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ABSTRACT Prediction of Total Electron Content (TEC) in the ionosphere is vital to improve the accuracy
of satellite positioning, navigation and remote sensing systems. Most existing TEC prediction methods
ignored the local variation patterns between various positions within the TEC sequence, resulting in limited
prediction accuracy. To address this issue, this paper combined attention techniques, convolutional neural
networks (CNN) and bidirectional long short-term memory networks (BiLSTM) to propose the Att-CNN-
BiLSTM model. In the proposed model, CNN is used to extract positional features, BiLSTM is used to
extract bidirectional temporal features, and attention technique is used to adaptively weight the features.
This paper selected six locations in China, each with a six-year TEC sequence, including three years of high
solar activity and three years of low solar activity. The paper first conducted ablation experiments, and the
results showed that adding CNN and Attention can effectively improve prediction performance. Then, the
proposed model was compared with LSTM and GRU. The experimental results show that compared with
LSTM and GRU, the average RMSE of Att-CNN-BiLSTM in six regions decreased by 10.28% and 16.92%
in high solar activity years, and by 11.82% and 8.92% in low solar activity years, respectively. The paper
also conducted comparative experiments within one week of the magnetic storms, and the results showed
that during the magnetic storm period, the RMSE of the proposed model decreased by 35.50% and 37.35%
compared to LSTM and GRU. The R2 s of the proposed model are also higher than those of the comparison
models in all cases.

INDEX TERMS Attention mechanism, CNN-BiLSTM, ionosphere, total electron content, local variation
patterns.

I. INTRODUCTION
The ionosphere is an important region of the earth’s space.
It is coupled with the magnetosphere upward and affected
by the lower atmosphere downward, where air molecules
are partially ionized by the radiation of solar ultraviolet
rays and X-rays, producing negatively charged electrons
and positively charged ions.When electromagnetic wave sig-
nals transmitted by the Global Navigation Satellite System
(GNSS) propagate through the ionosphere, they can incur
errors of over ten meters, which is one of the main sources
of error in global navigation satellite applications, especially
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single frequency global navigation satellite applications [1],
[2], [3]. The Total Electron Content (TEC) of the iono-
sphere is a key parameter that describes the characteristics
of ionospheric variation, which is widely used for satellite
ionospheric delay correction.Precisely predicting ionospheric
TEC can enhance the precision of navigation and posi-
tioning, holding significant value in mitigating uncertainty
within services reliant on the Global Navigation Satellite
System(GNSS).Therefore, monitoring and predicting TEC is
an important research topic in space weather [4], [5].

Influenced by many factors such as solar activity, geo-
magnetic activity and low-level atmospheric disturbance,
ionospheric TEC has very complex spatiotemporal changes.
At present, there is no accurate physical prediction model
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for TEC [6]. So far, there are three main types of short-
term prediction methods for ionospheric TEC: ionospheric
empirical models, statistical models, and artificial neural net-
work models [7], [8], [9]. The ionospheric empirical models
include the International Reference Ionosphere (IRI) [10],
[11], [12], Bent [13], [14], NeQuick [15], [16], Klobuchar
[17], [18], [19], etc. These ionospheric empirical models
mainly reflect the average changes in the ionosphere and are
often used for long-term global TEC predictions. However,
their accuracy in short-term TEC predictions in local areas
is relatively low [20]. The statistical models for TEC pre-
diction mainly include auto- correlation (AR) analysis [21],
auto-regressive moving average (ARMA) [22], [23], autore-
gressive integrated moving average (ARIMA) [24], [25], etc.
These early statistical models were mostly linear, making it
difficult to accurately predict the complex nonlinear changes
of TEC [26].
Recently, with the development of artificial intelligence

technology, machine learning and deep learning techniques
have been widely applied in TEC prediction, Table 1 sum-
marizes the current TEC prediction models. Artificial neural
network (ANN) has attracted the attention of ionospheric
researchers due to its powerful nonlinear representation abil-
ity and has been applied to ionospheric TEC prediction with
higher accuracy than empirical models [27], [28], [29], [30],
[31], [32]. However, ANN only considers the spatial position
of the data and cannot characterize the temporal changes
in the TEC sequence, resulting in significant errors in TEC
prediction [33], [34], [35]. Recurrent neural network (RNN)
is a chain-connected neural network that takes sequence data
as input and recurses continuously in the evolution direc-
tion of the sequence. It is a deep learning model that can
characterize both the spatial characteristics and the temporal
characteristics of data, and is widely used in TEC prediction
[36]. However, when modeling a long time series, RNN
has the problem of gradient vanishing, which will cause the
model to forget the previous data. Therefore, RNN is unable
to remember the characteristics in the long time series, so it
is not competent for the prediction task of long time series.
Long short-term memory network (LSTM) uses the gating
mechanism to remember information in long time series,
overcoming the data forgetting problem of RNN [37], which
can improve the prediction accuracy of long time series and
is widely used in TEC prediction [38], [39], [40]. Some
researchers have also attempted to improve the structure of
LSTM. For example, Graves and Schmidhuber et al. [41]
proposed bidirectional LSTM (BiLSTM) by overlaying two
LSTM layers from different directions along the time dimen-
sion. One LSTM layer in BiLSTM deals with forward
sequences and the other deals with reverse sequences, which
has been proved to have better predictive performance than
unidirectional LSTM. This idea of bidirectional process-
ing of time series was later used in TEC prediction. For
example, Sivakrishna et al. [42] applied BiLSTM for TEC
prediction in India, and its prediction accuracy was better
than that of LSTM. In recent years, researchers have also

combined LSTMwith CNN for TEC prediction. For example,
Ruwali et al. [43] combined CNN with LSTM and proposed
LSTM-CNN. Tang et al. [44] used the CNN-LSTM-Attention
model to predict ionospheric TEC at 24 GNSS stations in
China. Their experimental results showed that combining
LSTMwith CNN can improve prediction performance. How-
ever, in CNN-LSTM-Attention, they only considered the
forward temporal features of TEC and did not utilize the
reverse temporal features.

In summary, for TEC prediction problems, BiLSTM out-
performs unidirectional LSTM due to its consideration of
the bidirectional temporal characteristics of input sequences;
CNN has the excellent ability to extract local position fea-
tures. Therefore, this paper combines CNN and BilSTM to
extract bidirectional temporal features and position features
respectively. Attention mechanism can adaptively weight fea-
tures, so we add it to the proposedmodel. Themodel is named
Att-CNN-BiLSTM.

To test the performance of the proposed model, six loca-
tions in China were selected as the research area. At each
location, six years of TEC and Disturbance storm time (Dst)
(three years from high solar activity and three years from
low solar activity) were selected as the experimental data.
In the experiment, 7 consecutive days of historical TEC
and Dst were used as input to predict the next day’s TEC.
4 years of data were used for training and 2 years for
testing. Ablation experiments were first conducted both in
high and low solar activity years to verify the effectiveness
of CNN and attention in improving the model’s predic-
tion performance. Experimental results showed that adding
CNN and attention can improve the prediction performance.
The proposed Att-CNN-BiLSTM was then compared with
LSTM and GRU. The experimental results show that the
Att-CNN-BiLSTM proposed in this paper is superior to the
comparison models in both low solar activity years and high
solar activity years. The main contributions of this paper
are as follows: (1) For the first time, CNN and BiLSTM
were combined together to simultaneously extract bidirec-
tional temporal features and local positional features from
TEC sequences. The ablation experiment indicated that the
combination of CNN and BiLSTM effectively improved
the predictive performance. (2) This paper have added an
attention mechanism to the model to adaptively weight the
bidirectional temporal features and local positional features.
The results of the ablation experiment indicated that adding
attention mechanism significantly improved predictive
performance.

(3) In six locations in China, Att-CNN-BiLSTMwas com-
pared with LSTM and GRU, and the results showed that the
proposedmodel outperformed the comparisonmodels in both
high and low solar activity years, as well as during magnetic
storms.

The remainder of this paper is structured as follows.
Section II introduces the data and data preprocessing.
Section III provides a detailed description of the pro-
posed model. Section IV presents evaluation metrics,
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TABLE 1. The summary of the neural network models for ionospheric TEC prediction.

experimental results and analyses. Section V is the discus-
sion. Section 6 concludes the paper.

II. DATA AND DATA PREPROCESSING
A. ABBREVIATIONS AND ACRONYMS
The TEC data used in this paper are provided by the Center
for Orbit Determination of Europe (CODE), with a time
resolution of 2 hours.1

6 locations (numbered P1,P2,P3, · · · ,P6) in China were
selected as the research area, as shown in Figure 1, and

1https://cddis.nasa.gov/archive/gnss/products/ionex/

the specific coordinates are shown in Table 2. In order to
study the impact of different solar activity on the prediction
performance of the models, six-year TEC data in each loca-
tion were selected for experiments, including: three years of
high solar activity data (January 1, 2000 to December 31,
2002) and three years of low solar activity data (January 1,
2007 to December 31, 2009). 4-year data as training sam-
ples (2000-2001,2007-2008), 2-year data as testing samples
(2002,2009).

To improve prediction performance, in addition to TEC
data, Dst data were also used as an auxiliary input. Dst data
were downloaded from the geomagnetic and space magnetic
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FIGURE 1. Selected geographical locations in this paper.

TABLE 2. Coordinates of the selected regions in this paper.

FIGURE 2. Data at P1 from 2000 to 2002: (A) TEC; (B) down-sampled Dst.

data analysis center of Kyoto university.2 To align with TEC,
Dst data were down-sampled every two hours. Figure 2
shows the down-sampled Dst data and TEC data at P1 from
January 1, 2000, to December 31, 2002.

B. DATA PREPROCESSING
TEC and Dst data belong to time series data. In time series
prediction tasks, only stationary nonrandom sequences can be
directly predicted [45]. Therefore, before using TEC and Dst
for prediction, stationarity tests and pure randomness tests
were first performed on them.

2https://wdc.kugi.kyoto-u.ac.jp/dstdir/

FIGURE 3. Data after first-order differential processing in P1: (A) TEC;
(B) Dst.

1) DATA STATIONARITY TEST
In this paper, the Augmented Dickey Fuller (ADF)
method [46] was used to test the stationarity of TEC and Dst.
The ADF test results indicated that both the selected TEC and
Dst were non-stationary sequences and could not be directly
used for TEC prediction. First-order difference was first used
to transform them into stationary sequences. The formula for
the first-order difference is as follows:

1xt = xt − xt−1 (1)

where,1 is the first-order difference operator, xt is the obser-
vation data (TEC or Dst) at a certain location at time t . Taking
the location P1 as an example, the TEC and Dst data after
first-order differential processing are shown in Figure 3.

After first-order differential processing, both TEC and Dst
data in the research area passed the ADF test, meaning that
the TEC and Dst data after first-order differential processing
became stationary.

2) PURE RANDOMNESS TEST
Even if TEC and Dst are processed to be stationary, they can-
not be used for prediction if they are pure random sequences.
Therefore, pure randomness testing is still needed for the
first-order differential TEC and Dst. Tthe LB (Ljung Box)
method was used to perform pure randomness tests after the
first-order difference processing [47]. The LB test results
indicated that they were not purely random data and could
be used for prediction.

3) DATA NORMALIZATION
To reduce the adverse effects caused by singular data,
Min-Max normalization was used to map the first-order dif-
ferential TEC andDst between [1, 0]. The calculation formula
for Min-Max is as follows:

xi,t =
xi,t − min

1≤j≤T
xi,j

min
1≤j≤T

xi,j − max
1≤j≤T

xi,j
(2)

where, xi,t is the TEC or Dst data of a certain position i at
time t, i ∈ {P1,P2,P3,P4,P5,P6}, min

1≤j≤T
xi,j and max

1≤j≤T
xi,j

represents the minimum and maximum values of all TEC or
Dst data at position i, respectively.
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FIGURE 4. Data after Min-Max normalization: (A) TEC; (B) Dst.

FIGURE 5. Schematic diagram of sample production process.

Taking P1 as an example, after first-order differential pro-
cessing and Min-Max normalization, the processed TEC and
Dst are shown in Figure 4.

4) SAMPLE PRODUCTION PROCESS
Experimental samples were made after completing the sta-
tionarity test, first-order difference processing, pure random-
ness test, and Min-Max normalization. In this paper, an 8-day
sliding window method was used to create sample set D,
where the TEC and Dst from the first 7 days were used as
input X, and the 12 TECs on the 8-th day were used as output
Y. Between adjacent samples, a slide of 2 hours was made
each time. The composition of the sample set D is shown in
formulas (3), (4), and (5).

D = {(Xi,Yi)|i = (0, 1, 2, · · · , n)} (3)

Xi = (< xi, di >, < xi+1, di+1 >, · · · , < xi+83, yi+83 >)

(4)

Yi = (yi+84, yi+85, · · · , yi+95) (5)

Among them, (Xi,Yi) is the i-th sample, where Xi is its
input vector and Yiis its output vector; Xi consists of 84 pre-
processed TEC (represented by xi) and Dst (represented by
di ) pairs (7 days, 12 values per day). The sample production
process is shown in Figure 5.

The final samples were divided into training and test sets.
The training set was used to train the model, and the testing
set was used to evaluate the model’s predictive performance.

TABLE 3. Sample distribution of training and testing sets in this paper.

FIGURE 6. Experimental flowchart in this paper.

The distribution of the final training and testing samples is
shown in Table 3.
The predicted results obtained by the model required

inverse normalization and inverse first-order difference pro-
cessing to obtain the final predicted value of TEC. The entire
experimental process is shown in Figure 6.

III. MODEL
The proposed Att-CNN-BiLSTM integrates three popular
technologies in deep learning, namely CNN, BiLSTM and
attention mechanism. We will introduce them separately in
the following sections.

A. CNN
Convolutional neural network (CNN), which was proposed
by Lecun et al. in 1998 [48], has achieved remarkable
achievements in image and video recognition [49], [50],
emotion recognition [51], natural language processing [52]
and other tasks, and can also be effectively applied to time
series analysis [53]. A CNN network typically consists of a
stack of convolutional layers, pooling layers, and fully con-
nected layers. A convolutional layer often consists of multiple
convolutional kernels, each of which extracts a certain local
position feature from the sample. Multiple convolutional ker-
nels will extract multiple features to generate feature maps;
The pooling layer reduces the spatial size of the feature map
through down-sampling, which can reduce the computational
complexity of the model and also reduce the risk of overfit-
ting. By stacking multiple convolutional and pooling layers,
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FIGURE 7. Basic internal structure of an LSTM unit.

FIGURE 8. Structure of BiLSTM network.

a large number of local location features of different scales
can be extracted. In this paper, CNN is used to extract local
position features from the input TEC and Dst.

B. LSTM AND BILSTM
LSTM was proposed by Kaselimi et al. in 1997 [38] and
is widely used in time series prediction [54]. Each LSTM
network is composed of several LSTMunits. Each LSTMunit
is composed of 3 gate structures (as shown in Figure 7): the
input gate it , the forget Gate ft and the output gate ot . These
three gate structures are connected by memory cell unit state
ct to selectively select features in the network. The calculation
formulas for each part are as follows:

ft = σ
(
Wf [ht−1, xt ]+ bf

)
(6)

it = σ (Wi [ht−1, xt ]+ bi) (7)

C̃t = tanh (WC [ht−1, xt ]+ bC ) (8)

Ct = ft ∗ Ct−1 + it ∗ C̃t (9)

ot = σ (Wo [ht−1, xt ]+ bo) (10)

ht = ot ∗ tanh (ct) (11)

where, ∗ represents Hadamard product, σ represents sig-
moid activation function, and tanh represents hyperbolic
tangent activation function, Wi,Wf ,Wc,Wo represent the
weight matrix of each gate separately, bi, bf , bc, bo are the
bias matrix of each gate. These weight matrices and bias
matrices are initialized randomly and then learned through
optimization algorithms during the training process of the
model. xt represents the input data of the network at time t,
c̃t denotes the updated value of memory cell unit state at time
t, ht stands for the LSTM hidden layer state at time t , it is
the input gate of the LSTM unit at time t, which determines
how much feature information in c̃t is used to update ct , ft is
the forget gate, which determines how much information was
retained in thememory unit of LSTMat the previousmoment,
ot is the output gate.

FIGURE 9. Structure of Att-CNN-BiLSTM.

BiLSTM is a variant of LSTM, which includes forward
LSTM units ⃗LSTM and backward LSTM units

←

LSTM , and is
able to simultaneously consider both forward and reverse fea-
tures in the sequence [42]. The internal structure of BiLSTM
is shown in Figure 8. The hidden layer state Ht of BiLSTM
at time t is concatenated by forward

−→
ht and reverse

←−
ht . The

calculation formulas for
−→
ht and

←−
ht are as follows:

−→
ht = ⃗LSTM (ht−1, xt , ct−1) , t ∈ [1,T ] (12)
←

ht =
←

LSTM (ht+1, xt , ct+1) , t ∈ [T , 1] (13)

Ht =
[
−→
ht ,
←

ht

]
(14)

Among them, [] represents the connection of vectors.
In this paper, the BiLSTM module is placed behind the

CNN module to extract bidirectional temporal features from
the results of the CNN, and obtain the bidirectional temporal
feature vectors [H0,H1, . . . ,Hn].

C. ATTENTION MECHANISM
An attention module was added after the BiLSTM layer.
Research has shown that adding attention mechanisms
can enhance the model’s ability to focus on key features
in long input sequences [55]. In Att-CNN-BiLSTM, the
attention module receives bidirectional temporal features
[H0,H1, . . . ,Hn] output by the BiLSTM module, then calcu-
late the similarity score et,i between each feature Hi and the
regression value yt using the following attention function:

et,i = score (Hi, yt) = V T tanh(U [Hi; yt ]) (15)

Then, the softmax function is used to normalize the sim-
ilarity score et,i and obtain the probability distribution at,i,
as shown in formula (16), which represents the importance of
Hi.

at,i = softmax
(
et,i

)
=

exp(et,i)∑t
j=0 exp(et,j)

(16)

Finally, take at,i as the weight ofHi and multiply it withHi
to obtain the weighted feature H̃t . The process of weighting
features is shown in formula (17).

H̃t =
n∑
i=0

at,iH i (17)

Among them, U and V are learnable parameters during the
training process of the neural network, and the final weighted
bidirectional temporal feature vectors are

[
H̃0, H̃1, . . . ,H̃n

]
.
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D. THE PROPOSED ATT-CNN-BILSTM
The structure of Att-CNN-BiLSTM is shown in Figure 9.
The model consists of four modules: convolution module,
BiLSTM module, attention module, and regression module.

Convolutional module: This module receives the input
TEC and Dst sequences with a length of 84, performs pre-
liminary feature extraction through convolution and pooling
operations, and passes the extracted results to the BiLSTM
module. This module contains two one-dimensional convolu-
tional layers (convolution 1D), one maximum pooling layer
(Max Pooling), and one flattening layer (Flatten). The first
convolutional layer contains 128 convolutional kernels of size
9; The second convolutional layer contains 256 convolutional
kernels of size 11; The Activation function of these two
convolutional layers is relu, and the boundary filling method
is valid. Each convolutional kernel is equivalent to a feature
detector, which can extract the same features from differ-
ent positions of input samples by sharing weights, forming
a feature map. The 128 convolutional kernels of the first
convolutional layer result in 128 feature maps. The second
convolutional layer adopts a larger size to improve the per-
ceptual field of feature extraction, resulting in 256 feature
maps. In order to reduce memory consumption in calcula-
tions, a maximum pooling layer with a step size of 3 was
added after two convolutional layers, which can down-sample
each feature map and reduce the number of parameters. Then
a flattening layer is used to flatten the feature maps extracted
from the convolutional layer into one-dimensional feature
vectors.

After being processed by the convolutionmodule, the input
sample becomes different position features extracted by dif-
ferent feature detectors. These different position features are
fused to form a feature vector with a dimension of 5632,
which contains a large number of local position features in the
sample. This local position feature is passed to the BiLTSTM
module for use.

BiLSTM module: Due to the periodic temporal variation
of TEC, it is necessary to extract its temporal features.
Therefore, a BiLSTM module was added after the con-
volution module to extract bidirectional temporal changes
in local position features. This module contains 512 bidi-
rectional LSTM units, and the activation function is relu.
This module ultimately extracts bidirectional temporal fea-
tures [H0,H1, . . . ,Hn] and passes them on to the attention
module;

Attention module: This module calculates the weight of
each dimension in the high-dimensional feature vector trans-
mitted by the BiLSTM module through formulas (15), (16),
and (17), and uses this weight to weight the features trans-
mitted by the BiLSTM layer to obtain a weighted feature
vector

[
H̃0, H̃1, . . . ,H̃n

]
;

Regression module: This module receives the weighted
feature vectors from the attention module and calculates the
predicted values corresponding to the input samples. The
module is composed of three full connection layers (Dense

TABLE 4. Detailed parameter configuration of Att-CNN-BiLSTM.

TABLE 5. Hyper-parameters during model training.

layer), the number of neurons is 128, 64 and 12 respectively,
and the activation function is relu.

The detailed parameter configuration of Att-CNN-
BiLSTM is shown in Table 4.

IV. RESULTS
A. EVALUATION INDICATORS
In this paper, Root Mean Square Error (RMSE) and cor-
relation coefficient (R2) are used to evaluate the predictive
performance of the model. Their calculation formulas are
shown in formulas (18) and (19):

RMSE =

√√√√ 1
m

m∑
i=1

(
ŷi − yi

)2 (18)

R2 = 1−

∑m
i=1

(
yi − ŷi

)2∑m
i=1 (yi − ȳ)2

(19)
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TABLE 6. Comparison results of ablation experiments (the optimal values are bolded).

TABLE 7. Comparison results with LSTM and GRU (the optimal values are bolded).

TABLE 8. Total parameters, training time and memory usage of each
model.

Among them, m is the total number of test samples, ŷi is
the predicted value for test sample i, yi is the true value of
test sample i, y is the average of the true values of all test
samples. RMSE reflects the prediction error of the model,
and the smaller the RMSE value of the model, the better its
prediction performance; R2 represents the fit degree between
the predicted value of the model and the true value. The closer
R2is to 1, the better the prediction performance of the model.

FIGURE 10. Line chart of prediction effect under different input lengths.

B. OPTIMAL PARAMETERS OF THE MODEL
When training the model, it is necessary to specify training
hyper-parameters. There are four important hyper-parameters
during the model training process, namely learning rate, opti-
mizer, loss function, and batch size. These hyper-parameters
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FIGURE 11. Comparison of TEC mean and prediction performance of
various models: (A) TEC mean values;(B) RMSE;(C)R2.

FIGURE 12. Absolute error distribution statistics: Left for high solar
activity year; Right for low solar activity year.

are obtained by grid search. The final values of the hyper-
parameters are shown in Table 5.

FIGURE 13. Box plot comparisons of daily RMSE statistical results.

C. THE IMPACT OF DIFFERENT INPUT LENGTHS ON
PREDICTION PERFORMANCE
Figure 10 shows the impact of different model lengths
(Length) on the RMSE and R2. Each row represents a dif-
ferent prediction point (P1 to P6). As can be seen from the
figure, the prediction effect is best when the input length is
7 days. Therefore, this article uses an input length of 7 days
for prediction.

D. ABLATION EXPERIMENT
To verify the effectiveness of attention and CNN in the TEC
prediction model, ablation experiments were conducted. The
results are shown in Table 6. It can be seen that, whether
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FIGURE 14. Absolute error comparisons of 3 models at 6 locations.

in high or low solar activity years, adding only CNN did
not improve the predictive performance of BiLSTM, but
adding both CNN and attention significantly improved the
model’s predictive performance. For example, in high solar
activity year (2002), compared with BiLSTM, the RMSE of
Att-CNN-BiLSTM decreased by 14.15%, 17.04%, 14.79%
12.38%, 15.93% and 13.73% in P1-P6, respectively. In low
solar activity year (2009), compared with BiLSTM, the
RMSE of Att-CNN-BiLSTM decreased by 19.52%, 14.78%,
16.16%, 5.21%, 2.93% and 11.15% in P1-P6, respectively.

E. COMPARISON WITH OTHER TEC PREDICTION MODELS
In this section, Att-CNN-BiLSTMwas compared with LSTM
andGRU in the high and low solar activity years, respectively.
Experimental results are shown in Table 7, from which it can
be seen that the mean RMSE of Att-CNN-BiLSTM in six
regions is 16.92% lower than GRU’s and 10.28% lower than
LSTM’s in high solar activity year. In low solar activity year,
the mean RMSE of Att-CNN-BiLSTM is 11.82% lower than
LSTM’s and 8.92% lower than GRU’s. The R2 s of Att-CNN-
BiLSTM in six locations are all higher than those of LSTM
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FIGURE 15. Geomagnetic storm Dst index data.

and GRU, indicating that Att-CNN-BiLSTM has a higher
prediction accuracy than the comparison models.

In addition, this paper compared the number of parameters,
time consumed per iteration, and memory usage of each
model. Results are shown in Table 8. It can be seen that
the number of parameters, time required for each iteration,
and memory usage of Att-CNN-BiLSTM are much higher
than those of the comparative models. This indicates that
the performance improvement of Att-CNN-BiLSTM comes
at the cost of sacrificing computational time and memory
usage, which is the limitation of our model in this paper.

This paper further analyzed the impact of TECmean values
on the predictive performance of each model, as shown in
Figure 11. It can be seen that at P4,P5,P6, the TEC mean is
relatively high, and the RMSE of each model in these three
regions is also relatively large. In the other three regions,
the TEC mean is relatively low, and the RMSE of each
model is also relatively small, indicating that RMSE is greatly
influenced by the mean TEC of a location. From Figure 11,
it can also be seen that R2 is less affected by the TEC mean
and is relatively stable.

To quantitatively analyze the predictive performance of
each model more accurately, the distribution percentages of
the absolute error |1| (|1| =

∣∣yi − ŷi∣∣) between the predicted
and true values of various models in 2002 and 2009 were
further compared, as shown in Figure 12. It can be seen
that at all positions, in high solar activity year (2002), the
proportions of |1| ≤ 1TECU , |1| ≤ 2TECU , |1| ≤ 3TECU
of the model proposed in this paper are obviously higher
than those of other comparative models. In low solar activity
year (2009), the percentages of |1| ≤ 0.5TECU , |1| ≤

1TECU and |1| ≤ 1.5TECU of Att-CNN-BiLSTM outper-
form LSTM and GRU except for P5.

Furthermore, for a more detailed comparison, the daily
RMSE of three models in each region was calculated, and
their mean, median, and minimum values were summarized.
Figure 13 shows the box plots of daily RMSE statistical
results of each model. From Figure 13, it can be observed
that the median error of Att-CNN-BiLSTM model is the

FIGURE 16. Comparison results of different models in magnetic storm
time (from July 20, 2009 to July 26, 2009).

lowest at all six locations in high solar activity year. In low
solar activity year, at P2 and P3, Att-CNN-BiLSTM model’s
median error is slightly higher than GRU, at other 4 locations,
Att-CNN-BiLSTM model’s median errors are the smallest
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in 3 models. Compared to LSTM and GRU, Att-CNN-
BiLSTM model has a more concentrated RMSE distribution.
These indicate that Att-CNN-BiLSTM proposed model out-
performs LSTM and GRU in the vast majority of cases.

Furthermore, the absolute prediction errors of the three
models are presented in Figure 14. It can be seen that in
the vast majority of cases, the absolute error of Att-CNN-
BiLSTM model is significantly lower than those of the
comparative models.

Based on the above comparison results, it can be concluded
that the prediction performance of the model proposed in this
paper is significantly superior to LSTM and GRU.

F. IMPACT OF MAGNETIC STORMS ON PREDICTION
PERFORMANCE
To further verify the predictive performance of the proposed
model in extreme situations, the week from July 20, 2009,
to July 26, 2009, was selected according to Dst as magnetic
storm data. Figure 15 shows the Dst curve between 2009 and
2011. It can be seen that there are significant fluctuations in
the Dst curve from July 20, 2009 to July 26, 2009, indicating
the occurrence of a magnetic explosion during that period.
Figure 16 shows the prediction results of the model proposed
in this paper and the comparison models during this storm
period.

As can be seen from Figure 16, after the magnetic storm
occurred, the prediction effect of Att-CNN-BiLSTM model
was far better than other models. On the day of the geo-
magnetic storm (July 22, 2009), the overall RMSE of each
model in the six regions were 0.5876, 0.6049, 0.3790, and R2

were 0.9531, 0.9595, 0.9800 respectively. Compared with the
comparative model, the RMSE of Att-CNN-BiLSTM model
was respectively It decreased by 35.50% and 37.35%, and
R2 increased by 2.74% and 2.09% respectively. This shows
that Att-CNN-BiLSTM model predicts best when magnetic
storms occur at various selected points.

V. CONCLUSION
In this paper, we propose a TEC prediction model Att-CNN-
BiLSTM that can simultaneously extract time series features
and local position features and can adaptively weight the fea-
tures.We selected 6 locations in China and used 7 consecutive
days of TEC andDst data as inputs to predict TEC for the next
24 hours. We first conducted ablation experiments, and the
results showed that adding CNN and attention simultaneously
can significantly improve the predictive performance of the
model. We then compared our model with LSTM and GRU
in high and low solar activity year. Results showed that the
mean RMSE of our model in six regions is 16.92% lower than
GRU’s and 10.28% lower than LSTM’s in high solar activity
year. In low solar activity year, the mean RMSE of our model
is 11.82% lower than LSTM’s and 8.92% lower than GRU’s.

The research work in this paper shows that combining
temporal features with local position features and adding
attention mechanisms to adaptively weight features can sig-
nificantly improve TEC prediction performance. However,

the model proposed in this paper also has shortcomings. For
example, the boxplot of Att-CNN-BiLSTM shows a wider
interquartile range, indicating that its prediction results are
more volatile, especially in 2002 (high solar activity). While
in 2009 (low solar activity year), the RMSE distribution of
Att-CNN-BiLSTM is relatively more concentrated and con-
sistent, but its performance is slightly worse than the GRU
model on such as P3 and P6, which shows that under different
solar activity conditions, its robustness may have room for
improvement.

In this paper, our preprocessing of TEC and Dst data
only includes differentiation. In the future, we will do more
preprocessing on the data, such as a new empirical mode
decomposition method based on Akima spline interpolation
technology [56], to further improve the performance of the
model. The model in this paper sacrifices memory footprint
for better prediction performance, and in the future, we will
investigate lightweight models that reduce computational
requirements without compromising accuracy. And, a wider
range will be selected. In the future, we will try to study the
performance of the model in the real world.
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