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ABSTRACT Due to prolonged exposure to heavy train loads, various anomalies can emerge on the surface
of railway tracks, posing a direct threat to safe train operation. The accurate and timely detection of
these anomalies is important to ensure safe transportation and advancing intelligent maintenance. However,
in the domain of anomaly detection, several challenges have arisen owing to the variability in illumination
conditions, imaging blur inherent to the capture devices, and the introduction of noise from environmental
factors such as dust particles. These interferences have significantly undermined the accuracy of rail anomaly
detection based on target detection techniques. In response to these challenges, this study introduced a novel
approach for rail anomaly detection in the presence of image artifacts by utilizing a multi-modal multi-
task framework. The objective of this study is to enhance the performance of rail anomaly detection under
interference-prone conditions. This study integrated color moment features, HU invariant moment features,
and Haralick features to construct a fuzzy detection model for rail anomalies using a multi-task learning
(MTL) strategy. The model prioritized the primary task of classifying rail anomalies, with interference level
classification and fuzzy logic interference judgment serving as auxiliary tasks within the network. Finally,
based on the results of fuzzy logic and interference level detection, a fuzzy judgment wasmade distinguishing
between ‘‘with interference’’ and ‘‘without interference.’’ Experimental findings consistently demonstrated
that the integration of multi-modal features andmulti-task learning methodologies significantly improves the
accuracy of rail anomaly recognition in the presence of interference, thus establishing an effective approach
for rail anomaly identification in challenging scenarios.

INDEX TERMS Rail anomalies, classification, multi-feature fusion, multi-task learning, fuzzy logic, neural
network.

I. INTRODUCTION
Railway transportation is a critical infrastructure in modern
cities and serves as the backbone of public transportation.
However, the continuous impact of heavy-loaded trains on
rails, as well as stress, fatigue, and defects on the rails, has led
to rail anomalies such as scratches, blocks, cracks, scabs, and
even fractures on the surface of rails, which directly threaten
the safety of high-speed trains. Machine vision-based object
detection technology can more accurately and efficiently
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detect anomalies in rails, which is beneficial for implement-
ing different maintenance and repair measures against various
types of anomalies. The accurate image recognition of rail
anomalies is of paramount importance. However, railway
tracks are exposed to outdoor environments over extended
periods and their surfaces are susceptible to the accumula-
tion of small particles such as dust and soil, among other
disturbances. Variations in brightness owing to sunlight can
also lead to alterations in the appearance, color, and even
the emergence of issues such as shadows, highlights, and
reflections in the captured images. However, factors such as
equipment vibrations, train movements, or inaccurate camera

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 73925

https://orcid.org/0009-0000-2185-2251
https://orcid.org/0000-0001-5167-5292
https://orcid.org/0000-0001-9558-6072
https://orcid.org/0000-0003-4501-1339


Y. Liyuan et al.: Multi-Modal Fusion for Multi-Task Fuzzy Detection of Rail Anomalies

focusing during the image acquisition process can introduce
image blurring and other distortions. These interferences col-
lectively impact the identification of rail anomalies, thereby
diminishing recognition accuracy. Figure 1 shows the exam-
ples of disturbances in rail imaging caused by dust, sunlight,
and blurriness.

FIGURE 1. Interfered anomalous railway tracks.

In this study, based on a newly developed small-sample
dataset, we propose amulti-featuremulti-task fuzzy detection
method to enhance the performance of railway track anomaly
recognition under interference conditions. The main contri-
butions of this paper are as follows:

a. Fusion of color moments, HU moments, and Haralick
features of railway track anomalies to improve the recog-
nition accuracy, addressing the issue of low accuracy in
single-feature recognition.

b. Introduction of a multi-task learning approach on top of
the multi-feature fusion method, utilizing interference infor-
mation to aid neural network learning. The primary task is
railway track anomaly recognition, with a secondary task for
simulating interference level recognition and a third task for
fuzzy logic classification of ‘‘With Interfered’’ and ‘‘Without
Interfered.’’ These auxiliary tasks collaborate to enhance the
performance of the primary task.’’

II. RESEARCH REVIEW
For the detection of anomalies on rail surfaces, Zhang et al.
[1] introduce an enhanced approach employing YOLOX
and image enhancement techniques for the detection of rail
surface defects. The method yields a notable 2.42% improve-
ment in the mean average precision (mAP) of the YOLOX
network. Yang et al. [2] combined the grayscale features
of different parts of the image and proposed a rail surface
segmentation method based on sliding window grayscale
maximum value, achieving an improved detection accuracy
of 2.78%. Wang et al. [3] proposed a wavelet subband min-
imum mean square (LMS) adaptive filter, which effectively
eliminates strong noise in railways and detects crack signals.
Wang et al. [4] proposed a deep learning-based region fusion
network for detecting rail wear on the running band. Firstly,
they utilized amodifiedMiDaSmodel to estimate depthmaps
to guide rail wear detection. Then, an improved mask-based
convolutional neural network was employed to segment
and extract the running band of the rail from the images.
Finally, a dual-channel attention fusion network was con-
structed, achieving a recall rate of 84.21% for wear detection.

Karakose et al. [5], [6] employed cameras installed at the
bottom and top of trains to capture images of rail tracks
and surfaces. They utilized Canny edge detection and Hough
transform methods to identify detection targets, ultimately
applying a decision tree classification algorithm for recogniz-
ing track types and classifying surface anomalies. Tastimur
et al. [7] initially employed Hough transform, morphological
operations, and edge detection to detect railway tracks. Sub-
sequently, through image enhancement, Laplacian low-pass
filtering, and morphological feature extraction, they identi-
fied anomalous regions with a detection accuracy of 94.73%.
Santur et al. [8] utilized Principal Component Analysis
(PCA), Kernel Principal Component Analysis (KPCA), Sin-
gular Value Decomposition (SVD), and Histogram Matching
(HM) to extract image features of steel rails. They then
employed the Random Forest method to distinguish between
‘‘normal’’ and ‘‘abnormal’’ rails. The research findings indi-
cated that combining Principal Component Analysis with the
HM method enhanced the overall accuracy of the system
to 85%. Origlia [9] and Lin [10] improved detection perfor-
mance using time series methods.

The surface anomalies of steel rails are difficult to detect
owing to the influence of light changes, camera shaking,
and stains. To address this issue, Luo et al. [11] employed
Gabor filtering to denoise the images and transform the color
model to HSV, followed by an improved Faster R-CNN for
defect recognition. The experimental results indicated that
the recognition accuracies for cracks, blocks, and scratches
were 91.87%, 92.75%, and 91.52%, respectively. Mean-
while, He et al. [12] proposed a rail surface defect detection
algorithm based on background differences that includes four
steps: (1) rail area extraction, (2) background modeling and
difference, (3) threshold segmentation, and (4) image filter-
ing. This method partially addresses the adverse effects of
image lighting changes, uneven reflection, and lack of fea-
tures during the rail surface defect segmentation process. The
experimental results showed that this method could identify
block defects with recall and accuracy rates of 96% and
80.1%, respectively.Min et al. [13] addressed the influence of
vibration interference by combining the Hough transform and
least squares method to extract the rail surface area, followed
by the super-entropy theory and fuzzy theory for defect seg-
mentation. They also established a sample feature database
by extracting Harr-like and low-level features and designed
a defect classifier based on the Classification and Regression
Tree (C4.5) and AdaBoost algorithms. They found that the
average recognition rate for rail surface defects was 97.02%.

These methodologies have demonstrated promising results
in the detection of anomalies in rails. However, rails are
susceptible to environmental interferences such as variations
in sunlight, noise, and blurriness. Overcoming these interfer-
ences presents distinct challenges. For instance, addressing
the challenge of mitigating sunlight interference involves
enhancing the model’s robustness to changes in illumination.
Overcoming noise interference entails the accurate identifi-
cation of small targets, such as dust particles. Addressing
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blurry interference involves improving image restoration per-
formance in specific environmental conditions. This study
comprehensively considers the presence of these three inter-
ferences, leveraging interference-level information to assist
network training. This approach aims to address disturbances
caused by sunlight, dust, and blurriness in anomaly detection,
thereby enhancing the performance of rail anomaly detection.

III. METHODOLOGY
This study presents a multi-task railway track anomaly fuzzy
detection method based on feature fusion. Figure 2 illustrates
the workflow of the research methodology, which consist of
the following key steps:

a. Dataset Acquisition and Preprocessing: We established
and preprocessed a novel dataset of railway track
anomalies. Computer-simulated interference including
illumination, noise, and blurriness was introduced into
the image data.

b. Feature Extraction: We extracted the color moment,
HU moment, and Haralick features from the image
data.

c. Multi-feature and multi-task blur detect: The multi-
feature fusion and multi-task learning fuzzy detection
models were incrementally constructed and subse-
quently trained.

d. Comparative result: Comparison of recognition results
of different models.

FIGURE 2. The flowchart of methodology.

A. IMAGE DATASET
In the field of railway engineering, there are various datasets
for the classification and detection of railway defects avail-
able, including datasets for railway scene classification and
detection [14] and datasets for ultrasonic detection [15].
However, there is lack of a realistic dataset for surface
anomalies on railway tracks. This is because the distribu-
tion of abnormal steel tracks is random, and the collection
of data on such abnormalities is difficult to be conducted
due to the operational constraints of high-speed railways.
To address this issue, researchers collected and labeled 100×

50 resolution images of six categories of anomalies [16] and
built an RSDDs dataset [17] containing grayscale images
of 195 steel track surface anomalies in Type-I and Type-II
segmented masks. Additionally, the NEU data set [18] focus-
ing mainly on the surface anomalies of hot-rolled strip steel
was also used. However, these datasets were collected using

high-speed linear scanning cameras with low-resolution
and coarse-grained annotations. Thus, they cannot ade-
quately train robust deep-learning algorithms for real-world
applications.

The rail anomaly dataset used in this study was col-
lected by the author’s team from various railway lines in
Yunnan Province, China, including the Neijiang-Liupanshui
and Kunming-Hekou Railways. Images were captured using
camera equipment positioned at a vertical distance of approx-
imately 20 cm from the damaged surface (rail track surface).
This dataset represents a novel and specific focus on rail
surface anomalies. Four types of anomalies, namely scratch,
block, crack, and scab formation, were selected as the
research objects. A total of 427 images depicting rail anoma-
lies were utilized for experimentation, including 200 images
of normal rails, 56 images of scratches, 60 images of blocks,
56 images of cracks, and 55 images of scab formations.
This study separately introduced varying levels of luminance,
noise, and blur interference in the images. In total, 12,810
images with added interference information were generated.
Among these, there were 4,270 images with luminance inter-
ference, 4,270 with noise interference, and 4,270 with blur
interference. Table 1 presents a statistical summary of these
images. The following preprocessing steps were applied to
the image data.

a. The images were cropped to a size of 448×448 pixels,
with the steel rail anomaly region as the center (Region
of Interest or ROI).

b. Simulations were conducted for sunlight variation with
10 levels of luminance interference, dust interference
with 10 levels of Gaussian noise interference, and cam-
era shaking with 10 levels of blur interference. Table 2
provides the details of the settings for the 10 interfer-
ence levels.

c. The RGB color model of the ROI images was converted
to YCbCr.

Table 3 shows examples of images from the dataset with and
without interference (level 10).

TABLE 1. Statistical summary of image data.

B. FEATURE EXTRACTION
1) HARALICK FEATURE
Haralick, which was initially proposed as a method to quan-
tify the relationships between adjacent pixels in images, has
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TABLE 2. Coefficients for different levels of interference.

TABLE 3. Examples of images.

found extensive applications in image processing [19] and
computer vision [20], among other multidimensional data
classification domains. Recently, it has gained significant
traction in the field of medicine [21], [22]. Haralick can
extract rich texture information from images and capture tex-
ture characteristics that are significant in human perception.
Moreover, Haralick features often exhibit robustness against
variations in the image illumination and brightness.

In this study, Haralick features were primarily based on a
Color Mapping Co-occurrence Matrix (CMCM). CMCM is
a statistical feature used to describe texture characteristics in
color images by examining the correlations and distributions
between colors [23]. It describes the frequency of occurrence
of different color values in given directions (0o, 45o, 90o,
135o) and distances (stride).

FIGURE 3. Haralick for CMCM.

As illustrated in Figure 3, each pixel of a color image
I is represented by three color channels, such as R(Red),
G (Green), and B (Blue), i.e., I (x, y) = [R(x, y), G(x, y),
B(x, y)], where (x, y) represents the pixel’s coordinates, with
x ∈ 1,2,. . . , N} and y ∈ 1,2,. . . , M}. The image is divided
into n × n pixel patches. Let P denote the number of patches
in the image, such that P = (N -n + 1) x (M -n + 1). For
each patch, denoted as k (k = 1,2,. . . , P), a color mapping
co-occurrence matrix (CMCM_k) of size B× B is computed.
Here, B represents the number of bins based on histograms

TABLE 4. Haralick for CMCM.

for each color channel. The calculation method for CMCM_k
is as follows:

a. Quantize the colour values from each channel
ω(ω=I,II,III) of patch kinto B bins using a uniform
quantization scheme.

b. Construct a joint histogram of color pairs (i, j) within
patch k , which represents the frequency of occurrences
of color pairs between different color channels within
the patch. Here, i and j represent the quantized color
values for channel 1 and channel 2, channel 1 and
channel 3, and channel 2 and channel 3, respectively.

c. Normalize the joint histogram by dividing each element
by the total number of color pairs in the patch to obtain
a probability matrix.

d. Add the probability matrices of all patches to obtain the
final CMC of size B× B.

Based on the CMCM, texture features were computed
using Haralick’s 13 parameters (Tab. 4).

2) COLOR MOMENT FEATURE
Color moments can effectively represent color distribution
in an image [24]. The mathematical basis of this method is
that any color distribution can be represented by its moments.
Moreover, the color distribution information is mainly con-
centrated in low-order moments, and features are described
using the first-order moment (mean), second-order moment
(variance), and third-order moment (skewness) of the color
(Table 5). The mean (E) represents the average of the color
distribution, specifically the average value of all pixels in the
image. It gauges the overall brightness, or saturation, of the
image, with larger values indicating a brighter image. Vari-
ance (σ ) characterizes the dispersion of the color distribution,
i.e., the variability of pixel values in the image. It measures the
range of the color distribution, with larger values indicating
a broader color distribution range. Skewness (S) quantifies
the degree of asymmetry in the color distribution of pixel
values in the image. It assesses the extent of skewness in
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TABLE 5. Formulas for feature calculation.

the color distribution, with larger values indicating a greater
concentration of colors in one region rather than an even
distribution across the entire image [25].

3) HU MOMENTS FEATURE
HU moments [26] are a type of internal transform method
used for shape analysis. Moment features are another type
of internal transform method that is used for shape analysis.
The first moment is related to the shape; the second moment
shows the extent to which a curve extends around the average
value of a line; and the third moment measures the symme-
try of the mean. HU uses the second and third normalized
central moments to construct seven (7) invariant moments
(Table 5). Among these, M1represents the weighted average
concerning image intensity, typically indicative of the overall
grayscale of the image. M2 quantifies the shape contrast of
the image, specifically the distribution differences of pixels in
the horizontal and vertical directions.M3measures the shape
symmetry of the image, reflecting the distribution differences
of pixels along diagonal directions.M4 assesses the stretching
and skewness of the image’s shape, primarily employed to
quantify the disparities in pixel distribution along the main
and minor diagonals. M5 describes the skew contrast of the
image, primarily capturing differences in pixel distribution
during clockwise and counterclockwise rotations.M6 charac-
terizes the angular contrast of the image, reflecting disparities
in pixel distribution at different angles. M7 evaluates the
shape invariance of the image, indicating differences in pixel
distribution under scaling transformations.

The HU moment [27] feature does not change with posi-
tion, size, and orientation, which are less affected by factors
such as noise. It’s also invariant to the image translation,
scaling, and rotation. Therefore, this study used seven (7)

invariant moments as parameters for shape features. The
Canny edge detection algorithm was employed to extract
the edges of anomalous regions in rail images, followed by
the utilization of the OTSU algorithm [27] to determine the
threshold for binary segmentation. Subsequently, the anoma-
lous regionswere segmented, and seven (7) HUmoments [26]
were calculated.

Table 5 presents the mathematical expressions for calculat-
ing the parameters of the Color Moments, HU Moments, and
Haralick Features.

C. MULTIPLE FEATURES AND MULTIPLE TASKS
1) MULTI-FEATURE FUSION
Feature fusion can enhance detection performance [28].
In this study, a feature concatenation approach was employed
to combine the extracted features, including the Color
Moment (9 dimensions), HU Moment (7 dimensions), and
Haralick features (13 dimensions). Initially, the Mahalanobis
Distance method was used to eliminate outlier values,
followed by dimensionality reduction using Principal Com-
ponent Analysis (PCA) to reduce the feature dimensions
from 29 to 15. Subsequently, the StandardScaler function
was applied to standardize the feature values, meaning that
the data were scaled such that each feature had a mean of
0 and a variance of 1. This standardization helps mitigating
the impact of variations in the feature thresholds, ultimately
enhancing the accuracy and stability of the detection model.
The processed data were then passed to the neural net-
work model, which recognized four types of rail anomalies:
scratches, blocks, cracks, and scabs.

The network architecture comprises two hidden layers
(Fully Connected Layers) and 1 Dropout Layer. The Dropout
Layer is positioned after the first hidden layer and serves
the purpose of regularizing the target classification. Briefly,
it randomly drops the output of the hidden layer to enhance
the generalization capability. In this study, a dropout rate of
0.2 was configured. This implies that during each forward
pass, there is a 0.2 probability of setting certain neuron out-
puts to zero, thereby reducing the risk of overfitting. Figure 4
illustrates the network structure for multi-feature fused rail
anomaly recognition.

FIGURE 4. Network architecture for multi-feature fusion.

2) MULTI-TASK LEARNING
Multi-task learning comprises the recognition of rail-surface
anomalies and the identification of interference level infor-
mation. The network architecture consists of one input layer,

VOLUME 12, 2024 73929



Y. Liyuan et al.: Multi-Modal Fusion for Multi-Task Fuzzy Detection of Rail Anomalies

two hidden layers (Fully Connected Layer), one Dropout
layer, and two output layers. The input layer of the network
receives feature-fused data, which includes color moment
features, HUmoment features, and Haralick features, as indi-
cated by the first dashed box in Figure 4. Both the anomaly
recognition task and the interference level recognition task
share the same feature extractor, namely, two hidden layers
and one dropout layer, as depicted by the dashed box in
Figure 5. Initially ion this study, the feature extractor extracts
features, and the processing results were outputted through
additional fully connected layers (target_output_layer and
interference_output_layer). These fully connected layers
branch into two segments; one dedicated to rail anomaly
recognition and the other dedicated to interference-level
recognition tasks. Subsequently, cross-entropy loss functions
were separately defined for anomaly recognition and interfer-
ence level recognition, and a softmax activation function was
employed to transform the network’s raw outputs into class
probability distributions. This ensures that the sum of the
probabilities for all output classes equals one. The network
architecture for multi-task learning is shown in Figure 5.

FIGURE 5. Network architecture for multi-task learning.

The cross-entropy loss function is a form of loss function
employed to assess the disparity between the probability
distribution of the predicted values and probability distribu-
tion of the actual labels. This loss function is characterized
by its simplicity in gradient computation, rapid convergence
in gradient descent, and insensitivity to outliers [29]. The
mathematical formula is as follows:

loss = −
1
N

∑N

i=1

∑K

k=1
yi,k log

(
pi,k

)
(1)

The symbol N denotes the number of samples in the data
set, where yi,k represents the true label of the k th category for
the ith sample, and pi,k is the predicted probability of the k th

category for the ith sample.
The Softmax activation function is a frequently employed

activation function in tasks involving multi-class classifi-
cation. It takes a vector containing real-valued numbers,
typically referred to as logits, as input, and transforms it into
an output that represents probabilities for different categories,
with each category having a corresponding probability [30].
The mathematical formula is as follows:

S(z)_k = e∧(z_k)/
∑

(e∧(z_i)) (2)

In this context, S(z)_k represents the output probability for
the k-th category, z_k corresponds to the k th element of the
input vector z, e denotes the base of the natural logarithm
(approximately equal to 2.71828), and

∑
represents the sum-

mation symbol.

3) FUZZY LOGIC
The network architecture of the fuzzy detection model com-
prises one input layer, two hidden layers, two dropout layers,
two neural network layers dedicated to fuzzy-logic tasks,
and three output layers. The input consists of feature fusion
data with three branches for three distinct tasks: rail anomaly
recognition (Target_output), interference level recognition
(Interference_output), and fuzzy logic tasks. Similar to the
multi-task learning network structure, the fuzzy logic tasks in
this study shared the same fused feature data as the input with
the anomaly recognition and interference level recognition
tasks and shared the feature extractor. In addition, a dropout
layer was included to prevent overfitting. Two neural network
layers (fuzzy_fc1 and fuzzy_fc2) dedicated to fuzz- logic
tasks were added to this foundation to capture data fuzzi-
ness. Finally, a Sigmoid activation function was employed
to map the network’s output to a probability distribution
range, where 0 represents low fuzziness or uncertainty, and
1 represents high fuzziness or uncertainty. TheMean Squared
Error (MSE) loss function was used to measure the difference
between the model’s output and target values. Figure 6 illus-
trates the network structure of the fuzzy logic model.

FIGURE 6. Network architecture for fuzzy logic.

The fuzzy-logic task in this study involved producing a
scalar value between 0 and 1 based on the fuzziness or uncer-
tainty of the input data. This scalar value was then compared
to a predefined threshold to determine the presence of inter-
ference. In this study, the class probabilities for the anomaly
recognition task were initially computed to identify the max-
imum class probability value and its corresponding predicted
class. Subsequently, a scalar value ranging from 0 to 1, rep-
resenting the output of the fuzzy logic task, was generated
through forward propagation. Finally, the presence of inter-
ference was determined by comparing the maximum class
probability value to a predefined threshold. If the maximum
class probability value is below the threshold, the interference
label is set to 1 (indicating interference); otherwise, it is set
to 0 (indicating no interference). By introducing the fuzzy
logic task, the model can simultaneously learn to handle
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different types of tasks, engage in joint training with the
target classification and interference classification tasks, and
enhance its understanding of the input data, thereby improv-
ing the classification performance.

The fuzzy logic task constitutes a comprehensive assess-
ment of uncertainty, primarily focusing on brightness, noise,
and blur interference. Therefore, this study combined the
results of the fuzzy logic task with interference level recogni-
tion through weighted fusion to form a distinct classification
task of ‘‘with interference’’ and ‘‘without interference.’’ The
threshold of the fuzzy logic task acted as a parameter for bal-
ancing the fuzzy logic task and interference level prediction
results.

The mathematical representation of the Mean Squared
Error (MSE) loss function is as follows:

MSE =
1
N

∑N

i=1
(yi − ŷi)2 (3)

N represents the number of samples, yi is the actual target
value for the i th sample, ŷi is the i model’s prediction,

∑N
i=1

denotes the summation over all samples, and 1/N signifies
the average.

The mathematical representation of the Sigmoid activation
function is:

σ (x) =
1

1 + e−x
(4)

σ (x) represents the output of the sigmoid activation func-
tion, and x represents the input value.

IV. RESULTS AND DISCUSSION
The performance of the model was assessed through K-fold
cross-validation using a 5-fold cross-validation approach.
The average results across these five(5) folds were used as
outcome data. To address the imbalance in sample quanti-
ties, theweighted-random-sampler oversamplingmethodwas
employed to augment the samples for the less represented
types of rail anomalies. As this study focuses on enhanc-
ing the classification performance of rail anomalies under
interference conditions through a multi-feature and multi-
task approach, the experimental outcomes pivot around the
utilization of accuracy in anomaly classification as the pri-
mary evaluation metric.

A. RESULTS OF MULTI-FEATURE FUSION
Firstly, the multi-feature fusion approach under interference-
free was compared with the results obtained from single-
feature recognition. Subsequently, luminance, noise, and blur
interference were randomly introduced, followed by another
round of experimental comparisons. Table 6-7 presents
the accuracy of rail anomalies classification under both
interference-free and interference-laden conditions using
single-feature and multi-feature methods.

From Table 6-7, it is evident that the multi-feature fusion
method outperforms the single-feature recognition results in
rail anomaly detection. Under the condition without added

TABLE 6. Results under interference-free conditions.

TABLE 7. Results under interference conditions.

interference, the multi-feature fusion method achieved recog-
nition accuracy of 95.20%,which further improved to 98.82%
after converting the RGB color model to YCbCr. In contrast,
the other three single-feature methods, except for the color
feature, exhibited a relatively modest recognition accuracy,
with the color feature recognition accuracy exceeding 90%.
Following the random introduction of interference, the recog-
nition accuracy of all methods notably decreased; however,
the multi-feature fusion method continued to surpass the
single-feature methods in terms of accuracy.

FIGURE 7. 5-Fold cross-validation loss.

Figure 7 illustrates the model loss for the multi-feature
fusion method. Both training and validation loss curves
exhibited a smooth descent without significant oscillations
and sharp increases, indicating favorable convergence perfor-
mance of the model.

B. RESULT OF MULTI-TASK LEARNING
To validate the effectiveness of the multi-task learn-
ing approach, this study conducted a comparative anal-
ysis between single-feature multi-task learning methods
and multi-feature multi-task learning methods and their
corresponding single-task learning counterparts. Initially,
427 original images were manually subjected to luminance,
noise, and blur interference levels ranging from 1 to 10.

VOLUME 12, 2024 73931



Y. Liyuan et al.: Multi-Modal Fusion for Multi-Task Fuzzy Detection of Rail Anomalies

TABLE 8. Results of multi-feature multi-task.

Subsequently, 4270 images, each with different interferences,
underwent feature extraction and feature fusion. These pro-
cessed images were then input into both the single-task and
multi-task detection models for comparative experiments.
Table 8 presents a comparison of the accuracy of anomaly
classification between single-task and multi-task methods
under both single-feature and multi-feature conditions.

From Table 8, it is evident that under conditions of
luminance, noise, and blur interference, the accuracy of
multi-task anomaly recognition was consistently the highest,
reaching 86.26%, 91.10%, and 96.07%, respectively. This
is notably higher, by 5.93%, 4.93%, and 3.8%, compared
to single-task anomaly recognition. The accuracy of fused
feature anomaly recognition was also higher than that of
single-feature anomaly recognition. Figure 8 displays the
confusion matrix of the multi-feature multi-task detection for
recognizing the four types of anomalies under luminance,
noise, and blur interference. In the confusionmatrix, numbers
0-4 represent normal, scratches, blocks, cracks, and scabs.

Furthermore, it is noteworthy that color features, regardless
of single or multi-task scenarios, exhibited significant accu-
racy in anomaly classification under all types of interference,
with single-feature accuracy surpassing the 80% threshold.
It is also evident that, despite the use of a simple shar-
ing mechanism and keeping other conditions constant, the
multi-task classification method, which introduces interfer-
ence levels as a secondary label, demonstrated improvements
in recognition accuracy compared to single-task classification
learning methods. This implies that the multi-task learning
approach utilizing interference information is effective in the
task of rail anomaly recognition.

C. FUZZY JUDGMENT OF INTERFERENCE
The classification of blurred interference yielded two cat-
egories: ‘‘With Interference’’ and ‘‘Without Interference.’’
Initially, a scalar value between 0 and 1 was obtained through
a fuzzy logic task. Subsequently, the interference prediction
results were used to adjust the fuzzy logic output, rein-
forcing the influence of the interference prediction results
on the interference situation. Through multiple experiments,
a fuzzy logic target expectation value of 0.3 was selected.
The weights for the fuzzy logic and interference results were
allocated in a ratio of 0.85:0.15, with a threshold set at 0.3.

FIGURE 8. Confusion matrix for multi-feature multi-task.

This means that results weighted above 0.3 are categorized as
‘‘With Interference,’’ while those below 0.3 are categorized
as ‘‘Without Interference.’’ The average interference results
across different interference levels are presented in Figure 9.

FIGURE 9. Results for different levels of interference.

Figure 9 illustrates how the interference intensity increases
with increasing interference levels. With a threshold of 0.3,
both brightness and noise interference were classified as
‘‘interfered’’ beyond Level 5. In contrast, fuzzy interference
began showing signs of ‘‘interference’’ from level 3 onwards,
and its intensity exhibited a relatively gradual incline with
increasing interference levels. This indicates that the detec-
tion model maintains a more stable recognition performance
when facing varying intensities of the fuzzy interference.

D. PERFORMANCE COMPARISON
1) SAME FEATURE EXTRACTION + DIFFERENT
CLASSIFICATION MODELS
To further substantiate the effectiveness of the multi-task
ensemble methodology proposed in this study, experiments
were conducted whereby identical interference information
was introduced into the image data. Subsequently, identical
color, HU moments, and Haralick features were extracted,
followed by feature fusion and normalization. The result-
ing multi-feature fusion feature vectors were then separately
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TABLE 9. Results of different classification models.

inputted into the network architecture of the proposed
method, as well as into detection models such as SVM, Ran-
dom Forest, and SOTA (State-Of-The-Art) neural networks
based on the PyTorch framework, for assessment using accu-
racy in anomaly classification as the benchmark to evaluate
model performance. The classification results are listed in
Table 9.

Upon comparing the four detection models, it is evident
that the proposed multi-feature multi-task fuzzy detection
mode consistently exhibited the highest anomaly classifi-
cation accuracy, regardless of the presence or absence of
interference. In scenarios with luminance, noise, and blur
interference, the classification accuracy achieved by this
model surpassed those of the next-best detection models by
3.59%, 2.63%, and 3.22%, respectively. It is worth noting
that SVM and SOTA outperformed Random Forest in sce-
narios without interference, but Random Forest performed
better than SVM and SOTA when faced with luminance,
noise, or blur interference. This suggests that the multi-
feature multi-task fuzzy detection method proposed in this
study demonstrated superior robustness, particularly in the
presence of interference.

2) DIFFERENT FEATURE EXTRACTION + DIFFERENT
CLASSIFICATION MODELS
To validate the performance of the multi-feature multi-task
method proposed in this study, different combinations of
feature extraction and classification models were utilized
for comparison against the proposed approach. For instance,
the Laplacian low-pass filtering-based SVM approach, the
random forest method based on Histogram Matching, and
the SOTA method. Different methods were applied to clas-
sify anomalies in rails on the same dataset, evaluating their
classification performance under various interference types.
The detection outcomes are presented in Table 10, obtained
through K-fold cross-validation (K=5), thereby ensuring a
robust assessment of the method’s efficacy in detecting rail
anomalies amidst diverse interferences.

The experimental findings reveal that these composite
methods yield superior anomaly classification outcomes. Par-
ticularly, the SOTAmethod exhibits outstanding performance
across each interference type, albeit registering notably lower

TABLE 10. Results of different detection methods.

accuracy in interference-free scenarios. This discrepancy pri-
marily stems from the limited anomaly data volume in the
absence of interference, totaling 427 instances compared to
12,810 instances in the presence of interference. The dimin-
ished accuracy of the SOTAmethod on smaller-scale datasets
is attributed to the limited information available. Addition-
ally, compared to the other three methods, the SOTA method
exhibits prolonged detection times. Conversely, the other two
composite methods demonstrate commendable performance
under luminance and blurriness interferences. The proposed
approach consistently delivers stable output results under
both interference and interference-free conditions, achieving
accuracy rates of 86.26%, 91.10%, and 96.07% across the
three interference scenarios, respectively.

While conventional shallow learning models such as
Support Vector Machines, Random Forests, and Laplacian
low-pass filtering have demonstrated commendable perfor-
mance to a certain extent, deep learning models, exemplified
by knowledge-distillation-based recognition models, hold
promise for surpassing them. Future investigations could
delve into the applicability of deep learningmodels in railway
anomaly detection tasks, thereby augmenting both detection
accuracy and generalization capabilities.

E. RESULTS OUTPUT
To test how effective the multi-feature multi-task approach is
in identifying different types of anomalies (such as normal,
scratch, block, chap, and scab) under ‘‘multi-interference’’
conditions, 200 images were subjected to random additions
of luminance, noise, and blurriness interferences. After that,
different models were used to test the images, and the results
of the anomaly classification outcomes of these different
models are presented in Table 11.

Upon contrasting the anomaly classification outcomes of
the four different methods, it becomes evident that vary-
ing detection methods yield different detection efficiencies
for distinct anomaly types. The approach employed in this
study demonstrates favorable detection results for the nor-
mal, scratch, and block anomaly types, whereas results for
the chap and scab anomaly types are relatively lower. Upon
analysis, it speculated that the three extracted features may
not adequately capture other significant features specific to
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TABLE 11. Results of multi-interferences.

scab and chap anomaly types, thus resulting in lower accu-
racy. In subsequent research endeavors, further exploration
of the chap and scab anomaly types is warranted, focusing on
identifying feature extraction methodologies better suited for
these anomalies. Additionally, the integration of additional
image processing techniques or deep learning methodologies
may facilitate the extraction of richer andmore discriminative
features. Moreover, the exploration of alternative ensem-
ble learning techniques holds promise for enhancing the
model’s generalization capabilities. Nonetheless, the Multi-
feature multi-task Fuzzy Method employed in this study
continues to exhibit satisfactory accuracy in detecting rail-
way track anomalies, demonstrating notable robustness and
generalization capabilities across various data subsets (K-fold
cross-validation).

Figure 10 depicts the image input under sunlight interfer-
ence (as shown in Fig. 1), along with the outputs of anomaly
classification, interference level, and fuzzy logic tasks of the
multi-feature multi-task method.

FIGURE 10. Image input and detection result output.

V. CONCLUSION
This study introduced a multi-feature multi-task fuzzy detec-
tion method, which integrates color, HU moments, and
Haralick features. The method fuses these features to address
the challenges posed by sunlight, dust, and blurriness inter-
ference in rail anomaly detection. By concurrently accom-
plishing the primary task of classifying rail anomalies and
leveraging interference level information to assist network
training, the proposed approach mitigates the impact of envi-
ronmental interferences. Experimental results indicated that
the multi-feature fusion method outperformed single-feature

methods in both single-task andmulti-task learning scenarios.
Moreover, incorporating interference level information for
network training enhanced the performance of rail anomaly
detection by 5.93%, 4.93%, and 3.8% under luminance,
noise, and fuzzy interferences, respectively. Compared to
alternative detection methods, the multi-feature fusion multi-
task blur detection method excelled in anomaly detection
tasks while providing valuable perturbation information.
This approach has introduced a novel perspective to the
realm of rail anomaly detection research under interference
conditions.
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