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ABSTRACT Due to stringent aircraft safety requirements and the high cost of experiments, there is a scarcity
of failure samples, which creates a gap between existing diagnostic models and practical applications.
To address this issue, we have developed a small-sample civil aircraft fault diagnosis method. This method
combines a meta-learning approach to tackle data imbalance with a channel attention mechanism to enhance
feature extraction efficiency. Specifically, our approach integrates the advantages of meta-learning and
attention regularization, effectively addressing both the imbalance in training sample distribution and the
need for human interaction to enhance feature representation. We then evaluated five data imbalances and
introduced a fault diagnosis algorithm based on a one-dimensional convolutional network, which has been
successfully applied to solve small sample yield tasks in two datasets. Additionally, we provide baseline
accuracy under the same conditions for comprehensive comparison and reference. Through extensive
experiments, our method achieves competitive performance and demonstrates its superiority in solving
imbalanced distribution experimental configurations.

INDEX TERMS Meta-learning, fault diagnosis, channel attention mechanism, few-shot.

I. INTRODUCTION
Fault diagnosis and health management technology for com-
plex equipment have always been challenging and dynamic
areas of research. These technologies leverage collected
data to monitor, diagnose, and predict the current state of
aircraft, aiding intelligent decision-making. Recently, with
advancements in hardware and the availability of massive
datasets, data-driven fault diagnosis methods, particularly
those based on deep learning [1], [2], have gained significant
attention. Their appeal lies in their ability to bypass the
need for physical modeling and their remarkable feature
extraction capabilities. These methods [3], [39], [40] have
seen notable performance enhancements through the analysis
of various system parameters and the exploration of feature
relationships within the data. However, traditional fault
diagnosis algorithms relying on deep learning are heavily
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reliant on high-quality datasets for effective model training.
Their performance tends to degrade or fail altogether when
faced with small or unbalanced training datasets. Civil
aircraft equipment is mandated to operate under optimal
conditions, limiting the availability of failure samples [4].
Moreover, aircraft equipment is typically expensive, making
it impractical to gather sufficient fault samples through
experiments. Consequently, the proportion of faulty data to
healthy data in aircraft systems often remains imbalanced in
practice. Traditional algorithms struggle to handle these tasks
with limited samples, primarily due to the data requirements
of deep learning. To tackle this challenge, Chen et al. [5] and
Zhao et al. [6] devised fault diagnosis methods based on data
augmentation techniques. These methods generate balanced
datasets from imbalanced ones using various sampling
strategies. Their straightforward implementation has made
them widely adopted in numerous research studies.

Specifically, previous methods relying on data augmen-
tation have effectively transformed imbalanced datasets
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into balanced ones, thereby significantly enhancing the
algorithm’s performance. However, they still face the
following two challenges:

A. CHALLENGE 1: (BRUTALLY FORCED RE-SAMPLING
MECHANISM INDUCED NEGATIVE TRANSFER)
We argue that existing data augmentation methods are unable
to fundamentally solve the issue. They often fall short in fully
capturing the features of the minority class. Additionally,
the integration of borrowed samples with minority class data
can disrupt the distribution of the minority data, resulting in
negative transfer effects. Motivated by this, it is beneficial to
measure the divergence between the unbalanced and balanced
datasets, as it can guide the model’s generation without
drastically altering the training set.

B. CHALLENGE 2: (COMPLEX FEATURE DISTRIBUTION
LEADS TO THE DIFFICULTY OF FEATURE EXTRACTION)
In civil aircraft fault diagnosis, the data formats are diverse
and intricate, posing challenges to feature extraction. While
augmenting the volume of training data is a common strategy,
it proves ineffective in scenarios with limited samples.
Previous studies have attempted to improve network feature
extraction efficiency through techniques like Fourier trans-
forms or specialized feature extraction layers [7]. However,
these methods rely on manual design, leading to inconsistent
performance, poor generalization, and an inability to handle
data from multiple sensor sources.

In analyzing these mentioned challenges, we identify
the shortcomings of existing methods as the difficulty
in balancing human intervention and model performance.
Achieving optimal feature representation and adaptability
to imbalanced training often requires significant human
priors and meticulous hyperparameter tuning. Consequently,
these methods are sensitive to parameters, leading to
poor generalizability across different experimental scenarios
and unstable functional learning. To address these issues,
we propose a hybrid neural network (NN) architecture
that integrates meta-learning and attention regularization.
Meta-learning enables the model to quickly adapt to new
tasks, significantly enhancing its robustness. Concurrently,
the channel attention mechanism intelligently learns the
importance of different feature extraction channels and
automatically applies weighting processing to enhance the
network’s feature extraction capability. As a result, we focus
on these two strategies reinforced NN architecture for our
subsequent research.

In response to the aforementioned challenges, we propose
a novel fault diagnosis model that combines the following
methods: the Channel Attention Enhanced L2R network.
Our approach addresses the discrepancy between imbalanced
and balanced datasets using meta-knowledge, guiding the
model’s training process. Additionally, we introduce a
channel attention module to enhance the model’s sensitivity
to critical features. To address challenge 1, we introduce the

L2R network, which is grounded in meta-learning principles.
This network leverages meta-knowledge to quantify the dif-
ferences between balanced and imbalanced datasets, allowing
for the recalibration of sample weights in the unbalanced
training datasets. Importantly, our method autonomously
adjusts these weights through meta-learning, eliminating the
need for manual parameter configuration. To tackle chal-
lenge 2, we introduce a channel attention module that utilizes
an auxiliary neural network to evaluate the significance of
each feature channel. This module assigns weights to the
channels based on their importance, directing more attention
to crucial channels. Specifically, we utilize meta-knowledge
to dynamically reweight samples from unbalanced datasets
and employ additional networks for channel-wise attention
allocation.

This paper makes several key contributions, which are
summarized as follows:

• This paper introduces an enhanced fault diagnosis
algorithm based on convolutional neural networks
(CNNs), which automatically extract features from
time-series fault data through one-dimensional convolu-
tion. This end-to-end fault detection algorithm provides
versatility, cost-effectiveness in maintenance, and strong
portability. Moreover, it integrates the SE channel
attention mechanism to adaptively enhance feature
representation, thereby improving the representation
capability of these features.

• The optimization strategy, involving meta-learning
embedding techniques, enhances model training by
improving the model’s adaptability to small, unbalanced
fault samples. It achieves this by automatically adjusting
sample loss weights. Additionally, the strategy enhances
gradient updates in L2R through a clipping and lifting
approach, resulting in meta-gradient enhancement. This
approach increases the effective utilization of fault
samples, thereby enhancing the accuracy and stability
of fault diagnosis algorithms.

• Extensive experiments conducted on two fault diagnosis
datasets demonstrate that our proposed method achieves
competitive results in addressing small sample fault
diagnosis challenges.

The paper is structured as follows: Section.II delves into
the related work, revealing the connections among exist-
ing methods. Section.III introduces our proposed method.
Section.IV benchmarks the proposed fault diagnosis method
and provides an in-depth analysis. Finally, Section.V draws
conclusions.

II. RELATED WORKS
A. FAULT DIAGNOSIS FOR IMBALANCED DATA SETS
The issue of dealing with small sample problems [38] is quite
common in engineering and has gained significant attention
in previous research. Small sample methods in fault diagnosis
can be categorized into following three main strategies: data
augmentation-based strategy, feature learning-based strategy
and classifier design-based strategy [8], [9].In addition, as a
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new strategy, methods based on meta-learning have gradually
received more attention.

In terms of data preprocessing, data augmentation-based
strategies aim to address the scarcity of training sam-
ples through oversampling or generating synthetic data.
Traditional approaches such as Synthetic Minority Over-
sampling Technique [10] and Adaptive synthetic sampling
approach [11] primarily involve linearly interpolating of
virtual data into the dataset based on neighborhood rela-
tionships, while reducing the quality of augmented samples.
More recently, data generation models, exemplified by
Generative Adversarial Networks (GAN) [12] or other
deep learning neural network [13] have been extensively
studied and have shown promising results in augmenting
mechanical fault data [14]. However, deep generative models
pose challenges in training, requiring substantial computing
resources, and are prone to generating low-quality samples.

In the realm of feature extraction, feature learning-based
strategies focusing on designing regularized neural networks
or feature adaptation without resorting to data augmentation.
Researchers design approaches based on these strategies:
Yang et al. [15] and Zeng et al. [16] leverage the superior
feature extraction capabilities of neural networks to extract
useful common features; Li et al. [17] and Yang et al. [18]
utilize transfer learning networks to impart knowledge from
related datasets. However, extracting effective features from
limited and imbalanced data presents a challenge, and
obtaining high-quality, relevant datasets for transfer learning
networks is also a challenging task.

In the domain of classifier design, the strategy contends
that training a classifier suitable for imbalanced data can
obviate requirements for tedious processes such as data
augmentation or the design of feature extraction models.
However, such classifiers often depend on expert knowledge
or auxiliary datasets. Dong et al. [19] and Peng et al. [20]
design cost-sensitive loss functions based on expert knowl-
edge for the target scenario, and Li et al. [21] andHe et al. [22]
fine-tuning the model trained on auxiliary datasets to adapt
the target scenario. Consequently, the performance of fault
classifiers obtained through this approach is sensitive to
human interaction and the quality of the auxiliary dataset.

Recently, inspired by the manner of human learning, meta-
learning has been specifically introduced. Meta-learning
techniques aim to enhance the network’s learning capability
for tasks at a higher level, beyond simple classification
tasks. Specifically,Model-AgnosticMeta-Learning (MAML)
[23] and its derivatives, for example, have shown strong
performance in dealing with few-shot instances. As a result,
meta-learning-based fault diagnosis methods have found
widespread application in recent research. For instance,
He et al. [24] introduce MAML-based meta-learning to the
fault diagnosis of rolling bearings, enabling end-to-end few-
shot sample-based diagnosis of bearing faults under varying
working conditions. Wu et al. [25] utilize a Meta Relation
Net for intelligent fault diagnosis in rotating machinery. They
introduce the Match Net to learn a distance metric function,

which is used to match few-shot samples with known
categories. Additionally, Dixit et al. [26] design a model
called CACGAN, combiningModel-AgnosticMeta Learning
(MAML) with a GAN framework, leverages MAML to
initialize and update network parameters.

B. ATTENTION MECHANISM
Inspired by human perception systems, attention mecha-
nism has demonstrated remarkable effectiveness in various
computer vision applications (e.g., [27], [28]) and natural
language processing domains (e.g., [29], [30]). In com-
puter vision, Dosovitskiy et al. [27] introduced a novel
approach called Vision Transformer (ViT), which applies
the Transformer architecture to sequential image patches,
leading to improved performance in image classification
tasks. Fan et al. [28] made pioneering efforts by using the
Transformer model for point cloud video modeling, and
applied the Transformer for spatio-temporal modeling in
raw point cloud videos. In the realm of natural language
processing, Vaswani et al. [31] proposed a groundbreaking
work to explore the effectiveness of attention mechanisms in
capturing global knowledge within input and output dialogs,
significantly enhancing machine translation tasks. More
recently, Fan et al. [30] devised a novel recurrent attention
network to generate attention-enhanced spatial context for
Visual Dialog tasks.

Recently, in the field of intelligent fault diagnosis, attention
mechanisms are employed to enhance feature representation.
For instance, in the DANDA [32], both channel and spatial
attention mechanisms are employed to capture low-level fea-
tures in fault data. Later on, Zheng et al. [33] utilizes attention
mechanisms to filter out extraneous features extracted from
the data. In our research, we investigate the efficacy of
channel attention in intelligent diagnosis and integrate an
attention module into the meta-learning network to enhance
the utilization of critical features.

III. PROPOSED METHOD
The fault diagnosis model based on convolutional neural
networks possesses robust automatic feature extraction capa-
bilities and offers versatility and portability across various
fault data. However, constrained by limited onboard com-
puting resources, the model employs the LeNet lightweight
convolutional neural network with fewer parameters as the
backbone network for the fault diagnosis model. This design
aims to reduce computing costs and meet the real-time
requirements of fault diagnosis. Simultaneously, recognizing
the enhanced sensitivity of one-dimensional convolution
operations to time series samples, the network optimizes
the feature extraction module of the backbone network
by replacing the two-dimensional convolution layer with a
one-dimensional convolution layer. In the classifier section,
the final fault diagnosis classification results are determined
by comparing the probabilities of different fault categories.
This is achieved through two fully connected layers and
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FIGURE 1. Structure of LeNet: The feature extractor of the network
consists of three convolutional layers, and the classifier consists of two
fully connected layers and a soft-max layer.

one Soft-max layer. Overally, the structure of the backbone
network is illustrated in Fig. 1.

However, in solving the task of diagnosing faults in small
and unbalanced civil aircraft, the LeNet backbone network
still offers significant room for improvement. The limited
number of convolution layers fails to provide sufficient
feature extraction capabilities, especially given a small size
and imbalanced characteristics of the fault samples. This
deficiency can potentially lead to overfitting issues in the
model. To address these challenges, we employ the channel
attention mechanism to adaptively enhance convolution
features, thereby lifting the representation ability of fault
features. Additionally, we utilize the meta-learning algorithm
to learn heavy weights, contributing to improved model
training strategies. This chapter focuses on enhancing the
network structure and refining training strategies to overcome
these limitations.

A. SCENARIO DEFINITION
Our research focuses on the civil aircraft fault diagnosis task
within the small sample scenario. First, we introduce the
relevant basic symbols. In this hypothetical scenario, due to
stringent aircraft safety requirements, the training dataset is
defined as follows:

DTrain = {xi, yi}
NTrain
i=1 xi ∈ XTrain, yi ∈ Y . (1)

DTrain is the training set. XTrain is the set of all training
samples, containing NTrain samples. xi represents the ith

sample whose label is yi.
Testing set is defined as follows:

DTest = {xi, yi}
NTest
i=1 xi ∈ XTest , yi ∈ Y . (2)

DTest is the test set. XTest is the set of all test samples,
containing NTest samples. xi represents the ith sample whose
label is yi.

To facilitate quantitative research, we assume that the
sample space of the data set only contains two categories:
Y = {0, 1}.

Therefore, the imbalanced data set is defined as follows:

U =
∑N

i=1I (yi = 0) /N (3)

Where I (∗) is the indicator function, and N is the number
of samples in dataset, U ∈ [0, 1].
We aim to find a fault diagnosis model that can exhibit

good performance on the balanced test dataset (UTest = 0.5)
after model training based on an unbalanced training set
(UTrain > 0.5). The fault diagnosis can be defined as:

ŷ = f (x; θ) (4)

Where f (.) is our neural network model, and θ is the model
parameters.

B. CHANNEL ATTENTION MECHANISM
The lightweight convolutional neural network, namely
LeNet, with its relatively few convolution layers, possesses
limited decoupling and abstraction capabilities for fault
features. In this research, structural improvements have been
made to enhance its performance.

The Squeeze and Excitation (SE) channel attention mecha-
nism is a neural network module introduced by Hu et al. [34]
to augment the capability of extracting image features.
Its goal is to allocate distinct weights to various channel
features within the channel domain dimension, ensuring
the acquisition of crucial feature representation. In this
paper, the SE attention mechanism is employed in the
time series fault feature extraction module. By enhancing
the representation ability of Convolutional Neural Network
(CNN), the SE attention mechanism extracts spatial encoding
quality throughout the entire feature hierarchy. Its model
structure is depicted in Fig. 2.

As illustrated in Fig. 2, for any given transformation Ftr ,
the input x is transformed into the feature space u. Using the
convolution operation as an example, the input x undergoes
a one-dimensional convolution, mapping it to a feature space
of H × W × C . Subsequently, the feature matrix undergoes
global pooling through the squeeze operation Fsq(·) to obtain
a low-dimensional embedding u of the feature space within
the dimension of the global receptive field. The calculation
formula is as follows:

zc = Fsq(uc) =
1

H×W

H∑
i=1

W∑
j=1

uc(i, j) (5)

The low-dimensional embedding zc encompasses global
information from various feature channels. Then, the excita-
tion operation Fex(·) involves connecting two fully connected
layers, with weights generating adaptive channel weights.
The calculation is as follows:

s = Fex(z,W ) = σ (g(z,w))σ (W2δ(W1z)) (6)
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FIGURE 2. Illustration of SE channel attention. The squeeze-and-excitation block explicitly models the channels in the convolutional
network (as shown in the upper part of the figure) and feeds back to the network to get the attention-enhanced model (as shown in
the right part of the figure).

FIGURE 3. Illustration of convolutional channel attention. Convolutional
layers (left) are enhanced with attention mechanisms by inserting
channel attention modules (right).

W1 and W2 are the weight parameters of the two fully
connected layers, andR is the squeeze hyperparameter, whose
size represents the degree of channel weight squeezing. After
the above operations, a generative model of adaptive channel
weights is constructed. Finally, the feature generated by the
SE channel attention module is obtained through channel
weighting:

x̃c = Fscale(uc, sc) = scuc (7)

Combined with a one-dimensional convolution layer, the
SE channel attention algorithm structure is illustrated in
Fig. 3.

In a series of previous research, the attention mechanism
has been proven effective in lifting image feature representa-
tion. In the context of the fault time series data, modifying
the weight distribution among different feature channels
through the SE attention mechanism can also enhance
the impact of crucial features, thereby improving feature
representation capability. In this study, the SE attention
mechanism is employed in fault diagnosis technology,

significantly enhancing the accuracy and effectiveness of
fault diagnosis. The enhanced one-dimensional convolutional
neural network structure is depicted in Fig. 4:

FIGURE 4. Channel enhanced LeNet structure diagram: The feature
extraction module of the network can be enhanced by embedding the
attention module in the third convolutional layer.

C. LEARNING TO RE-WEIGHT
The enhanced LeNet network, which coupled with the
channel attention mechanism, has enhanced its feature
extraction capability, it still facing the challenge of model
overfitting due to small and unbalanced data distribution.
In scenarios where training samples are limited and imbal-
anced, manifesting as noisy and biased data samples. During
forward propagation, the loss weight calculated by the
model influences the model’s parameter update direction
through backpropagation. The greater the loss weight, the
more pronounced the impact of the sample on updating the
model parameters. To address potential overfitting caused
by these samples, we opt to assign smaller loss weights to
high-noise samples and higher loss weights to samples from
smaller classes, mitigating the adverse effects of noise and
bias on model training. However, manually designing loss
weights is unreliable to solving the experimental scenarios
adaptively. To tackle this weight assignment issue, we employ
a meta-learning algorithm based on learning heavy weights to
enhance the training process of the fault diagnosis model.

Assume there is a biased and noisy training set sample
pair (xi, yi), 1 ≤ i ≤ N , and we also have a small
unbiased and clean validation set (xj, yj), 1 ≤ j ≤ N , where
M ≫ N is the total number of validation set samples. The
validation set samples are usually derived from the training
set. φ(x, θ) denotes the neural network model with θ as
the model parameters. Our objective is to minimize the loss
function L(ŷ, y), where ŷ is the output of the neural network.
In previous model training, assuming that the loss function
of the training set is: 1

N

∑N
i=1 L(,̂y) =

1
N

∑N
i=1 fiθ where

the weights of each input sample are equal, our goal is to
reduce the loss of the training set through gradient descent.
By calculating the similarity between the training set and the
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FIGURE 5. Framework of proposed LRS: The model mainly consists of three steps: 1). Use the training set (imbalanced) to update
the network and obtain a set of updated model parameters. 2). Obtain verification loss based on the verification set (small and
balanced) and use the loss to update the weight of the samples. 3). Use the updated weight to retrain the model parameters
based on the training set.

validation set gradient, we optimize the weight of the sample
to better minimize the weighted loss. The model parameter
update formula is as follows:

θ∗(w) = argmin
θ

N∑
i=1

ϵifi(θ ) (8)

where ϵi represents the loss weight of the sample, and w is
the network parameter. Our objective is to optimize the loss
weight of the original sample by minimizing the loss of the
validation set. The update formula for ϵ is as follows:

ϵ∗
= argmin

ϵ≥0

1
M

M∑
i=1

f vi (θ
∗(w) (9)

Due to the negative impact of sample loss, it often
leads to significant fluctuations in the loss during the
model training process, reducing the stability of the model.
Therefore, in Formula 9, all ϵ∗ weights of negative samples
are excluded by gradient clipping. Updating weights online
requires two nested optimization loops. Initially, we employ
gradient descent to optimize the loss of the training set,
using Stochastic Gradient Descent (SGD) as the optimization
algorithm. At each training step, a sample (xi, yi) is randomly
chosen from the training set, where 1 ≤ i ≤ n and n is the
mini-batch size. In the case of the SGD optimizer, a virtual
update is performed, and the formula for the virtual update is
as follows:

θt+1 = θt − α∇(
1
n

n∑
i=1

fi(θt )) (10)

where α is the learning rate. Then, a clean and balanced
sample from the validation set is fed into the updated network,
and its sample loss is calculated. We aim to ensure that the
loss of the original network on the validation set is also
sufficiently small, thereby guaranteeing that the model is
better suited for training with clean and unbiased samples.
By using the loss, the original sample weight is updated using
one-step gradient descent, empowering the network with the
ability to classify clean and balanced samples. The formula
for the meta-update loss weight is as follows:

fi,ϵ(θ ) = ϵifi(ϵ)

θ̂t+1(ϵ) = θt − α∇

n∑
i=1

fi,ϵ(θ )
∣∣
θ=θt

(11)

However, multiple weight updates using gradient descent
is still a time-consuming process. Therefore, we choose to
employ a single-step gradient descent.

ui,t = −η
∂

∂ϵi,t

1
m

m∑
j=1

f vji (θt+1(ϵ))
∣∣∣
ϵi,t=0

w̃i,t = max(ui,t , 0) (12)

Lately, in applying gradient clipping, the weights remain
positive, mitigating the adverse effects of negative sample
loss on training stability. Subsequently, we normalize all
sample weights to ensure their sum is one, preventing the
occurrence of the explosion and disappearance phenomena
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in the final weighted loss:

wi,t =
w̃i,t

(
∑

j w̃j,t ) + δ(
∑

j w̃j,t )
(13)

The symbol δ in Formula 13 represents a discrete function,
taking the value 1 when

∑
j w̃j,t is 0, and 0 otherwise. This is

employed to prevent the denominator from becoming zero.
At this stage, the updated weights inherently incorporate
directional information aimed at minimizing the validation
set loss. Consequently, the network adjusts in the direction of
better adaptation to small and balanced samples. The formula
for gradient descent with the updated weights in the last step
is expressed as follows:

θt+1 = θt − α∇(
1
N

N∑
i=1

wi,t fi(θt ) (14)

Given that the updated weights incorporate gradient
information aimed at minimizing the validation set loss,
we observe the reduction in both training and validation set
losses. While ensuring full utilization of training set sample
information, a small fraction of clean and balanced weights
is proposed for the training process, thereby enhancing
network generalization and improving stability in handling
class imbalance and noise samples. The detailed parameter
update process is outlined in Algorithm 1.

Algorithm 1Meta-Reweighted Optimization Enforced Civil
Fault Diagnosis
Require: θ0, DTrain, Iteration number K , Step size α

1: while k < K do
2: Get Tt = {xt , yt }

Nt
t=1 from DTrain

3: Get Tv = {xv, yv}
Nv
v=1 from DTrain

4: Forward propagation on Tt −→ ŷt = f (Tt ; θk )
5: Initial the weight ϵ −→ 0
6: Calculate Lt =

∑Nt
i=1 ϵ × l(yt,i, ŷt,i)

7: Get the grad ∇θk
8: Calculate θ̂k = θk − α∇θk
9: Forward propagation on Tv −→ ŷv = f (Tv; θ̂k )

10: Calculate Lv =
1
Nv

∑Nv
i=1 l(yv,i, ŷv,i)

11: Get the grad ∇ϵ

12: Update the weight w̃k according to Formula.13
13: Recalculate L̂t =

∑Nt
i=1 w̃k × l(yv,i, ŷv,i)

14: Update the model parameters θk+1 based on L̂t
15: end while

D. META GRADIENT BOOSTING
Finally, the fault diagnosis model, incorporating meta-
learning and convolutional neural network, is depicted in
Fig. 5. The training steps primarily involve virtual update,
meta-update, and actual update.

However, there are certain challenges in the practical
application of the algorithm. The weight clipping process
eliminates negative sample weights, particularly in the later
stages of training, where samples exhibit high imbalance.

This leads to the disappearance of weights, even though
the sum of sample weights is 1, a significant proportion of
samples are assigned zero weight after reweighting. This
substantially reduces the utilization efficiency of training set
samples, equivalent to a drastic reduction in the effective size
of the training samples. Even in the case of an imbalanced
training set, the sample information is valuable, and the
disappearance of sample weights introduces issues such as
network overfitting. To address these issues, we aim to
enhance the algorithm’s stability by refining the weight
clipping method. Specifically, the original gradient clipping
formula is expressed as follows:

ui,t = −η
∂

∂ϵi,t

1
m

m∑
j=1

f vji (θt+1(ϵ))
∣∣∣
ϵi,t=0

w̃i,t = max(ui,t , 0) (15)

By incorporating a positive bias into the gradient,
we enhance the effectiveness of the updated weights. This
modification preserves the original distribution of different
sample weights while mitigating the issue of weight disap-
pearance. Consequently, it enables the efficient utilization
of sufficient number of training samples. This enhancement
contributes to improved stability and accuracy in the fault
diagnosis algorithm. The refined gradient clipping formula
is presented as follows:

ûi,t = ui,t − c ∗ min(ui,t ) (16)

FIGURE 6. Algorithm contrast between old gradient clamping and new
gradient clamping.

Fig. 6 illustrates the principle of the improved gradient
clipping. As depicted in Fig. 6, the blue circles represent
the losses of small-class samples, the black circles represent
the losses of large-class samples, and the green dotted line
represents the classification boundary. The size of the sample
loss area corresponds to the weight assigned to the sample
loss, and the number of circles indicates the number of
sample losses involved in the model update. While the
original gradient clipping strategy in Fig. 6.(b) distributes
the loss weights reasonably, it discards a significant por-
tion of the original large-class samples. This leads to a
low utilization rate of the original samples, reducing the
number of available training samples and making the model
susceptible to overfitting issues. In contrast, as shown in
Fig. 6.(c), the improved gradient clipping strategy maximizes
the utilization of the original fault samples. The sample losses
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still receive a reasonable weight distribution, ensuring the
effective utilization of the original fault sample information.
Consequently, the accuracy and stability of the fault diagnosis
algorithm are significantly enhanced.

IV. EXPERIMENTS AND DISCUSSION
A. DATASETS
In this research, we conducted experiments on two datasets,
including the bearing fault dataset and the wing beam
fault dataset. Additionally, contrast experiments were imple-
mented to compare the performance of the proposed method
with the standard CNN.

1) CWRU BEARING DATASET
As depicted in Fig. 7, the Case Western Reserve University
(CWRU) datasets [18] are obtained from the bearing fault
simulation machine. The testing machine primarily includes
the dynamometer, torque transducer, and encoder, drive and
bearing system, electric motor, fan, and bearing system.
The motor speed is controlled through the controller.
Single-point faults were induced in the test bearings using
electro-discharge machining with fault diameters of 7 mils,
14 mils, 21 mils, 28 mils, and 40 mils (1 mil = 0.001 inches).

FIGURE 7. Experimental facility of CWRU dataset.

Vibration data were collected using accelerometers, which
were affixed to the housing with magnetic bases. Accelerom-
eters were positioned at the 12 o’clock at both the drive
end and fan end of the motor housing. In some experiments,
the accelerometer was attached to the motor supporting
base plate as well. Vibration signals were captured using
a 16-channel DAT recorder. Digital data were collected at
12,000 samples per second, and data were also collected
at 48,000 samples per second for drive end bearing faults.
Speed and horsepower data were obtained using the torque
transducer/encoder. In Table 1, all states, including health
state, inner raceway fault, ball fault, and the outer raceway
fault, were categorized into seven classes (two health states
and five fault states) based on different fault modes.

2) AWB FAULT DATASET
As depicted in Fig. 8, the Aircraft Wing Beam (AWB)
fault dataset [18] was obtained from the beam fault simu-
lation machine. The test beam comprises three piezoelectric
sensors. In our experiments, piezoelectric patch 1 served

TABLE 1. Detailed description of CWRU datasets.

FIGURE 8. Beam and sensor location.

TABLE 2. Detailed description of SEU datasets.

FIGURE 9. Experimental facility of SEU dataset.

as the excitation source, and piezoelectric patch 3 as the
receiver, with a space of 120mm between the two sensors.
The experimental excitation signal frequency is 200kHz, the
number of wave points is 40000, the sampling rate is fixed
at 10MHz, the number of sampling points is 10000, the
average number is 100, and the wave amplitude is ±70V.
Screw loosening and simulated damage were introduced to
the test. In this paper, we focus solely on screw loosening
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FIGURE 10. Confusion matrix on SEU dataset with a 0.95 data imbalance:
(a) Confusion matrix of our method on task C-IR/Comb. (b) Confusion
matrix of CNN on task C-IR/Comb. (c) Confusion matrix of our method on
task C-OR/Comb. (d) Confusion matrix of CNN on task C-OR/Comb.
(e) Confusion matrix of our method on task C-OR/IR. (f) Confusion matrix
of CNN on task C-OR/IR.

faults, and these faults are classified into three categories
based on the location of the loosened screw (screws 1/2/3 are
loose, respectively).

3) SEU FAULT DATASET
As illustrated in Fig. 9, the Southeast University (SEU)
datasets [18] were acquired from the drive-train dynamic
simulator. A comprehensive dataset comprising 8 channels
of data was systematically collected. Two specific channels
were meticulously chosen, encompassing datasets pertaining
to bearing and gear data. Each sub-dataset encapsulated
operational data associated with a single healthy state and
four fault states under two distinct working conditions,
namely 20Hz-0v and 30Hz-2v. The specifics of the dataset
under the 20Hz-0v condition are clarified in Table 2.

B. EVALUATION METRICS
In our experiments, it is challenging to effectively reflect
the performance of the classifier under conditions of limited
sample imbalance. Therefore, to accurately evaluate the
classifier’s performance with imbalanced training samples,
following previous studies [35], we propose following
quantitative indicators to measure the test effect of the
models. They are the average fault identification accuracy

FIGURE 11. ROC curve of our method and CNN on SEU dataset with
0.95 data imbalance: (a) Confusion matrix of our method on task
C-BALL/OR. (b) Confusion matrix of CNN on task C-BALL/OR.
(c) Confusion matrix of our method on task C-BALL/IR. (d) Confusion
matrix of CNN on task C-BALL/Comb. Each color.(e)Confusion matrix of
our method on task C-BALL/Comb. (e) Confusion matrix of CNN on task
C-BALL/Comb.

TABLE 3. Fault diagnosis task based on CWRU dataset.

(Acc), precision for class one (P1), precision for class two
(P2), recall for class one (R1), recall for class two (R2),
confusion matrix, and the ROC curve.

Acc =
TP+ TN

TP+ TN + FP+ FN
(17)

P1 =
TP

TP+ FP
(18)

R1 =
TP

TP+ FN
(19)
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TABLE 4. Fault diagnosis task based on AWB dataset.

P2 =
TN

TN + FN
(20)

R2 =
TN

FP+ TN
(21)

where TP is the true positive (positive samples are success-
fully predicted as positive), TN denotes the true negative
(negative samples are correctly predicted to be negative), FP
represents the false positive (negative samples are incorrectly
predicted to be positive), and FN is the false negative
(positive samples are incorrectly predicted to be negative).

C. DATA IMBALANCE EXPERIMENTS
The fault diagnosis task is formulated based on the aforemen-
tioned datasets. Three types of tasks are designed using the
three datasets, namely fault detection and fault classification.
In Table 3, Table 4 and Table 5, task numbers are assigned
to distinguish different tasks. The letters in the task number
represent the task category (D and C), and the system state to
be diagnosed as (N, B, IR, OR, S and Comb), respectively.
Additionally, the numbers (12 and 48) in the task number
based on the CWRU dataset denote the sampling frequency
and the number (20) in the task number based on the
SEU dataset represents the working condition. Adhering to
these principles, we meticulously devised twenty five sets
of fault diagnosis experiments based on the three datasets.
The datasets were strategically subsampled to generate a
class imbalance binary classification task, where one of the
two classes predominates the training data distribution. The
imbalance degree of the data is systematically varied as
0.6, 0.7, 0.8, and 0.9, respectively. To prevent our method
from gaining an unfair advantage by training on more data,
we carefully separated the balanced validation set from the
training set.

The final accuracy results on the three datasets are
presented in Table 6, Table 7 and Table 8, respectively. It is
evident that our method consistently achieves satisfactory
results across almost all tasks. In the CWRU dataset and SEU
dataset, the algorithm maintains a high accuracy, and even
with increasing data imbalance, the algorithm’s accuracy is
remain robust. Similarly, in the AWB dataset, the algorithm
demonstrates commendable performance. In comparison,
CNN also achieves good performance when the data imbal-
ance is low, but as the imbalance increases, the performance
of the algorithm drops quickly.

Beyond comparative experiments on accuracy, we con-
ducted additional experiments based on tasks in the SEU
data set. We generated confusion matrices and ROC curves,

TABLE 5. Fault diagnosis task based on SEU dataset.

FIGURE 12. The t-SNE visualization of feature representation on
C-12-B/OR task with 0.6 and 0.9 data imbalance: (a) Our method trained
with 0.6 data imbalance. (b) Our method trained with 0.9 data imbalance.
(c) CNN trained with 0.6 data imbalance. (d) CNN trained with 0.9 data
imbalance. Each color in the graphs stands for a category of fault state.

while also calculating recall and precision rates. As shown
in Fig. 10, in analyzing the confusion matrix, we observed
that our method effectively copes with the fault diagnosis
task under imbalanced training samples. In contrast, the
CNN is heavily biased toward the majority class. Therefore,
although it can recognize the majority class, it struggles when
a minority fault occurs (as shown in Fig. 10(e)).
As shown in Fig. 11, we drew the ROC curve based

on SEU dataset. In analyzing the ROC curve, we observe
that the curve of the proposed method completely improves
performance of the CNN, indicating supriority of our
proposed approach among these tasks.

In comparing with CNN, Fig. 12 additionally provides
the visualization results. It is evident that both methods
perform well when the training data is nearly balanced.
However, when the training set becomes severely imbal-
anced, our method maintains its performance (99.06% −→

99.01%), while CNN experiences degradation (99.04% −→

90.72%). This discrepancy indicates that our method uti-
lizes meta-knowledge to assess the distinctions between
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TABLE 6. Accuracy of different tasks on CWRU datasets(percentage).

TABLE 7. Accuracy of different tasks on AWB datasets(percentage).

TABLE 8. Accuracy of different tasks on SEU datasets(percentage).

TABLE 9. Comparison of results between proposed method and CNN on
SEU data set with 0.95 data imbalance.

imbalanced and balanced datasets, and then employs this
information to adapt the model. In contrast, CNN tends to
demonstrate overfitting in imbalanced conditions.

The recall and precision performances of imbalanced ratios
(UTest = 0.95) of proposedmethod and CNN are summarized
in Table 9. Through comparison, we observed that CNN
tends to severely overfit to categories with more samples
in the training data when it is extremely unbalanced. This
leads to a significant decline in diagnostic performance.
In contrast, our method continues tomaintain good diagnostic
performance.

D. ABLATION STUDIES
To assess the contributions of various modules in the model,
we conducted ablation studies, with a specific emphasis on
experimenting and analyzing the data processing module and
the channel attention module.

1) DATA PROCESSING MODULE
Fig. 13 illustrates the diagnostic results of the proposed
method on different tasks for the two datasets, utilizing time
and frequency-domain samples as model inputs. Notably,
models based on frequency-domain inputs generally exhibit
superior performance on the CWRU dataset, while time-
domain input-based models perform better on the AWB
dataset. In relatively balanced tasks with a small category
gap, the performances of the two input types are nearly
identical. Additionally, the performance of the two inputs
is almost similar on the AWB dataset. However, on the
CWRU dataset, the frequency-domain input yields higher
performance, especially in challenging small-sample fault
diagnosis tasks. This is because frequency-domain data
characterize signals on a high-level scale, making it easier for
deep models to automatically learn valuable features. Nev-
ertheless, experiments on the AWB dataset reveal that such
an approach is not universally effective. Therefore, in civil
aircraft fault diagnosis, an appropriate preprocessing method
should be selected based on the type and characteristics of the
input data.

2) CHANNEL ATTENTION MODULE
To underscore the effectiveness of our proposed approach,
we selected challenging tasks for analysis. Fig. 14 presents
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FIGURE 13. Influences of data processing module on (a) CWRU data set;
(b) AWB data set.

FIGURE 14. Influence of channel attention module on (a) task D-N/1;
(b) task D-N/3; (c) task C-48-B/IR.

the results of ablation experiments on three demanding
tasks, comparing the performance of the proposed method
with and without the Channel Attention (CA) module. It is
evident that the channel attention module enhances the
model’s performance, although the degree of performance
improvement diminishes as the task difficulty increases.
This suggests that the channel attention block, as a plug-
and-play module, serves an effective solution to enhance
the performance of fault diagnosis. When confronted with
straightforward tasks where the model can extract abundant
and excellent features, the module can allocate attention to
more crucial features, thereby improving diagnostic accuracy.

However, as the task complexity rises, and the model
struggles to extract high-quality features. The reason is that
themodule can only allocate attention to the already extracted
features and cannot contribute to feature extraction, leading
to a decrease in its impact accordingly.

V. CONCLUSION
In this study, we tackled the challenge of small-sample
fault diagnosis in civil aircraft, a common issue in engi-
neering applications. We developed an L2R model based
on meta-learning and the channel attention algorithm for
effective fault diagnosis under limited sample conditions. Our
method adopts the essence of meta-learning to approach the
L2R optimization framework by dynamically reweighting
training samples based on the degree of data imbalance.
Unlike previous approaches, our method automatically
adjusts sample weights during model training, reducing
reliance on expert experience and minimizing human
intervention. Additionally, the embedded channel attention
module enhances feature representation, thereby improving
the model’s fault diagnosis performance. We conducted
case studies on CWRU and AWB datasets, considering
various levels of data imbalance. We used the traditional
Convolutional Neural Network (CNN) as a baseline for
comparison. Specifically, the key findings are as follows:
(1) The L2R model shows advantages in addressing small-
sample challenges, particularly evident with increasing data
imbalance. (2)While the performance of the L2Rmodel tends
to decline with higher task difficulty, it achieves comparable
performance to CNN in experiments with balanced data
distribution. Thus, our method is specifically designed for
scenarios characterized by significant data imbalance.

Despite the demonstrated effectiveness of our proposed
approach in addressing experimental settings with imbal-
anced data distribution, its rationale lies in the hybridized
meta-learning mechanism and attention regularization strat-
egy. However, the introduced functional learning inevitably
increases the model’s complexity and reduces its generaliza-
tion ability. Similarly, popular meta-learning models, such
as MAML, also encounter challenges like local minimizers
and saddle points during optimization [36]. Therefore, our
future research direction aims to explore strategies to reduce
local minimizers [37] to further enhance the robustness of
our proposed method in solving small-sample fault diagnosis
tasks and proactively improve its performance across a wide
range of imbalance degrees.

REFERENCES
[1] H. Zhu, J. Cheng, C. Zhang, J. Wu, and X. Shao, ‘‘Stacked pruning

sparse denoising autoencoder based intelligent fault diagnosis of rolling
bearings,’’ Appl. Soft Comput., vol. 88, Mar. 2020, Art. no. 106060.

[2] W. Zhang, G. Biswas, Q. Zhao, H. Zhao, and W. Feng, ‘‘Knowledge dis-
tilling based model compression and feature learning in fault diagnosis,’’
Appl. Soft Comput., vol. 88, Mar. 2020, Art. no. 105958.

[3] F. Xu, W. T. P. Tse, and Y. L. Tse, ‘‘Roller bearing fault diagnosis using
stacked denoising autoencoder in deep learning and GathGeva clustering
algorithm without principal component analysis and data label,’’ Soft
Comput., vol. 73, pp. 898–913, Dec. 2018.

VOLUME 12, 2024 64683



G. Zhao et al.: Attention-Aware Meta-Reweighted Optimization

[4] L. Chen, Q. Li, C. Shen, J. Zhu, D. Wang, and M. Xia, ‘‘Adversarial
domain-invariant generalization: A generic domain-regressive framework
for bearing fault diagnosis under unseen conditions,’’ IEEE Trans. Ind.
Informat., vol. 18, no. 3, pp. 1790–1800, Mar. 2022.

[5] R. Chen, J. Zhu, X. Hu, H. Wu, X. Xu, and X. Han, ‘‘Fault diagnosis
method of rolling bearing based on multiple classifier ensemble of
the weighted and balanced distribution adaptation under limited sample
imbalance,’’ ISA Trans., vol. 114, pp. 434–443, Aug. 2021.

[6] C. Zhao, G. Liu, and W. Shen, ‘‘A balanced and weighted alignment
network for partial transfer fault diagnosis,’’ ISA Trans., vol. 130,
pp. 449–462, Nov. 2022.

[7] T. Li, Z. Zhao, C. Sun, L. Cheng, X. Chen, R. Yan, and R. X. Gao,
‘‘WaveletKernelNet: An interpretable deep neural network for industrial
intelligent diagnosis,’’ IEEE Trans. Syst. Man, Cybern. Syst., vol. 52, no. 4,
pp. 2302–2312, Apr. 2022.

[8] J. Shu, Z. Xu, and D.Meng, ‘‘Small sample learning in big data era,’’ 2018,
arXiv:1808.04572.

[9] T. Zhang, J. Chen, F. Li, K. Zhang, H. Lv, S. He, and E. Xu, ‘‘Intelligent
fault diagnosis of machines with small & imbalanced data: A state-of-the-
art review and possible extensions,’’ ISA Trans., vol. 119, pp. 152–171,
Jan. 2022.

[10] N. V. Chawla, K. W. Bowyer, L. O. Hall, andW. P. Kegelmeyer, ‘‘SMOTE:
Synthetic minority over-sampling technique,’’ J. Artif. Intell. Res., vol. 16,
pp. 321–357, Jun. 2002.

[11] H. He, Y. Bai, E. A. Garcia, and S. Li, ‘‘ADASYN: Adaptive synthetic
sampling approach for imbalanced learning,’’ in Proc. IEEE Int. Joint
Conf. Neural Netw. (IEEE World Congr. Comput. Intell.), Jun. 2008,
pp. 1322–1328.

[12] I. Goodfellow, ‘‘Generative adversarial nets,’’ in Proc. Adv. Neural Inf.
Process. Syst., vol. 27, 2014, pp. 1–11.

[13] E. D. Cubuk, B. Zoph, D. Mané, V. Vasudevan, and Q. V. Le,
‘‘AutoAugment: Learning augmentation strategies from data,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 113–123.

[14] S. Shao, P. Wang, and R. Yan, ‘‘Generative adversarial networks for
data augmentation in machine fault diagnosis,’’ Comput. Ind., vol. 106,
pp. 85–93, Apr. 2019.

[15] J. Yang, G. Xie, and Y. Yang, ‘‘An improved ensemble fusion autoencoder
model for fault diagnosis from imbalanced and incomplete data,’’ Control
Eng. Pract., vol. 98, May 2020, Art. no. 104358.

[16] Y. Zeng, X. Wu, and J. Chen, ‘‘Bearing fault diagnosis with denoising
autoencoders in few labeled sample case,’’ in Proc. 5th IEEE Int. Conf.
Big Data Anal. (ICBDA), May 2020, pp. 349–353.

[17] Q. Li, B. Tang, L. Deng, Y. Wu, and Y. Wang, ‘‘Deep balanced domain
adaptation neural networks for fault diagnosis of planetary gearboxes with
limited labeled data,’’Measurement, vol. 156, May 2020, Art. no. 107570.

[18] B. Yang, Y. Lei, F. Jia, and S. Xing, ‘‘A transfer learning method
for intelligent fault diagnosis from laboratory machines to real-case
machines,’’ in Proc. Int. Conf. Sensing,Diagnostics, Prognostics, Control
(SDPC), Aug. 2018, pp. 35–40.

[19] X. Dong, H. Gao, L. Guo, K. Li, and A. Duan, ‘‘Deep cost adaptive
convolutional network: A classificationmethod for imbalancedmechanical
data,’’ IEEE Access, vol. 8, pp. 71486–71496, 2020.

[20] P. Peng, W. Zhang, Y. Zhang, Y. Xu, H. Wang, and H. Zhang,
‘‘Cost sensitive active learning using bidirectional gated recurrent neural
networks for imbalanced fault diagnosis,’’ Neurocomputing, vol. 407,
pp. 232–245, Sep. 2020.

[21] X. Li, H. Jiang, K. Zhao, and R. Wang, ‘‘A deep transfer nonnegativity-
constraint sparse autoencoder for rolling bearing fault diagnosis with few
labeled data,’’ IEEE Access, vol. 7, pp. 91216–91224, 2019.

[22] Z. He, H. Shao, X. Zhang, J. Cheng, and Y. Yang, ‘‘Improved deep
transfer auto-encoder for fault diagnosis of gearbox under variable
working conditions with small training samples,’’ IEEE Access, vol. 7,
pp. 115368–115377, 2019.

[23] C. Finn, P. Abbeel, and S. Levine, ‘‘Model-agnostic meta-learning for
fast adaptation of deep networks,’’ in Proc. 34th Int. Conf. Mach. Learn.,
vol. 70, Aug. 2017, pp. 1126–1135.

[24] Y. He, C. Zang, P. Zeng, M. Wang, Q. Dong, and Y. Liu, ‘‘Rolling bearing
fault diagnosis based on meta-learning with few-shot samples,’’ in Proc.
3rd Int. Conf. Ind. Artif. Intell. (IAI), Nov. 2021, pp. 1–6.

[25] J. Wu, Z. Zhao, C. Sun, R. Yan, and X. Chen, ‘‘Few-shot transfer learning
for intelligent fault diagnosis of machine,’’ Measurement, vol. 166,
Dec. 2020, Art. no. 108202.

[26] S. Dixit, N. K. Verma, and A. K. Ghosh, ‘‘Intelligent fault diagnosis
of rotary machines: Conditional auxiliary classifier GAN coupled with
meta learning using limited data,’’ IEEE Trans. Instrum. Meas., vol. 70,
pp. 1–11, 2021.

[27] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszko-
reit, and N. Houlsby, ‘‘An image is worth 16×16 words: Transformers for
image recognition at scale,’’ 2020, arXiv:2010.11929.

[28] H. Fan, Y. Yang, and M. Kankanhalli, ‘‘Point 4D transformer networks for
spatio-temporal modeling in point cloud videos,’’ inProc. IEEE/CVFConf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021, pp. 14204–14213.

[29] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, ‘‘BERT: Pre-training
of deep bidirectional transformers for language understanding,’’ 2018,
arXiv:1810.04805.

[30] H. Fan, L. Zhu, Y. Yang, and F. Wu, ‘‘Recurrent attention network with
reinforced generator for visual dialog,’’ ACM Trans. Multimedia Comput.,
Commun., Appl., vol. 16, no. 3, pp. 1–16, Aug. 2020.

[31] A. Vaswani, ‘‘Attention is all you need,’’ in Proc. Adv. Neural Inform.
Process. Syst. (NIPS), 2017, pp. 5998–6008.

[32] S. Zhang, S. Wu, X.-Y. Jing, and F. Wu, ‘‘Domain adaptation network
with parameter shared domain-specific attention for fault diagnosis,’’ in
Proc. 2nd Int. Conf. Artif. Intell. Comput. Eng. (ICAICE), Nov. 2021,
pp. 590–593.

[33] X. Zheng, J. Wu, and Z. Ye, ‘‘An end-to-end CNN-BiLSTM attention
model for gearbox fault diagnosis,’’ in Proc. IEEE Int. Conf. Prog.
Informat. Comput. (PIC), Dec. 2020, pp. 386–390.

[34] J. Hu, L. Shen, S. Albanie, G. Sun, and E. Wu, ‘‘Squeeze-and-excitation
networks,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 8,
pp. 2011–2023, Aug. 2020.

[35] J. Wu, Z. Zhao, C. Sun, R. Yan, and X. Chen, ‘‘Learning from class-
imbalanced data with a model-agnostic framework for machine intelligent
diagnosis,’’ Rel. Eng. Syst. Saf., vol. 216, Dec. 2021, Art. no. 107934.

[36] M. Abbas, Q. Xiao, L. Chen, P.-Y. Chen, and T. Chen, ‘‘Sharp-MAML:
Sharpness-aware model-agnostic meta learning,’’ in Proc. Int. Conf.
Mach. Learn., 2022, pp. 10–32.

[37] D. Bahri, H. Mobahi, and Y. Tay, ‘‘Sharpness-aware minimization
improves language model generalization,’’ 2021, arXiv:2110.08529.

[38] Y. Xu, S. Li, X. Yan, J. He, Q. Ni, Y. Sun, and Y. Wang, ‘‘Multiattention-
based feature aggregation convolutional networks with dual focal loss for
fault diagnosis of rotating machinery under data imbalance conditions,’’
IEEE Trans. Instrum. Meas., vol. 73, pp. 1–11, 2024.

[39] H. Nizam, S. Zafar, Z. Lv, F. Wang, and X. Hu, ‘‘Real-time deep anomaly
detection framework for multivariate time-series data in industrial IoT,’’
IEEE Sensors J., vol. 22, no. 23, pp. 22836–22849, Dec. 2022.

[40] C. Cheng, X. Liu, B. Zhou, and Y. Yuan, ‘‘Intelligent fault diagnosis with
noisy labels via semi-supervised learning on industrial time series,’’ IEEE
Trans. Ind. Informat., vol. 19, no. 6, pp. 7724–7732, Jan. 2023.

GUANG ZHAO received the master’s degree
in computer science (distributed systems and
applications) from Pierre and Marie Curie Univer-
sity Paris VI (Sorbonne University since 2018).
He is currently pursuing the Ph.D. degree with
Shanghai Jiao Tong University, Shanghai, China.
He was an Avionics System Integration Engineer
of COMAC’s C919 Program. He is also in
charge of international cooperation in research and
innovation. His research interests include machine

learning, safety, and reliability of civil aircraft.

64684 VOLUME 12, 2024



G. Zhao et al.: Attention-Aware Meta-Reweighted Optimization

SHIQIANG HU received the Ph.D. degree from
Beijing Institute of Technology. He is currently
the Dean of the School of Aeronautics and
Astronautics, Shanghai Jiao TongUniversity. He is
also a Full Professor with Shanghai Jiao Tong
University. He has been at the helm of numerous
research projects, including those funded by the
National Science Foundation and the 863 National
High Technology Plan.With over 300 publications
to his name, he has also effectively mentored more

than 20 Ph.D. students. His research interests include machine learning,
image understanding, and nonlinear filters.

JIAYUAN FAN received the B.S. degree from
Northwestern Polytechnical University, in 2021.
He is currently pursuing the master’s degree
with Shanghai Jiao Tong University. His current
research interests include machine learning and
machinery fault diagnostic.

QIANG GUO received the Ph.D. degree from
Shanghai Jiaotong University, in 2005. He is
currently an Engineer with Commercial Aircraft
of China (COMAC). His current research interests
include reliability, safety, and maintenance of civil
aircraft.

BO SHEN received the B.S. degree from Nanjing
University of Aeronautics and Astronautics. He is
currently the Vice President of Commercial Air-
craft of China (COMAC) and the President of the
COMAC Shanghai Aircraft Design and Research
Institute (SADRI). His research interests include
design and development of civil aircraft.

LINGKUN LUO was a Research Assistant and
a Postdoctoral Researcher with the Department
of Mathematics and Computer Science, École
Centrale de Lyon, and a member with the LIRIS
Laboratory. He is currently a Research Fellow
with Shanghai Jiao Tong University. He has
authored over 30 research articles, including
publications in International Journal of Computer
Vision, ACM-CS, IEEE TRANSACTIONS ON IMAGE

PROCESSING, IEEE TRANSACTIONS ON CYBERNETICS,
and IEEE TRANSACTIONSON INFORMATION FORENSICSAND SECURITY. His research
interests include machine learning, pattern recognition, and computer vision.

VOLUME 12, 2024 64685


