer some semantic information from the
code. With PSI, developers can perform several tasks such
as traversing elements (for example, methods, comments,

VOLUME 12, 2024 63897



R. D. Novendra, W. D. Sunindyo: Emerging Trends in Code Quality

TABLE 1. Summary of related works.

FIGURE 2. Program structure interface (PSI) tree [25].

if-statements), invoking methods, or all statements from a
specific code fragment, and so forth.

III. RELATED WORK
Several related studies have been used as references and
supporting materials in conducting this research. For exam-
ple, a systematic review focused on code smells in Android
projects. This study demonstrates that although Android
applications have a different structure than desktop applica-
tions, the variety and density of smells are similar, but their
distribution differs [20]. Another systematic review study
related to static analysis on Android applications indicates

that most static analyses are performed to locate vulnera-
bilities within Android applications’ security. However, the
tools and datasets are often not published [21]. Further-
more, an empirical study comparing the quality of Android
applications written in Kotlin and Java found that Kotlin
indeed improves the quality. The most commonly encoun-
tered smells in Kotlin programs are Long Method, Complex
Class, and Blob [22]. An empirical study has also been
conducted to analyze the impact of code smells on resource
utilization, such as CPU and Memory, in Android applica-
tions. The results show that refactoring the code leads to
a significant increase in CPU usage, between 12.7% and
13.7%, and a memory enhancement up to 7.1% [23].

Several research studies have developed an Android smell
detection tool named PAPRIKA. This tool identifies smells
by generating Java source code from APKs. However, it has
a characteristic of making it challenging to set dynamic
thresholds [9]. Another study proposed a tool called ADOC-
TOR. This tool detects smells by exploiting the Abstract
Syntax Tree (AST) in Java source code. The detection pro-
cess is carried out by combining metrics and straightforward
text comparison [10]. Recent research has also proposed an
Android smell detection tool that integrates Java source code
analysis and metrics. However, due to the tool’s dependency
on JavaParser, the supported language is Java. Moreover,
if there is a syntax error in the code smell, it could be
incorrectly classified as a false positive or false negative [3].
In addition to discussing static analysis tools, recent research
also proposes dynamic tools for detecting behavioral code
smells. However, as this research analyzes bytecode instead
of source code, there is a limitation: it cannot determine the
specific line of code where the instruction containing the
smell occurs. [19].
Table 1 shows a summary of these papers, the code smells

studied, the languages used, and the accuracy achieved.
As indicated in the table, Marinescu [18] research and our
study share some similarities in discussing the same smells
(related to class and method). However, our research is con-
ducted in a different environment, specifically for Android
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Kotlin development, utilizing the Program Structure Inter-
face, which is an extended version of the Abstract Syntax
Tree.

IV. PROPOSED METHOD
In this paper, we present a Kotlin bad smell code detection
approach using the Program Structure Interface. This section
provides a detailed description of the method we propose as
well as our experiment design.

FIGURE 3. Architecture of detection approach.

A. DETECTION APPROACH
The detection of code bad smells is conducted using a
software-metric-based approach. For the source code to be
extracted into the required metrics, it must first be parsed.
In this study, the Kotlin program used as input is converted
into a PSI (Program Structure Interface). The flow of the tool
in automatically detecting smells that will be created can be
seen in Figure 3.

In general, there are three main processes involved: Anal-
ysis, Extraction, and Detection. The modified part of the
proposed approach is the Extraction section. In this proposed
approach, Extraction is performed using PSI, whereas the
previous approach used AST.

• Analysis Process
This starts with the source code parsing. In this stage,
parsing is performed on the Android project that has
been targeted. The parsing of the source code will then
produce a PSI (Program Structure Interface).

• Extraction Process
This is initiated by gathering class and method infor-
mation from the PSI, and translating this data into
metrics, exemplified in Figure 4. The CYCLO metric
extraction initiates at a complexity counter of zero,
which then increases based on encountered function
types and expressions in Kotlin code. This includes
NamedFunction, Binary Expression (with specific con-
ditions), Continue or Break, If, Try, or Loop, and When

expressions, alongside Call expressions for nesting func-
tions with specific code content.

FIGURE 4. Flowchart of CYCLO metric extraction in PSI.

• Detection Process
This is carried out using a detection strategy with the
metrics obtained from the previous process. A collection
of classes and methods that meet the criteria as smells
will be compiled into a report.

After the three processes have been completed, a smell
detection report is generated. The detection report presented
contains information such as the names of classes or meth-
ods, location details, and the details of the software metric
calculations.

B. EXPERIMENT DESIGN
In this study, experiments were conducted to measure the
accuracy, effectiveness, performance, and quality of the
developed tool. The observation variables that were intended
to be measured in this experiment are as follows.
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1. Evaluation of Detection Accuracy.
This experiment aims to determine the precision of
the detection results by conducting tests using various
Kotlin Android projects (real-world apps) to evaluate
whether the tool can detect smells in the source code
that contain specific smells within them.

2. Comparative Evaluation of Detection Results with the
iPlasma Tool.
This experiment aims to compare the performance of
code smell detection using the tool developed in this
study with the tool used in previous research. The goal
is to evaluate potential improvements or enhancements
in the proposed detection approach.

3. Evaluation of Tool Usability.
Testing will be conducted using a scoring method for
the tool that has been tried by users. The scoring chosen
by the users will have a range of 1 – 5, where this range
represents strongly disagree – strongly agree with the
intention of usage

C. CORPUS
In this study, 5 Android applications from four different
categories were used. These applications were selected after
reviewing several open-source projects available on GitHub,
focusing on applications with at least 1 quantity of the studied
smells and at least 30 classes, ensuring that the applications
have different functions that could be tested. All applica-
tions were written using the Kotlin language. The selected
applications were: Bible,1 Habitica,2 Quran,3 Rajin,4 and
Tachiyomi.5

V. EXPERIMENTAL RESULTS
In this section, we present the steps taken for the implemen-
tation phase of the research. This includes experiments on
measuring detection accuracy, processing time, and usability
testing.

A. VALIDATION OBJECTS
Manual validation was carried out by 6 experts with expe-
rience in developing Android applications for 2–7 years.
Beginning with the definition of each smell, the experts were
tasked with identifying those smells across all projects. The
results of this manual validation completed by the experts
were then revisited by the author, ensuring the highest level
of results were achieved. These findings are illustrated in
Table 2.

B. ACCURACY EVALUATION OF DETECTION
The results of the first experiment conducted on the Android
Bible project are summarized in Table 3.

The results of the second experiment conducted on the
Habitica project are summarized in Table 4.

1https://github.com/yukuku/androidbible
2https://github.com/HabitRPG/habitica-android
3https://github.com/quran/quran_android
4https://github.com/23522046/IF5250_RAJIN
5https://github.com/tachiyomiorg/tachiyomi

TABLE 2. Manual validation by expert.

TABLE 3. Precision, recall. and f-measure for android bible.

TABLE 4. Precision, recall. and f-measure for habitica android.

The results of the third experiment conducted on the Quran
project are summarized in Table 5.

TABLE 5. Precision, recall. and f-measure for quran android.

The results of the fourth experiment conducted on the Rajin
App project are summarized in Table 6.

TABLE 6. Precision, recall. and f-measure for rajin app.

The results of the fifth experiment conducted on the
Android Tachiyomi project are summarized in Table 7.
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TABLE 7. Precision, recall. and fmeasure for tachiyomi.

From the test results of 5 Android projects that have been
conducted, it was found that the tool successfully detected
55 smell instances. God Class emerged as the most frequently
detected smell, followed by Brain Method, and finally Brain
Class. Based on the obtained results and from Figure 5, it’s
observed that the tool was capable of correctly identifying
almost all smells across these five Android projects.

FIGURE 5. Accuracy detection evaluation results.

A manual analysis was performed to comprehend the rea-
sons behind these results. From this analysis, several causes
were discovered. Firstly, it appears that the tool detected some
abstract classes as God Classes, such as the BaseActivity
class in the Habitica project and PagerViewer in the Tachiy-
omi project. Upon closer inspection, these abstract classes
do indeed possess greater size and functionality compared to
other classes. This is due to the fact that these base classes
are utilized (inherited) by other classes. However, according
to expert judgment, such abstract classes do not qualify as
God Classes, thus resulting in false positive detections by the
tool.

Secondly, false positives were also found in the case of
Brain Method, specifically in the deserialize method in the
Habitica and Quran projects. Upon a more detailed exami-
nation, the deserialize method is found to perform only one
function, i.e., to carry out deserialization on json objects.
However, some objects such as those in the GroupSerial-
ization, MemberSerialization, and UserDeserializer classes
indeed possess more attributes in comparison to other
classes like FAQArticleListDeserializer or ContentDeserial-
izer, which also have the same method. According to expert
judgment, this method does not fall under Brain Method,
hence resulting in a false positive detection by the tool.

After identification of these issues from the validation
results, it was revealed that these problems could be resolved
by recalibrating the threshold of the software metrics used
in the detection strategies for God Class and Brain Method.
Adjusting the threshold values can be utilized as a means to

enhance the tool’s accuracy in smell detection because by
altering these threshold values, the tool can recognize classes
like BaseActivity and methods like deserialize as not being
smells.

C. COMPARISON OF DETECTION PERFORMANCE WITH
IPLASMA TOOLS
This testing was conducted by experimenting with detecting
code smells from an Android Kotlin repository using the
developed tool and then comparing the results with those
obtained using another tool named iPlasma [24]. The reposi-
tory selected for the testing was the Quran Android project.

FIGURE 6. Detection results using iPlasma tool.

This project is an open-source project written in Kotlin.
Since iPlasma only supports the Java programming language,
the Quran Android project had to be converted to Java first
with the help of a third party. Afterward, the iPlasma tool was
run, and Figure 6 below shows the iPlasma interface while
detecting code smells in the Java-converted Quran Android
project.

It is observed that iPlasma only identified 2 God Classes.
Subsequently, the developed tool was run to detect smells in
the Quran Android Kotlin project, and Figure 7 below shows
the interface when the proposed tool was executed.

FIGURE 7. Detection results using the proposed tool.

From Figure 7, it’s noted that the tool successfully identi-
fied 7 God Classes, 4 Brain Methods, and 2 Brain Classes.
The comparison of smell detections by both tools can be seen
in Table 8.
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TABLE 8. Comparison of smell detection results.

From Table 8, it is noted that iPlasma only detected 2 God
Classes, namely the QuranActivity and AudioUtils classes.
Whereas, the tool developed in this research was able
to detect the existence of 7 God Classes, which are the
BookmarksDBAdapter, PagerActivityRecitationPresenter,
QuranActivity, QuranAdvancedSettingsFragment, Quran-
ListAdapter, AudioUtils, and QuranFileUtils classes.

Furthermore, the tool was also successful in detecting
other smells that weren’t identified by iPlasma, namely Brain
Class and Brain Method. There were two Brain Classes that
were successfully detected by the tool, namely the AudioSer-
vice and TranslationAdapter. Meanwhile, the Brain Methods
that were identified amounted to four, derived from differ-
ent classes, namely updateAudioPlayPosition and playAudio
from the AudioService class, onBindViewHolder from the
TranslationAdapter class, and getAyahBoundsFromCoordi-
nates from the ImageAyahUtils class. The comparison graph
of detection results between iPlasma and the tool can be seen
in the following Figure 8.

FIGURE 8. Comparison of detection results of both tools.

From the results obtained, it is known that there is a com-
mon smell detected by both tools, namely the God Class.
Both tools similarly identified the AudioUtils and QuranAc-
tivity classes as God Classes. However, overall, the detection
results using the tool developed show more smells were
found.

D. USABILITY TESTING
This evaluation was conducted with 7 users experienced in
developing Android applications. Each participant was asked
to try using the tool on a providedKotlin Android project. Par-
ticipants were then asked to fill out a usability questionnaire.
Figure 9 displays the results of the usability questionnaire for
questions Q1 – Q5.

• The first question on the questionnaire pertained to
the participant’s understanding of the detection results
displayed by the tool. The average rating given was
4.29, which indicates that participants agreed that the
tool displayed the detection results in an understandable
manner.

• The second question on the questionnaire addressed the
functionalities provided by the tool. The average rating
given was 4.43, indicating that participants agreed that
the functionalities provided by the tool were easy to find.

• The third question on the questionnaire was about the
clarity of information presented by the tool. The average
rating given was 4.57, which shows that participants
agreed that the information presented by the tool was
clear.

• The fourth question on the questionnaire concerned the
ease with which participants could calculate software
metrics using the tool. The average rating given was
4.57, suggesting that participants agreed that with the
tool, metric calculations were faster and more efficient.

• The final question on the questionnaire related to how
easy it was for participants to detect smells in the Kotlin
Android project using the tool. The average rating was
4.71, which indicates that participants agreed that with
the tool, smell detection was quicker and more efficient.

From the usability testing results, it is known that almost all
participants strongly agreed that the detection results by the
tool were easy to understand, the functionalities presented
were easy to find, the information presented was clear, and
the tool helped in making the calculation of metrics and the
detection of smells faster and more efficient.

FIGURE 9. Usability testing results.

VI. CONCLUSION
By utilizing the Program Structure Interface representation
and applying an approach based on software metrics, a Kotlin
bad smell detection tool for Android was successfully
developed. The results from the evaluation conducted
on 5Android projects show that the tool successfully detected
a total of 55 smells, achieving an f-measure of 100% for
Brain Class detection, 93.77% for God Class detection, and
85.71% for Brain Method detection. A manual analysis was
carried out to understand the reasons behind these results,
revealing that the tool tends to detect some abstract classes

63902 VOLUME 12, 2024



R. D. Novendra, W. D. Sunindyo: Emerging Trends in Code Quality

as God Class, resulting in False Positives. The second reason
is related to the Brain Method case, where the tool tends to
detect methods that perform deserialization on objects with
large sizes, leading to False Positives. It was also discovered
from the results that this issue could be resolved by recal-
ibrating the threshold of the software metrics used in the
detection strategy for GodClass andBrainMethod. Adjusting
the threshold values can serve as ameans to enhance the tool’s
accuracy in smell detection because by changing these thresh-
old values, the tool can recognize classes like BaseActivity
and methods like deserialize as not being smells. Further-
more, the comparison of the tool’s detection capabilities with
iPlasma shows that the tool is able to detect more smells.
The usability testing results indicate that out of 7 participants,
nearly all strongly agree that the detection results from the
tool are easy to understand, the functionalities provided are
easy to find, the information presented is clear, and the tool
helps in making metric calculation and smell detection faster
and more efficient. The average value given for each question
ranged from 4.29 – 4.71.
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