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ABSTRACT Against the backdrop of the pervasive global challenge of cancer, with particular emphasis
on lung cancer (LC), this study centers its investigation on the critical realm of early detection leveraging
artificial intelligence (AI) within the domain of histological image analysis. Through the fusion of
DenseNet201 with color histogram techniques, a novel hybrid feature set emerges, engineered to elevate
classification accuracy. The comprehensive evaluation encompasses eight diverse machine learning (ML)
algorithms, spanning from K-Nearest Neighbors (KNN) to Support Vector Machines (SVM), including
notable contenders such as LightGBM (LGBM), CatBoost, XGBoost, decision trees (DT), random forests
(RF), and multinomial naive Bayes (MultinomialNB). This rigorous examination illuminates a distinguished
model, achieving a remarkable accuracy rate of 99.683% on the LC25000 dataset. The extension of this
methodology to breast cancer detection, utilizing the BreakHis dataset, yields a commendable accuracy
rate of 94.808%. These findings underscore the transformative potential of Al in the intricate landscape of
histopathological analysis, positioning it as a pivotal force in advancing diagnostic capabilities. A meticulous
comparative analysis not only underscores the merits but also elucidates the limitations of existing Al
applications in medical imaging, thereby charting a roadmap for future refinements and clinical deployments.
Consequently, continued research in AI within clinical settings is advocated, with the ultimate aim of
fortifying early cancer diagnosis and subsequently enhancing patient outcomes through judicious therapeutic
interventions.

INDEX TERMS Densenet201, histopathological images, image processing, lung cancer, machine learning.

I. INTRODUCTION a shadow of concern over our nation’s health landscape.
In the year 2023, the United States is grappling with a heavy This translates to about 5,365 new cancer cases and 1,671
and sobering truth: an estimated 1,958,310 new cancer cases cancer-related deaths each day, each a poignant reminder

and 609,820 cancer-related deaths are anticipated, casting of the ongoing struggle against this relentless disease [1].
Among these troubling statistics, lung cancer (LC) emerges

The associate editor coordinating the review of this manuscript and as a formidable opponent, with the American Cancer Society
approving it for publication was Yeliz Karaca . predicting approximately 238,340 new cases in the United
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States for the year 2023 [2]. However, LC is often diagnosed
in our elderly population, with an average age of 70 [3].
This paints a poignant picture of the challenges our elderly
population faces in the battle against this formidable enemy.
LC is a major health concern for people all around the
world. It is the top cause of cancer-related deaths in various
communities, and its impact on healthcare, families, and
economies is substantial. Even with advancements in medical
technology, the number of LC cases is increasing globally [4],
[5]. This emphasizes the critical importance of creating new
and effective ways to detect and treat the disease on a global
scale. The research’s focus on using pretrained Densenet201,
color histogram, and machine learning (ML) for diagnostics
tackles an urgent health issue and plays a part in the larger
effort to enhance cancer care.

The sheer magnitude of this predicament is underscored by
the fact that LC has the distinction of being the leading cause
of cancer-related deaths in the United States, claiming the
lives of approximately one in five individuals who succumb to
this devastating disease [6]. Annually, it causes losses greater
than the cumulative impact of colon, breast, and prostate
cancer combined, reinforcing its unparalleled impact on
public health [2], [7]. The development of cancer is a complex
interaction and combination of behavioral and environmental
factors. Smoking, obesity, alcohol abuse, radiation exposure,
and biological factors are all known factors in the devel-
opment of cancer [8]. The challenges associated with early
cancer detection are particularly stressful. It often remains
asymptomatic or shows only subtle signs in its early stages,
and is therefore difficult to detect. By the time symptoms
become manifest, the tumor has usually reached an advanced
stage, making timely diagnosis a formidable task [9].

Currently, when it comes to LC detection, it mainly uses
imaging methods like chest X-rays and CT scans, along
with tissue biopsies for detailed analysis [10]. While these
techniques have been really helpful in diagnosing LC, they
do have significant limitations. Imaging techniques can miss
early-stage tumors or non-solid nodules, leading to false
negatives. Moreover, how these tests are interpreted relies a
lot on the skill of the radiologists and pathologists, which can
introduce some subjectivity and variation in the diagnosis.
The significance of this research lies in its ability to change
LC detection methodologies through the use of pretrained
Densenet201, color histogram, and ML techniques to analyze
detailed images of lung tissue. The goal is to enhance
the accuracy, speed, and efficiency of diagnosing LC in
its early stages. They can automate the detection process,
reducing the reliance on manual examination and potentially
decreasing the rate of misdiagnosis. This kind of automation
is super important for diagnosing LC before it gets really
serious, which can make a big difference in how well the
treatment works and the chances of surviving. Building on the
methodologies and findings of this research, future studies
could explore the adaptation of our model for other types
of cancer, leveraging the unique patterns and characteristics
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present in different cancerous tissues. Also integrating these
models into clinical settings, where they could be tested
and refined in real-world scenarios. This integration would
validate the efficacy of the models in practical applications,
streamline diagnostic processes, improve patient outcomes
through earlier detection, and tailor treatment plans more
effectively.

In this sobering landscape, the need for innovative
solutions has become increasingly urgent. The integration
of diverse feature extraction (FE) techniques with pretrained
models and ML to improve the accuracy and reliability
of LC diagnosis from histopathological images has been
a focal point of extensive research [11], [12], [13]. Our
research sets out to harness the boundless potential of
Al in the domain of histological image analysis, with a
specific focus on LC detection. The journey begins with a
recognition of the basic dynamics of cancer development—
where some cells, either damaged or reaching the end of
their lifespan, fail to be replaced by healthy cells, resulting
in the formation of tumors [14]. These tumors may take
the form of benign or malignant growths, with the latter
characterized by aggressive, abnormal cell proliferation that
can rapidly invade and damage surrounding tissues [15].
This research comes to the fore armed with the LC25000
dataset. It encompasses histological images across five
distinct classes, including colon adenocarcinomas, benign
colonic tissues, lung adenocarcinomas, lung squamous cell
carcinomas, and benign lung tissues. Our mission is to
analyze these images by using advanced Al methodologies,
with the goal of saving lives by identifying L.C in its earliest,
most treatable stages.

A. RELATED WORKS

Digital pathology has revolutionized cancer diagnosis, espe-
cially lung cancer (LC) classification using histopathological
images. The wealth of research on image analysis, from
enhancement and feature extraction (FE) to deep learning
(DL) and machine learning (ML) methods for reliable clas-
sification, reflects this development. The following sections
discuss how many key research techniques, datasets, and
results have shaped the classification of LC histopathology
images. Therefore, based on existing knowledge, a complete
evaluation of these linked studies will contextualize our
findings within the larger scientific debate, recognizing both
advances and limitations.

Al-Jabbar et al. [11] proposed multiple strategies for
histological image classification of lung and colon cancer.
One of them involved image enhancement through filtering
and contrast improvement, FE using DL models (GoogLeNet
and VGG-19), and the integration of these features with hand-
crafted methods. This particular approach demonstrated high
accuracy, with the fusion features of VGG-19 and handcrafted
methods achieving the highest accuracy rate of 99.64%.
Garg and Garg [12] employed eight distinct pre-trained CNN
models, including VGG16, NASNetMobile, InceptionV3,
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InceptionResNetV2, ResNet50, Xception, MobileNet, and
DenseNet169, to classify cancerous and non-cancerous
images from the LC25000 dataset. The models consistently
achieved notable results with accuracies ranging from 96%
to 100%. The use of data augmentation and attention
visualization techniques, such as GradCAM and Smooth-
Grad, contributed to the understanding of models’ decision
processes and strengthens the potential for automated cancer
diagnosis. Kumar et al. [13] contrasted six conventional
FE techniques (fuzzy color and texture histogram, color
correlogram, color layout, edge histogram, pyramid his-
togram of oriented gradients, pyramid based local binary
patterns) with transfer learning approach, utilizing seven
pre-trained CNN models for FE from lung and colon
histopathological images. The transfer learning approach,
particularly with DenseNet-121, outperformed conventional
classifiers, achieving 98.60% accuracy, 98.63% precision,
98.60% recall, 0.985 fl-score, and 0.1 ROC-AUC. The
methodology involved image resizing and pre-processing,
emphasizing the importance of color and texture-based
features in cancer detection.

Masud et al. [16] proposed a classification framework for
LC. They utilized unsharp masking (UM) to enhance contrast
at color junctions. This technique sharpens the original
image by subtracting a blurred version from itself. FE was
performed using the extraction of 2D fourier features and the
extraction of 2D wavelet features. The extracted features were
then processed and fed into a convolutional neural network
(CNN) for classification. Utilizing the LC25000 dataset for
this purpose, the results demonstrated remarkable accuracy of
up to 96.33%. Ali and Ali [17] proposed a novel multi-input
dual-stream capsule network employing two convolutional
layer blocks: the convolutional layers block (CLB), which
uses traditional convolutional layers, and the separable
convolutional layers block (SCLB), which employs separa-
ble convolutional layers. The CLB processes unprocessed
histopathology images, while the SCLB handles uniquely
pre-processed images using techniques like color balancing,
gamma correction, image sharpening, and multi-scale fusion.
The empirical analysis on the LC25000 dataset showed sig-
nificant improvement in classification results, with achieving
99.58% overall accuracy. Baranwal et al. [18] utilized DL
and CNNss for LC diagnosis, employing the LC25000 dataset
with 15,000 images. Four CNN models—ResNet50, VGG-
19, Inception-ResNet-V2, and DenseNetl121—were used for
classifying LC types. The study emphasized the effectiveness
of DenseNetl21, especially when used with triplet neural
networks, achieving an accuracy of 99.08% in differentiating
between cancerous and non-cancerous tissues.

Hatuwal and Thapa [19] leveraged CNNs to classify
histopathological images of lung tissue, including benign
tissue, adenocarcinoma, and squamous cell carcinoma. The
study encompassed various stages, from using the LC25000
histopathological image dataset, data formatting for unifor-
mity and efficiency, to model training, testing, and prediction.
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The CNN architecture is composed of convolutional layers,
max pooling, and fully connected layers, with a focus
on optimizing image classification. Results indicated an
impressive training accuracy of 96.11% and validation
accuracy of 97.20%, demonstrating the potential of CNNs
in enhancing LC diagnosis. Mehmood et al. [20] developed
an effective model for diagnosing lung and colon cancers
using the LC25000 dataset of histopathology images. They
initially achieved 89% accuracy by employing a modified
AlexNet neural network. To further improve performance,
especially for an underperforming class, they applied a
contrast enhancement technique, which boosted the overall
accuracy to 98.4%. Mangal et al. [21] focused on creating
a computer-aided diagnosis system using CNNs to identify
lung and colon cancer from digital pathology images. They
utilized the LC25000 dataset to classify histopathological
slides into various cancer types and benign tissues. The
study demonstrated the potential of CNNs in achieving high
diagnostic accuracy, with rates exceeding 97% for LC and
over 96% for colon cancer.

Civit-Masot et al. [22] focused on designing, implement-
ing, and evaluating a diagnostic aid system for non-small
cell LC (NSCLC) detection using DL. The study included an
explainable DL component that informs pathologists about
the image areas used for classification and the confidence
of each class utilizing LC25000 dataset. The system showed
high accuracy between 97.11% and can potentially reduce
the time spent by pathologists on each patient, thereby
speeding up diagnostic processes. Mamun et al. [23] focused
on developing a model to predict LC using ensemble
learning methods, namely XGBoost, LightGBM, Bagging,
and AdaBoost. They evaluated these techniques on a dataset
of 309 individuals collected from kaggle, considering factors
like age, smoking habits, and symptoms such as fatigue,
allergy, and chest pain. The study found XGBoost to be the
most effective, with an accuracy of 94.42%.

Ramesh et al. [24] developed a multi-level CNN
(ML-CNN) architecture for detecting different types of
LC. They employed a multi-scale convolution strategy to
effectively extract features from lung nodules of various
sizes and morphologies. The model was evaluated using the
LC25000 dataset, which includes histopathological images
of squamous cell cancer and adenocarcinoma. The model
demonstrated superior performance compared to traditional
methods, achieving an accuracy of 64% in training and
89% in validation. Shanmugam and Rajaguru [25] presented
a novel methodology for detecting LC using histopatho-
logical images. Their approach focused on preprocessing
and segmentation, followed by FE using particle swarm
optimization (PSO) and grey wolf optimization (GWO).
They also utilized algorithms such as KL divergence and
invasive weed optimization (IWO) for feature selection.
The study employed seven classifiers to classify the images
into benign or malignant, achieving an impressive accuracy
of 91.57% with the DT classifier. This high accuracy
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was attained by using GWO for FE, IWO for feature
selection, and the RAdam approach for hyperparameter
tuning. Krishnan et al. [26] introduced an improved graph
neural network (IGNN) optimized by the green anaconda
optimization (GAQO) algorithm to maximize accuracy in
segmenting and classifying LC. The process involved
pre-processing images using the gabor filter method,
segmentation with the modified expectation maximization
(MEM) algorithm, and FE through the histogram of oriented
gradient (HOG) scheme.

These works demonstrate how the field of LC histological
image classification is changing, emphasizing the efficacy
of combining DL, conventional, and hybrid approaches. The
relevant literature has been carefully reviewed, including an
assessment of its efficacy, strengths, and drawbacks. The
findings have been consolidated and displayed in Table 1. Our
study uses many ML algorithms, including KNN, LGBM,
CatBoost, XGBoost, DT, RF, MultinomialNB, and SVM.
To the best of our knowledge, this study is the initial
endeavor to compare these techniques for LC histopathology
images, covering the analysis of binary classes. In addition,
the research combines DenseNet201 and color histogram,
establishing a strong basis for the investigation.

B. CONTRIBUTIONS

The proposed work extends beyond traditional methods by
exploring a fusion of features extracted through a combi-
nation of approaches. The high-dimensional and nuanced
data present in these histological images demand a novel
perspective. Early-stage abnormal cells often share similar
characteristics, leading to the development of hybrid systems
that amalgamate features from diverse sources. This enhances
the ability to discriminate between subtle variations that
may signify the onset of LC [27]. The following paragraphs
provide an overview of the contributions made in the study:

o DenseNet201 and color histogram methods are utilized
to extract informative features from histological images
within the LC25000 dataset and combine them, with a
primary focus on lung adenocarcinomas, lung squamous
cell carcinomas, and benign lung tissues. This results in a
hybrid feature set that enhances the discriminative power
of the classification models.

o The performance of eight machine learning (ML)
algorithms is assessed, including K-Nearest neighbors
(KNN), LGBM, CatBoost, XGBoost, decision trees
(DT), random forests (RF), multinomial naive bayes
(MultinomialNB), and support vector machines (SVM).
The most effective algorithm is identified and selected
through a comprehensive evaluation encompassing
accuracy, specificity, precision, recall, fl-score, and
computational efficiency.

o Multi-class classification is conducted to differentiate
between lung adenocarcinomas, lung squamous cell car-
cinomas, and benign LC-related classes. Subsequently,
binary classification tasks are engaged, including benign
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versus adenocarcinomas, benign versus carcinomas,
and adenocarcinomas versus carcinomas, to deepen
the understanding of LC subtypes and their distinctive
characteristics.

The remainder of the paper is organized into the following
sections: Methodology, results and analysis, discussion, and
conclusion. These sections collectively present a perspective
on a future scenario in which LC diagnostics are not only
precise but also readily accessible, timely, and revolutionary.

Il. METHODOLOGY

This section delineates the methodology for lung cancer
(LC) classification, encapsulating critical stages integral to
the approach. The framework comprises sequential phases:
dataset utilization, data preprocessing, feature extraction
(FE), feature combination, application of machine learning
(ML) algorithms, and evaluation metrics. Each phase plays
a pivotal role in the overarching classification process,
contributing uniquely to enhancing accuracy and efficiency
in LC detection.

A. LC25000 DATASET

99For the purposes of our research on LC, we focused
on the LC25000 dataset, a comprehensive collection of
histopathological images. This dataset, originating from
the Kaggle platform, was compiled by Andrew Borkowski
and his team at James Hospital in Tampa, Florida. It is
segmented into various cancer types, including both colon
and (LCs). Out of the total 25,000 images in the dataset,
we selectively utilized 15,000 images representing three
LC categories: adenocarcinoma (lung_aca), which forms
a considerable portion of LC cases, benign lung tissue
(lung_bnt), and squamous cell carcinoma (lung_scc), the
second most common type, ensuring a targeted approach to
the proposed study, and allowing to delve deeper into the
specificities of LC. Each category comprises an equal number
of images, 5,000 per type, thus maintaining a balance in our
analysis. Subsequently, Fig. 1 shows samples of the dataset,
and a pie chart is employed to visualize the distribution of
the various classes in our dataset in Table 2. Visualization is
crucial for understanding the dataset’s composition, ensuring
that our model is trained and tested on a balanced and
representative sample. Originally, this dataset was derived
from 1,250 primary images (250 for each type) collected
from pathology slides. These were augmented using various
techniques like rotation and flipping, expanding the total to
25,000 images. These images, each meticulously prepared
and cropped from their original dimensions of 1024 x
768 pixels to a uniform size of 768 x 768 pixels [28].

B. PREPROCESSING STAGE

The preprocessing of the LC image dataset is a critical
step in our study. The initial step involves loading images
with the RGB color mode. These images are scaled to
128 x 128 pixels to balance computational efficiency and
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TABLE 1. Comprehensive comparative analysis of efficacy, strengths, and drawbacks among diverse imaging techniques applied to the diagnosis and
treatment of Lung cancer (LC).

Ref | Year| Dataset | Efficacy Strengths Drawbacks Hardware
2023| LC25000f VGG-19 + Handcrafted fea- | < Hybrid Al systems integrating CNN | < Single dataset, results may | Not provided
[11] tures + ANN 99.64% accuracy, | models with handcrafted features. | not generalize to other datasets.
99.85% sensitivity, 100% speci- | ¢« VGG-19 + Handcrafted was opti- | ¢ Time computation not avail-
ficity and precision. mal. * Applied on colon and lung. | able. * Huge number of fea-
» High performance metrics. indicat- | tures.
ing the model’s reliability.
2020 LC25000| Pre-trained CNN models with | ¢ Application of visualization tech- | ¢ Single dataset. * Time com- | Not provided
[12] visualization of class activation | niques (GradCAM, SmoothGrad) for | putation not available. * Binary
and saliency maps accuracy of | interpretability. » Effective use of pre- | classification. * Lack of de-
96-100% in classifying malig- | trained CNN models. tailed about computational en-
nant vs benign tumors. vironment.
2022| LC25000| DenseNetl2]l FE + RF 98.60% | e Evaluates classifier performance us- | e Single dataset. * Time compu- | Python 3.8, IBM
[13] accuracy, 98.63% precision, | ing multiple metrics. ¢ Applied on | tation not available. Intel Core i-7-6700
98.60% recall, an fl-score of | colon and lung. * Comprehensive CPU @ 3.40 GHz
0.986. comparison FE. processor, 8 GB
RAM, NVIDIA
GeForce GPU.
2021| LC25000| Unsharp masking for image | ¢ Uses fourier and wavelet trans- | e Single dataset. Time compu- | Not provided
[16] sharpening: 2D Fourier and | forms to extract complementary fea- | tation not available. * Compu-
wavelet transforms for FE + | ture sets. * Enhance CNN by Em- | tational resources.
CNN Model 96.33% accuracy, | ploying a custom-designed 4-channel
96.39 % precision. CNN architecture.  Applied on colon
and lung. ¢ High performance met-
rics.
2021| LC25000| Capsule network + conventional | ¢ Allows the model to learn fea- | e Single dataset. Time compu- | Windows 10 PC,
[17] and separable CNNs 99.58% ac- | tures from both unprocessed and pre- | tation not available. « Compu- | Nvidia  GeForce
curacy, 98.66% precision. processed images. ¢ Use of capsule | tational complexity due to the | GTX 1060, 16 GB
networks with convolutional layers. | dual-input approach. RAM, Intel Ci7
* Improve the overall feature learning 64-bit, Keras and
process of the model. * Applied on TensorFlow.
colon and lung.
2021| LC25000 CNN model wusing triplet | ¢ Comprehensive exploration of vari- | < Single dataset. * Time compu- | Python
[18] loss 99.08% accuracy with | ous CNN architectures. * Application | tation not available. ¢ Specific
DenseNet121. of triplet loss improves the differen- | hardware details are not pro-
tiation between the classes. * Applied | vided affect reproducibility.
on colon and lung.
2020| LC25000| CNN model 96.11% training ac- | * Improving the quality of input data |  Single dataset. * Lack com- | Google Colabora-
[19] curacy, 97.20% validation accu- | for the CNN model by image pre- | parison with other algorithms. | tory GPU
racy. processing. ¢ Specific hardware details
are not provided affect repro-
ducibility.
2022| LC25000| Initial accuracy 89%, improved | e Improves classification using CSIP. | * Single pretrained model. | Not provided
[20] to 98.4% by AlexNet | ¢ Minimizes computational costs. | ¢ Single dataset. * Limited
CNN +CISP (Histogram | e« Applied on colon and lung. * Com- | description of CSIP. ¢ Time
Equalization). putational efficiency. computation not available.
2020| LC25000| Shallow CNN 97.92% and | e Integration of DL. « Develop CNN | ¢ Single dataset. * Lacks some | Google’s Colab
[21] 96.95% accuracy (lung and | models. ¢ Effective use of shallow | implementation details. « Lack | TensorFlow
colon respectively). CNN architecture. of detailed about computa-
tional environment.
2022| LC25000| Train CNN model and used | ¢ Highly accurate, explainable. * Ap- | e Single dataset. * Time compu- | Google’s Colab
[22] explainable DL (GradCAM) | plied explainable DL techniques. | tation not available. TensorFlow
97.11% accuracy. » Highlighting specific image areas
used for classification.
2022| Kaggle Ensemble learning techniques | * Effectiveness of XGBoost in LC | « Single dataset and small. | Not provided
[23] (XGBoost, LightGBM, bagging, | prediction. * Comprehensive evalua- | * Time computation not avail-
and AdaBoost) 94.42% accuracy. | tion of ensemble learning techniques. | able.
2023| LC25000| Multi-level CNN (ML-CNN) | < Handle the heterogeneity in lung | ¢ Single dataset and small. | Python 3.X and
[24] training accuracy: 64%, | nodule sizes and morphologies. | ¢ Time computation not avail- | Google Colab.
validation accuracy: 89%.  Leveraging multi-scale convolution | able. provided a Jupyter
for improved FE. notebook - GPU
2023| LC25000| Grey wolf optimization (GWO) | e Integration of PSO and GWO for | e« Single dataset. * Time com- | Not provided
[25] + Invasive Weed optimization | FE. e The use of hyperparameter tun- | putation not available. * Binary
(IWO) + hyperparameter tun- | ing methods to improve accuracy. classification. * Lack of de-
ing RAdam + DT accuracy of tailed about computational en-
91.57%. vironment.
2023| LC25000| Histogram of oriented gradient | « Employed gabor filter for pre- | e Single dataset. * Lack of de- | Not provided
[26] (HOG) + hyperparameter tun- | processing and MEM for segmen- | tailed about computational en-
ing green anaconda optimization | tation. * Introduced a novel IGNN | vironment.
(GAO) + improved graph neu- | model optimized by GAO.
ral network (IGNN) accuracy of
98.9%.
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FIGURE 1. Sample of the LC25000 dataset images. (a) Benign lung tissues samples, (b) Lung
adenocarcinomas samples, (c) Lung squamous cell carcinomas.

TABLE 2. Distribution of the three classes (Lung Adenocarcinomas, Lung
Squamous cell Carcinomas and Benign Lung tissues) in LC25000 dataset.

Class Name Number of Images | Percentage
Lung_aca 5000 33.3%
Lung_scc 5000 33.3%
Lung_n_benign | 5000 33.3%

maintain sufficient detail for classification accuracy. Scaled
images and corresponding labels are transformed into numpy
arrays for further processing. Additionally, a proprietary
function (ensure_correct_depth) was used, to standardize
image depth to CV_8U. This step normalizes image data,
ensuring that all images have the same scale and format
for uniform FE throughout the dataset. Each image is
converted to the HSV color space, for analyzing hue-based
color distributions. Using the preprocess_input function,
designed to preprocess images in the same manner as the
original model training, we perform normalization of pixel
values. This typically involves subtracting the mean RGB
values and dividing by the standard deviation, specific
to the ImageNet dataset. This normalization aligns the
distribution of the input data with that used during the model’s
training.

C. FEATURE EXTRACTION (FE)

The model presented in the suggested methodology is
based on many crucial phases for the classification of LC,
as seen in Fig 2. The approach employed herein hinges
upon FE. The employed methodology utilizes a fusion of
image processing and DL methodologies to extract important
data from the histopathological images in the LC25000
dataset:

VOLUME 12, 2024

1) COLOR HISTOGRAM ANALYSIS

After converting images to the HSV (Hue, Saturation, Value)
color space, which is preferred in image processing tasks as
it separates image intensity (Value) from color information
(Hue and Saturation) making it more resilient to changes
in lighting conditions [29]. A color histogram is computed
for each image, focusing on the Hue component, which
represents the color type in the image and is important for
capturing color-based features in medical images. This is
needed to understand the color distribution within the images,
which can be indicative of various lung conditions. The
computed histograms are normalized to ensure uniformity in
feature scaling, which is important as it brings all features
to a comparable range, thereby preventing features with
larger numeric ranges from dominating the learning process
in the classification models [30]. This process converts the
histogram into a probability distribution of Hue values. The
normalized histogram of each image is flattened into a one-
dimensional feature vector, making it suitable for use in ML
models.

2) CONTOUR FE

After converting images from RGB to grayscale, which
simplifies the image data and focuses on the structural
information [31]. Contours in the grayscale images are
detected. These objects correspond to areas of potential
medical interest in lung scans. This is needed to focus on
the significant shapes in the image, which are likely to be
of medical relevance. The contour approximation is used to
compress horizontal, vertical, and diagonal segments in the
contour, thereby reducing the number of points required to
represent a contour [32]. For each contour, various features
are extracted, including the area and the perimeter of the
contour, which are flattened to form a feature vector for each
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FIGURE 2. Structure of the model.

image. These flattened feature vectors represent the structural
characteristics of the lung images, which are important for the
subsequent classification process.

3) DENSENET201 FEATURES

DenseNet201 is a form of the Dense Convolutional Network
architecture, which connects each layer to every other layer
in a feed-forward fashion, to ensure maximum information
flow between layers in the network [33]. We utilized it with
pre-trained weights from the ImageNet database, to allow the
model leverages knowledge from a vast dataset, enhancing
its FE capabilities for the task of LC image classification.
It is modified for FE by removing the top classification layer,
which transforms it into a powerful feature extractor. As the
images propagate through the network, the DenseNet201
layers extract a wide range of features, from basic edge
features in the initial layers to more complex patterns
in the deeper layers [34]. The final layer produces a
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comprehensive feature representation of each image. After
the last convolutional layer, a Global Average Pooling (GAP)
layer reduces feature map dimensionality while keeping the
most important spatial information. Then we result in a single
feature vector for each image, encapsulating the important
features identified by the network, which represent a deep
and nuanced understanding of the image content, capturing
both local and global patterns relevant to LC classification.

D. FEATURE COMBINATION

In our methodology, we employ specific strategies to
combine the extracted features. Our focus is on leveraging
the strengths of each feature type—DenseNet201, contour,
and color histogram features—by creating combined fea-
ture sets for classification. Initially, we explore results of
DenseNet201 as base learner. The second strategy, we utilize
features extracted solely by the DenseNet201 model with ML
classifiers. The third strategy, we explore combinations of
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DenseNet201 features with contour features. This combina-
tion aims to harness both the high-level pattern recognition
capabilities of DenseNet201 and the geometric information
provided by contour analysis. The fourth strategy, we explore
combinations of DenseNet201 features with color histogram
features. This set integrates DL patterns with color textural
information. By exploring different combinations, we can
assess which feature sets are most effective for classifying
LC images.

E. MACHINE LEARNING (ML) ALGORITHMS

In the domain of LC image classification, selecting appro-
priate ML models is pivotal for achieving high accuracy and
reliability. Our methodology incorporates a diverse array of
classifiers, each with unique strengths and characteristics.
Below is a short description of each model selected for this
study:

1) K-NEAREST NEIGHBORS (KNN)

KNN is a simple, effective instance-based learning method.
It classifies samples through how similar they are to the
training set. KNN is simple yet effective, especially when
decision border is irregular [35].

2) LIGHT GRADIENT BOOSTING MACHINE (LGBM)

LGBM employs tree-based learning methods for gradient
boosting. Highly efficient and performant, especially with
huge datasets. LGBM excels at handling unbalanced data,
which is prevalent in medical imaging datasets [36].

3) CATBOOST

CatBoost is another gradient-boosting technique optimized
for categorical data. Its robustness and comprehensive feature
combination handling make it ideal for our non-categorical
data. Automated missing data management is useful in
complicated datasets [37].

4) EXTREME GRADIENT BOOSTING (XGBOOST)

XGBoost is a quite efficient and scalable implementation of
gradient boosting. Its performance in ML contests has made
it popular. Speedy and powerful, XGBoost provides fine-
grained model tweaking control [38].

5) DECISION TREES (DT)

DT is a simple and interpretable model that partitions data
at each node depending on criteria. Their usefulness is
in comprehending decision-making. It can help medical
imaging professionals identify classification-relevant charac-
teristics [39].

6) RANDOM FOREST (RF)

The ensemble learning technique RF builds many DTs during
training. Overfitting, a problem with single DTs, is reduced,
improving classification performance. This robust model
handles linear and non-linear data well [40].
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TABLE 3. Hyperparameters Configuration of the ML classifiers (« learning
rate, / leaves, n estimators, d Max Depth, cbt colsample_bytree, k
n_neighbors).

Classifier | Hyperparameters
LightGBM| «=0.09, n=200, (=31, d=-1, min_child_samples=20,
subsample=1.0, colsample_bytree=1.0

RF n=250, d=None, min_samples_split=2,
min_samples_leaf=1

DT d=None, min_samples_split=2, min_samples_leaf=1

XGBoost n=300, d=6, «a=0.3, subsample=1, colsam-
ple_bytree=1

CatBoost verbose=0 iterations=1000, a=0.03, d=6,

12_leaf_reg=3, loss_function="Logloss’

KNN k=4, weights="distance’, metric="manhattan’,
algorithm="auto’, leaf_size=30, p=2, met-
ric_params=None

Naive a=1.0, fit_prior=True, class_prior=None
Bayes
SVM probability=True, C=1.0, kernel="rbf’, degree=3,

gamma="scale’, coef0=0.0

7) MULTINOMIAL NAIVE BAYES (MULTINOMIALNB):

Naive Bayes’ multinomialNB version handles multino-
mially distributed data. It assumes feature independence
in image classification, simplifying computation. This
approach works well for classification issues with huge
feature sets, making it suited for our high-dimensional
data [41].

8) SUPPORT VECTOR MACHINE (SVM)

SVM is a sophisticated classifier that finds the optimum
hyperplane to divide classes in feature space. It’s versatile and
works well with high-dimensional data and linear and non-
linear data [42].

The algorithms are applied to the feature vectors from the
LC25000 dataset using the feature combination strategies
mentioned above, and their performance in classifying
images into lung adenocarcinomas, lung squamous cell
carcinomas, and benign lung is critically evaluated.

F. HYPERPARAMETERS SELECTION

In the development of our predictive models, hyperparameter
selection plays a crucial role in optimizing performance and
achieving robustness. The choice of hyperparameters can
significantly affect the learning process and the resulting
model’s efficacy. The research was conducted in a standard-
ized computing setting to provide consistency and clarity. The
simulations were conducted in a Google Colab environment
(with 12 GB of RAM, 78 GB of HDD, and a cloud GPU).
For each algorithm utilized, hyperparameters were metic-
ulously selected to balance the trade-off between training
time and model accuracy. Table 3 outlines the algorithms
employed, along with the hyperparameters explicitly set for
our experiments. This table demonstrates our methodical
approach to hyperparameter selection, ensuring each model
is finely tuned for optimal performance within the scope of
our research objectives.
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TABLE 4. The performance metrics results of the DenseNet201 base learner on the test set. MA (Micro Average), WA (Weighted average).

Algorithm Accuracy | Avg Specificity | Time (S) | Precision Recall F1-score
097MA | 097 MA | 097 MA
DenseNet201 0.9733 0.4934 6908.51 097 WA T 097 WA | 097 WA

G. EVALUATION METRICS

The models will be evaluated based on various metrics,
including accuracy, average specificity, time (S), precision,
recall, and fl-score, as in (1) to (5). These metrics provide
a comprehensive view of each model’s performance, taking
into account factors such as generalizability, efficiency, and
the balance between precision and recall.

TP + TN
Accuracy = . (1)
IN +TP+ FP+FN
L P
Precision = ——. 2
TP + FP
TP
Recall = ——. 3)
TP + FN
Recall x precision
F1=2x —. “
Recall + precision
Specificit Ll 5)
ecificity = —.
PeeeY = TN 1 Fp

I1l. RESULTS AND ANALYSIS

The study on the potential of ML algorithms in the multi-
classification of LC using the LC25000 dataset revealed
significant insights. The models were evaluated based on
various metrics, including accuracy, specificity, precision,
recall, and fl-score. The evaluation involved testing the
models under three FE scenarios: using DenseNet201
alone, DenseNet201 combined with contour features, and
DenseNet201 combined with histogram features.

A. PERFORMANCE OF DENSENET201 AS BASE LEARNER
Utilizing DenseNet201 as a standalone base learner yielded
an impressive accuracy of 97.33% and an f1-score averaging
97%. Despite its high performance, the specificity stood at
49.34%, indicating room for improvement in distinguishing
between classes. The model required 6908.51 seconds for
execution, highlighting a trade-off between accuracy and
computational efficiency. Results are shown in Table 4.

B. IMPACT OF FEATURE COMBINATION METHODS ON
MULTI-CLASSIFICATION

When DenseNet201 features were used in conjunction with
various ML models, we observed notable improvements.
All are provided in Table 5 and Fig 3. KNN and CatBoost
particularly excelled, achieving accuracies above 99%, with
near-perfect precision and recall metrics. However, CatBoost
required significantly more time (1246.11 seconds) compared
to KNN’s minimal processing time (0.02 seconds). XGBoost
and LGBM also showed strong performance, both scoring
high in accuracy and specificity. This underscores their
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robustness in handling image classification tasks, making
them suitable for applications where both accuracy and
interpretability are important. DT, with its simpler structure,
provided a solid accuracy of 93.36% and a specificity of
95%. Albeit not as high as the more complex models, its
interpretability and ease of use make it valuable for scenarios
where understanding the decision-making process is impor-
tant. RF showed improved performance over individual DT,
achieving an accuracy of 97.05% and specificity of 98%.
This enhancement is attributed to RF’s ability to reduce
overfitting, a common issue in single DT, thus improving
the robustness and generalizability of the model [43]. The
MultinomialNB and SVM models, albeit less effective
than the aforementioned models, still contributed valuable
insights. MultinomialNB, renowned for its simplicity and
efficiency in handling high-dimensional data, achieved an
accuracy of 92.11%. This suggests its potential utility in
scenarios where computational resources are limited. SVM,
renowned for its effectiveness in high-dimensional spaces,
demonstrated a commendable accuracy of 97.8%. Its ability
to find the optimal hyperplane for class separation makes it a
strong candidate for complex classification tasks, albeit with
a higher computational cost as indicated by its processing
time.

The integration of contour features with DenseNet201
resulted in consistent performance across the models, with
KNN again demonstrating exceptional accuracy and effi-
ciency, in Table 6 and Fig 4. However, SVM’s performance
strongly declined in this scenario, dropping to an accuracy
of 33.1% and an unspecified specificity, indicating a poor
fit for this combination of features. Other models like
LGBM, CatBoost, and XGBoost maintained their high
performance, showing less sensitivity to the addition of
contour features compared to SVM. DT and RF still showed
respectable results. DT’s performance was moderately effec-
tive, indicating its potential limitations in handling the
added complexity of contour features. On the other hand,
RF showed an improved accuracy over DT, benefiting
from its ensemble nature. MultinomialNB faced challenges
with the added complexity of the combined features,
resulting in less competitive performance compared to other
models. However, its computational efficiency remained an
advantage.

Incorporating histogram features with DenseNet201 sig-
nificantly boosted performance, as demonstrated in Table 7
and Fig 5. KNN achieved an impressive accuracy of
99.68% and a perfect specificity score. This combination
also enhanced the performance of the DT and RF mod-
els, increasing their accuracy and specificity compared to
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TABLE 5. Performance metrics results of DenseNet201 features in conjunction with ML models. MA (micro average), WA (weighted average).

Algorithm | Accuracy | Avg Specificity | Time (S) | Precision Recall F1-score
0.99 MA | 0.99 MA | 0.99 MA
LGBM 0.9863333 0.99 104.07 099 WA 099 WA | 099 WA
0.99 MA | 099 MA | 0.99 MA
CatBoost 0.9881666 0.99 1246.11 099 WA 099 WA | 099 WA
0.99 MA | 099 MA | 0.99 MA
XGBoost 0.9866666 0.99 84.26 0.99 WA 099 WA | 099 WA
0.99 MA | 0.99MA | 0.99 MA
KNN 0.9901666 0.99 0.01 090 WA 090 WA | 099 WA
0.93MA | 0.93MA | 0.93 MA
DT 0.9336666 0.95 30.61 093 WA 093 WA 1 093 WA
0.97MA | 097MA | 097 MA
RF 0.9705 0.98 48.75 09T WA 097 WA 1 097 WA
. 092MA | 0.92MA | 0.92MA
MultiNB 0.9211666 0.92 0.08 092 WA 097 WA | 092 WA
0.98 MA 098 MA | 0.98 MA
SVM 0.978 0.99 13.51 098 WA 093 WA | 098 WA
Algorithm Performance Comparison
1.004 B Accuracy —e— Time (5) L 102
0.98 L 102
% 0.96 1 P10t
E a
0.94 4 £ 10
L10-!
0.924
L 1071

0.90 -

CatBoost

XGBoost KNN

oT

Algorithms

Multinomial

FIGURE 3. Accuracy and time results of DenseNet201 features in conjunction with ML models.

Time (S) Log Scale

TABLE 6. Performance metrics results of DenseNet201 features integrated with contour features in conjunction with ML models. MA (micro average),

WA (weighted average).
Algorithm | Accuracy | Avg Specificity | Time (S) | Precision Recall F1-score
LGBM | 09863333 0.99 9977 | N L e
CatBoost | 0.9868333 0.99 125380 [ N | N e
XGBoost 0.9866666 0.99 83.17 ggg 1\“4/: (())gg I\V/‘l,j: 832 I\V/&lfi
KNN | 0.9901666 0.99 (YR LA MR S A ELR A
o [ | om | e [n oo
w oo | aw | e |0 LGmin oo
MultiNB 0.9198333 0.92 0.18 gg; l\v/\llﬁ 83; ]\V/\l’j: 83; ]\V/\I’i
sw | ow | wa | e o oo

using DenseNet201 features alone. The DT model notably
improved its accuracy and specificity, indicating that the
additional color textural information from histogram features
complements its decision-making process. Similarly, the RF

VOLUME 12, 2024

capitalized on
accuracy and
XGBoost, and

this combination, demonstrating enhanced
robustness compared to the DT. LGBM,
CatBoost also showed remarkable results
with the added histogram features, utilizing the additional
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FIGURE 4. Accuracy and time results of DenseNet201features integrated with contour features in
conjunction with ML models.

TABLE 7. Performance metrics results of DenseNet201 features integrated with histogram features in conjunction with ML Models. MA (micro average),

WA (weighted average).

Algorithm | Accuracy | Avg Specificity | Time (S) | Precision Recall F1-score
0.99 MA | 0.99MA | 0.99 MA
LGBM 0.9938333 0.99 117.84 099 WA T 099 WA | 099 WA
1.00MA | 1.00MA | 1.00 MA
CatBoost 0.9951666 1.00 1331.43 100 WA T00WA | T.00 WA
099MA | 0.99MA | 0.99 MA
XGBoost 0.9948333 0.99 81.79 099 WA T 099 WA | 099 WA
1.00OMA | 1.0O0MA | 1.00 MA
KNN 0.9968333 1.00 0.03 T00 WA T00WA T+ T.00 WA
095MA | 0.95MA | 0.95MA
DT 0.946 0.96 30.61 095WA T 095WA | 095 WA
098 MA | 0.98MA | 0.98 MA
RF 0.9811666 0.98 33.26 098 WA | 095 WA | 0.98 WA
. 092MA | 0.92MA | 0.92MA
MultiNB 0.9243333 0.92 0.10 092 WA T 092 WA T 092 WA
098 MA | 0.98MA | 0.98 MA
SVM 0.9781666 0.99 80.44 098 WA T 095 WA | 0.98 WA
Algorithm Performance Comparison
1.00 | ™= Accuracy —e— Tme(s) | .
0.98 1 | 102
Q
g
g 0.96 1 L 10t ;u\
a _—
w
e 3
£
L1go ©
L 10—1
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FIGURE 5. Accuracy and time results of DenseNet201features integrated with histogram features
in conjunction with ML models.

feature-rich environments. However, MultinomialNB con-
sistently underperformed across all feature sets, suggesting

color textural information to improve their classification
accuracy, demonstrating their adaptability and efficiency in
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FIGURE 6. Confusion matrix of KNN by using the integrated features of DenseNet201 with histogram features.

its limitations for complex image classification tasks in
this context. SVM showed respectable results with the
added histogram features, indicating its ability to efficiently
separate data in high-dimensional spaces, and suggesting
its potential utility in scenarios where precision is critical,
despite the computational demands.

The confusion matrices in Fig 6 display the performance
of all ML models, which combine the DenseNet201 features
with histogram features. To assess the model’s prediction
power, these matrices show their instance classification
performance across classes. The confusion matrix analysis
reveals model strengths and weaknesses, misclassification
trends, and classification approach improvements. Each
confusion matrix provides insights into the true positives,
false positives, true negatives, and false negatives for each
class.

Notably, KNN misclassifies very few instances, with
only 3 benign lung tissues misclassified as lung squamous
cell carcinomas and almost perfect classification for lung
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adenocarcinomas and lung squamous cell carcinomas. Cat-
Boost and XGBoost models are effective in classifying lung
adenocarcinomas without any error. LGBM performs well but
struggles slightly with distinguishing between benign lung
tissues and lung squamous cell carcinomas, as indicated by
15 misclassifications. Decision Tree and Naive Bayes mod-
els show significant misclassifications, especially between
benign lung tissues and lung squamous cell carcinomas, and
benign lung tissues and lung adenocarcinomas, respectively.
This suggests these models have difficulty capturing the
nuances between these classes. RF and SVM provide notable
misclassifications in some areas, such as benign lung tissues
being misclassified as lung squamous cell carcinomas.

The combined performance of these models, when used in
conjunction with the features of DenseNet201, underscores
the significance of integrating various types of FE methods
and selecting the algorithm that is the most appropriate
based on the specific requirements of the task. These
requirements include accuracy, specificity, computational
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TABLE 8. Performance metrics results of DenseNet201 features integrated with histogram features for binary classification lung benign vs. lung

adenocarcinoma. MA (micro average), WA (weighted average).

Algorithm | Accuracy | Avg Specificity | Time (S) | Precision Recall F1-score
1.00 MA 1.00MA | 1.00 MA
LGBM 0.999 1.00 32.34 100 WA T00WA | T.00 WA
1.00 MA 1.00 MA | 1.00 MA
CatBoost 0.9997 1.00 526.74 T00 WA T00WA 1 T.00 WA
1.00 MA 1.00MA | 1.00 MA
XGBoost 0.999 1.00 9.74 100 WA 100 WA 100 WA
1.00 MA 1.00MA | 1.00 MA
KNN 0.9987 1.00 0.01 T00 WA T00WA 1 1700 WA
0.99 MA | 0.99 MA | 0.99 MA
DT 0.994 0.99 632 —599WA [ 099 WA | 009 WA
1.00 MA 1.00MA | 1.00 MA
RF 0.999 1.00 12.79 100 WA T00WA | T.00 WA
. 0.99 MA | 0.99 MA | 0.99 MA
MultiNB 0.99175 0.99 0.07 090 WA 099 WA 1099 WA
1.00 MA 1.00MA | 1.00 MA
SVM 0.9985 0.99 276 1.00 WA 1.00 WA | 1.00 WA
Algorithm Performance Comparison
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1.001
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Flot 2
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FIGURE 7. Accuracy and time of (DenseNet201 + histogram)features for binary classification lung

benign vs. lung adenocarcinoma.

efficiency, and interpretability. The diversity in the capa-
bilities of the algorithms provides a solid framework for
solving the problems of LC image classification. Along
with this, it offers several solutions to fit a wide range of
clinical and research requirements. The results additionally
underscore the potential of ML to improve the early
detection of LC. The high accuracy and specificity achieved
by our models, especially when utilizing DenseNet201
combined with histogram features, suggest that Al-driven
approaches can significantly enhance the precision of LC
diagnostics.

C. DENSENET201 FEATURES WITH HISTOGRAM
FEATURES IMPACT ON BINARY CLASSIFICATION

In addition to multi-class classification, we conducted
binary classification tasks to differentiate between spe-
cific LC subtypes and benign lung tissues. This aimed
to refine our understanding of these subtypes’ unique
characteristics.
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1) LUNG BENIGN VS. LUNG ADENOCARCINOMA

In this classification task, most models achieved near-perfect
performance metrics. Notably, KNN, LGBM, and CatBoost
showed exceptional accuracy, specificity, and F1-scores, all
reaching or exceeding 99.8%. CatBoost demonstrated the
highest accuracy of 99.97% but required longer computation
time (526.74 seconds). In contrast, KNN maintained its
efficiency with an execution time of only 0.01 seconds.
Results are demonstrated in Table 8 and Fig 7.

2) LUNG BENIGN VS. LUNG SQUAMOUS CELL CARCINOMA
In Table 9 and Fig 8, the results were even more remarkable
in this classification scenario. All models, including KNN,
LGBM, CatBoost, XGBoost, DT, RF, MultinomialNB, and
SVM, achieved perfect accuracy and specificity scores of
100%. This demonstrates the unique ability of the models,
especially when combined with DenseNet201 with histogram
features, to distinguish benign lung tissue from squamous cell
carcinoma.
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TABLE 9. Performance metrics results of DenseNet201 features integrated with histogram features for binary classification lung benign vs. lung
squamous cell carcinoma. MA (micro average), WA (weighted average).

Algorithm | Accuracy | Avg Specificity | Time (S) | Precision Recall F1-score
1.00MA | 1.00MA | 1.00 MA
LGBM 0.999 1.00 47.25 100 WA 100 WA | T.00 WA
1.O0MA | 1.00 MA | 1.00 MA
CatBoost 1.0 1.00 528.88 00 WA T00WA | T.00 WA
1.00 MA | 1.00MA | 1.00 MA
XGBoost 10 1.00 789 T00WA | TOOWA | T.OOWA
1.00MA | 1.00MA | 1.00 MA
KNN 1.0 1.00 0.01 1.00 WA 1.00 WA | 1.00 WA
1.00 MA | 1.00MA | 1.00 MA
DT 10 100 293 T00WA | TOOWA | T.OOWA
1.00MA | 1.00MA | 1.00 MA
RF 1.0 1.00 6.72 1.00 WA 1.00 WA | 1.00 WA
. 1.00MA | 1.00 MA | 1.00 MA
MultiNB 10 1.00 007 T00WA | TOOWA | T.OOWA
1.00MA | 1.00MA | 1.00 MA
SVM 10 1.00 1.38 1.00 WA 1.00 WA | 1.00 WA
Algorithm Performance Comparison
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FIGURE 8. Accuracy and time of (DenseNet201 + histogram) features for binary classification lung
benign vs. lung squamous cell carcinoma.

TABLE 10. Performance metrics results of DenseNet201 features integrated with histogram features for binary classification lung adenocarcinoma vs.

lung squamous cell carcinoma. MA (micro average), WA (weighted average).

Algorithm | Accuracy | Avg Specificity | Time (S) | Precision Recall F1-score
LoeM | o0g% 09 | % | Toswa | 099WA | 0%0WA
CatBoost 0.99325 0.99 598.76 823 1\\?/\[’2 ggg 1\\;\[,2 823 1\\;[/2
XGBoost | 09895 0.99 35 [ e
KW | ossezs | 099 D02 o5 WA 09 WA | 099 WA
br | ooy | 02 | 319 |GowaoorwA [09WA
RE | 0w | 098 | 201 orwa | oosWA | 0oRWA
MultiNB 0.89325 0.89 0.12 82833 1\\;‘[,2 ggg 1\\:\[,2 823 1\\;[,2
s | | ow | o oo

3) LUNG ADENOCARCINOMA VS. LUNG SQUAMOUS CELL

CARCINOMA

From Table 10 and Fig 9, differentiating between adenocar-
cinoma and squamous cell carcinoma posed a slightly greater
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challenge. However, the models still performed admirably,
with CatBoost leading at 99.32% accuracy. KNN, LGBM,
and XGBoost also showcased high accuracy above 98.6%.
DTs and MultinomialNB, albeit less accurate than other
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FIGURE 9. Accuracy and time of (DenseNet201 + histogram) features for binary classification lung

adenocarcinoma vs. lung squamous cell carcinoma.

models, still offered valuable insights with accuracies above
89%.

The binary classification results emphasize the nuanced
capabilities of these models in discerning between specific
LC types and benign conditions. The consistently high
performance across various models, especially in the benign
vs. adenocarcinoma and benign vs. squamous cell carcinoma
tasks, demonstrates the potential of ML algorithms in highly
specific and accurate LC diagnosis. The relative decrease
in performance in distinguishing between adenocarcinoma
and squamous cell carcinoma underscores the complexity of
this task. Nevertheless, the models, particularly CatBoost,
managed to maintain high accuracy levels, reinforcing the
efficacy of the chosen FE methods. All that marks a
significant step towards Al-assisted diagnostics in oncology.

D. DATA VISUALIZATION

The scatter plot in Fig 10, shows the dataset projected onto
the principal components Analysis (PCA). PCA reduces the
dimensionality of the data by finding the axes along which
the variance is maximized. Remember, reducing dimensions
might oversimplify the dataset, and important features might
be lost in this reduction, which may not capture the full
complexity of the data. In this plot, the 3D PCA represent the
directions in the dataset that account for the most variance.
The distribution of points gives insights into the separability
of the data. This can partly explain why certain algorithms,
like KNN, performed well if they are effectively capturing
these separable structures in higher-dimensional space. The
first three principal components together capture about 34.3%
of the total variance in the data, with the first component
accounts for approximately 21.3%, the second component for
about 7.1%, and the third component adds another 5.9%. This
indicates that while these components reveal some structure
in the data, a significant portion of the variance (over 65.7%)
is not captured in this three-dimensional representation.
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For a detailed analysis of cluster formation and overlap,
we typically rely on visual inspection. The moderate level
of variance captured suggests that while PCA provides some
insights, other components (not visualized here) might also
contain important information for classification. The clusters
appear distinct, it may indicate that the categories are well-
separated in the feature space, potentially explaining the good
performance of KNN, which performs well when similar
instances are closer together in the feature space.

E. METHODOLOGY VALIDATION ACROSS DIFFERENT
DATASET

In order to assess the versatility and generalizability of our
ML algorithms, we extended our analysis to another crucial
area in oncology: breast cancer. Utilizing the BreakHis
dataset, which consists small number of histopathological
images, we explored the performance of the same set of
algorithms that were applied to the LC dataset. This cross-
application aims to understand how well the methodologies
and insights gleaned from LC classification can be transferred
to another context within oncology. Utilizing the same
DenseNet201 + Histogram FE method as used in our LC
data. We conducted binary classifications to distinguish
between malignant and benign breast cancer cases. Below
are the summarized results of each algorithm’s performance
on this dataset: KNN demonstrated high accuracy and
specificity, with minimal processing time, reinforcing its
efficiency and effectiveness in image classification tasks
across different cancer types. LGBM matched KNN in
accuracy and specificity, albeit with a longer processing
time, underscoring its robustness in handling complex image
data. XGBoost equaled KNN and LGBM in accuracy and
specificity, indicating its strong adaptability and efficiency in
diverse medical imaging contexts. CatBoost showed slightly
lower accuracy compared to KNN, LGBM, and XGBoost but
with substantially higher computational demands, suggesting
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FIGURE 10. Multiple perspectives of 3D PCA data visualization scatter plot obtained from the extracted features of the
model.

TABLE 11. The performance metrics results of DenseNet201 features integrated with histogram features for binary classification breast cancer. MA (micro
average), WA (weighted average).

Algorithm | Accuracy | Specificity | Time (S) | Precision Recall F1-score
LGBM | 0.948087 0.94 3573 |ogaia D9 NA | 0ot MA
CatBoost | 0.939890 0.94 66767 [ O O e
XGBoost | 0.948087 0.94 0.6 [ OSIMA | DI NR | 0ot NA
KNN | 0948087 0.96 002 L s
o Lo | we | v |4 b o
o Lo | on | en i e oo
MultiNB | 0.860655 0.84 005 | DSENA L DSINA | DS NA
TECECEETE:

a trade-off between performance and efficiency. DT, while particularly in scenarios where rapid results are essential.
less accurate and specific than other models, its faster RF Exhibited improved accuracy and specificity over DT.
execution time and interpretability remain advantageous, MultinomialNB although had the lowest accuracy and
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TABLE 12. Comparative result of the proposed method with other related works.

Work Year Accuracy Model
[13] 2022 98.60% DenseNet121 FE + RF
[20] 2022 98.4% AlexNet CNN+ Histogram Equalization
[21] 2020 97.92% shallow CNN
[22] 2022 97.11% Customized CNN
[23] 2022 94.42% XGBoost
[24] 2023 89% Multi-level CNN
[25] 2023 91.57% GWO FE + IWO Feature Selection + hyperparameter tuning RAdam + DT
[26] 2023 98.9% HOG FE + hyperparameter tuning GAO + IGNN
Proposed Model | 2024 | 99.68333% DenseNet201 + Color Histogram + KNN

specificity, its extremely quick execution time positions it
as a viable option in resource-constrained settings. SVM
presented respectable accuracy and specificity, with moderate
computational demands, highlighting its potential in high-
dimensional data scenarios where precision is paramount.
The findings on the various performance measures in
clinical and research contexts, in particular, demonstrate how
adaptable and versatile our chosen ML classifiers are when
it comes to dealing with the different types of cancer. KNN,
LGBM, and XGBoost have all demonstrated consistently
good performance across both datasets, which shows that
these algorithms have great promise in a wide range of
histopathological image classification tasks.

IV. DISCUSSION

The study discusses the use of advanced Al methodologies
fusion for the analysis of histopathological images in the
context of early detection and classification of LC. The
significant findings offer a promising direction due to the high
mortality rate and challenges in the early diagnosis of LC. The
study highlights the performance of ML models, specifically
KNN, CatBoost, XGBoost, and LGBM, in multi-class and
binary classification tasks. It emphasizes the importance of
algorithm selection based on requirements such as accuracy,
specificity, and computational efficiency. For instance, KNN
demonstrates high accuracy and efficiency in both multi-class
and binary classification tasks with minimal misclassifica-
tion, making it suitable for real-time applications prioritizing
accuracy and speed. On the other hand, CatBoost and
XGBoost exhibit high accuracy despite longer computation
times, indicating its potential for scenarios where precision
is paramount. For applications where prediction time can
be longer, and the focus is on minimizing false positives,
CatBoost or XGBoost may be preferred. Decision Tree,
Naive Bayes, Random Forest, and SVM models show lower
performance compared to KNN, CatBoost, and XGBoost,
especially in terms of misclassification rates and, for some,
in computational efficiency. The study demonstrates the value
of integrating DenseNet201 with contour and histogram
features, highlighting the benefits of combining different
types of FE methods to enhance the power of classifiers. This
hybrid approach shows promise in advancing the precision of
LC diagnostics. The findings also reveal a trade-off between
computational efficiency and classification accuracy. The
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use of models like CatBoost, while offering high accuracy,
comes with the trade-off of longer computational times,
emphasizing the need for optimization strategies in real-
world applications where both accuracy and efficiency
are crucial. Additionally, the challenges in distinguishing
between adenocarcinoma and squamous cell carcinoma in LC
subtypes reveal the complexity inherent in their classification,
highlighting the necessity for further research to refine
algorithms and FE methods for more nuanced differentiation.

The study compares the proposed model with other state-
of-the-art studies in classifying LC histopathological images,
as shown in Table 12. The presented model stands out with
an impressive accuracy of 99.68%, surpassing other models.
This superior performance is credited to the effective com-
bination of advanced FE using DenseNet201 and the robust
classification capabilities of KNN. This combination not only
boosts the model’s accuracy but also ensures computational
efficiency. Unlike other methods, such as AlexNet CNN with
Histogram Equalization or DenseNet121 FE with RF, the
model shows an improvement in accuracy, showcasing the
effectiveness of our hybrid FE method. This study introduces
a novel approach by integrating DenseNet201 with color
histogram features, a method not explored in the referenced
studies. This innovation enhances the model’s ability to detect
subtle variations in histopathological images, which is crucial
for the early detection of LC.

A. RESEARCH GAP, LIMITATIONS, AND FUTURE WORK
This research tackles a significant gap in the current scholarly
discussion on the precision and speed of lung cancer (LC)
diagnosis through histopathological images. Despite progress
in diagnostic technologies, the issue of quickly and pre-
cisely identifying lung adenocarcinomas, lung squamous cell
carcinomas, and non-cancerous lung tissues with minimal
manual oversight remains unresolved. The study employs
DenseNet201, color histogram methods, and various machine
learning (ML) techniques to improve diagnostic capabilities,
addressing an important gap in automated image-based
cancer detection.

Nonetheless, the methodology presented is not flawless.
The LC25000 dataset, while extensive, might not capture the
full range of variability seen in wider clinical environments.
Depending on this dataset could raise questions about the
applicability of the results in various imaging scenarios. This
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reliance poses a risk of selection bias, given the dataset
may not adequately reflect the range of LC histopathologies
seen in medical practice. The performance metrics of the
algorithms, are particular to the datasets utilized, and the
extension of these findings to different cancers or their
subtypes requires further verification.

To overcome these shortcomings, future research should
aim to diversify the dataset to encompass a wider array of
histopathological images. This would help reduce selection
bias and strengthen the model’s robustness. Moreover,
investigating different data augmentation methods could
decrease processing time, enhancing feasibility for real-time
clinical use. Implementing different image preprocessing
can lessen the influence of image quality on the out-
comes. Employing feature selection techniques to focus
on the most relevant features could refine the model,
boosting both its effectiveness and efficiency. Utilizing
image segmentation to more accurately target areas of
interest in the images could improve the model’s ability to
identify subtle indicators of cancer. Investigating the use of
advanced FE methods might lead to a greater sensitivity
in detecting complex patterns in histopathological images.
These improvements are crucial for increasing the diagnostic
precision and clinical utility of ML models in LC diagnosis,
ensuring they fulfill the stringent requirements of medical
practice.

V. CONCLUSION

The presented research aimed to improve the early detection
and classification of lung cancer (LC) by using advanced Al
methodologies. It combined DenseNet201 for deep feature
extraction (FE) with color histogram features and analyzed
them using various machine learning (ML) algorithms,
particularly KNN, which showed exceptional performance.
Our model, tested on the LC25000 dataset, achieved a
remarkable accuracy of 99.68%, outperforming state-of-the-
art models. This high accuracy is crucial due to the high
mortality rate and the challenges in the early diagnosis of
LC. The study also highlights the importance of selecting the
right algorithm for specific needs, such as KNN for real-time
applications due to its efficiency and accuracy and CatBoost
for accurate applications despite longer computation periods.
Furthermore, the integration of multiple FE approaches not
only improved classifier discrimination but also showed
adaptability to other cancers, as demonstrated by its appli-
cation to the BreakHis dataset of histopathological images
for breast cancer. This suggests its potential for use in other
critical areas of oncology. It clearly recognizes the trade-
offs between computational efficiency and classification
accuracy and the difficulties of classifying LC subtypes. This
emphasizes the need to optimize and develop algorithms and
FE approaches.

Our paper introduces LC diagnosis in a novel way, promis-
ing the future of Al-driven oncology diagnostics. It opens
new research and development options, especially for more
delicate and effective cancer diagnosis and classification.
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As we grow in this discipline, data scientists, medical
specialists, and oncologists must collaborate to translate
technical advances into therapeutic applications.
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