
Received 16 April 2024, accepted 26 April 2024, date of publication 6 May 2024, date of current version 17 May 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3396908

Parameter Selection Impacting Software
Reliability by Utilizing WASPAS
Technique Based on Tangent
Trigonometric Complex
Fuzzy Aggregation
Operators
FARHAN MATEEN KHAN 1, ASIM MUNIR1, MAJED ALBAITY 2, AND TAHIR MAHMOOD 3
1Department of Computer Science and Software Engineering, International Islamic University Islamabad, Islamabad 44000, Pakistan
2Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 22254, Saudi Arabia
3Department of Mathematics and Statistics, International Islamic University Islamabad, Islamabad 44000, Pakistan

Corresponding author: Tahir Mahmood (tahirbakhat@iiu.edu.pk)

ABSTRACT Software reliability is a paramount quality attribute that manifests itself in the likelihood of
failure-free operation. The development of systems with growing complexity complicates the assessment
and enhancement of reliability owing to technical and managerial factors. The vague concept of fuzzy sets
and their generalizations have been useful since they can be applied to dealing with imprecise and unreliable
information. To overcome the issues of software reliability and the complex, ambiguous nature of information
parameters, this paper suggests a new way to use the fuzzy complex set in addition to multi-criteria decision-
making to analyze the effect of various software parameters. The investigation starts by explaining the
concept of the tangent trigonometric complex fuzzy set and the operations connected with it. Then, it gives
the aggregation operators in the complex fuzzy sets, including the tangent trigonometric complex fuzzy
weighted averaging and the tangent trigonometric complex fuzzy weighted geometric operators with their
basic properties. Consequently, we apply the obtained operators to a multi-criteria decision-making method
called the ‘‘Weighted Aggregated Sum Product Assessment’’ in the context of complex fuzzy sets. Next,
we go into details of the proposed technique by taking a case study of a ‘‘Parameter Selection Impacting
Software Reliability’’. Furthermore, the study analyzes the given approach with other existing theories to
show the benefits and superiority of the newly developed approach. This paper provides a detailed and
original approach that combines complex fuzzy sets of and multi-criteria decision-making methods in order
to overcome the obstacles of software reliability evaluation in the presence of complex and ambiguous
information.

INDEX TERMS Software reliability, complex fuzzy set, tangent trigonometric complex fuzzy aggregation
operators, WASPAS technique.

I. INTRODUCTION
Software reliability is an important quality attribute that
reflects the possibility of failure-free operation of a software
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system for a specified period. As software systems grow
larger and more complex, assessing and improving relia-
bility has become a significant challenge. It includes the
system’s capacity to work as intended, free from glitches,
failures, and unanticipated crashes. Attaining high software
dependability is essential for guaranteeing user contentment,
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preserving company continuity, and preserving the software
provider’s reputation. It has a direct effect on user experi-
ence, and operational effectiveness, and may even have a
big influence on safety-critical systems like transportation or
medical devices. When it comes to software dependability,
parameter selection is carefully selecting and configuring the
different measurements, thresholds, and criteria that are used
to evaluate and quantify a software system’s reliability. These
characteristics may include things like availability, fault tol-
erance, failure rates, mean time to failure (MTTF), and mean
time between failures (MTBF), among other things. The sig-
nificance of parameter selection stems from its direct impact
on the assessment, forecasting, and, eventually, enhancement
of dependability.

A thorough grasp of the software’s design, intended usage,
operating environment, user expectations, and past failure
or error statistics are all necessary for choosing the right
parameters. Parameter selection errors can result in deceptive
reliability evaluations, which can underestimate or overes-
timate the system’s real performance. For example, if the
parameters are set too loosely, they may not appropriately
account for probable failures that result from the system’s vul-
nerabilities. On the other hand, too strict specifications may
cause the system to perform poorly or incorrectly indicating
frequent failures while the system is operating within reason-
able bounds. Thus, careful parameter selection is essential to
software reliability engineering as it serves as the foundation
for test design, enhancement implementation, and software
robustness assessment. A well-considered choice of param-
eters leads to more accurate dependability forecasts, aids
in finding weak places in the system, and directs efforts to
improve the software’s resilience and dependability, all of
which contribute to more dependable and trustworthy soft-
ware output.

MCDM refers to making choices in the presence of multi-
ple, and often competing, decision criteria. MCDM provides
a structured framework for considering the trade-offs between
criteria like cost, quality, risk, and performance when mak-
ing complex decisions. The key steps in MCDM involve
determining the relevant criteria, weighing their importance,
scoring alternatives, and applying decision rules to find the
optimal choice. MCDM models, such as the analytical hier-
archy process, have become invaluable decision-aiding tools
across domains like business, engineering, healthcare, and
public policy. By incorporating both quantitative and qual-
itative factors into the decision process, MCDM allows for
more informed, thorough, and justifiable decision-making.
It brings rigor and rationality to decisions that must bal-
ance multiple competing objectives. With many real-world
decisions involving selection among alternatives with mul-
tiple attributes, MCDM provides an essential methodology
for identifying the optimal choice while considering the
nuanced priorities and preferences of stakeholders. The field
of operations research gave rise to MCDM. After continuous
evolution and development, material science [1], energy [2],
geography [3], management science [4], environmental

science [5], mathematics [6], information and computer sci-
ence [7], etc. have all made extensive use of MCDM.

Fuzzy set [8] theorymodels vagueness and imprecise infor-
mation using partial membership values between 0 and 1.
Elements have a degree of belonging to fuzzy sets, unlike
the crisp binary membership of classical sets. Fuzzy sets
use membership functions to map elements to grades of
membership representing vagueness or ambiguity about class
boundaries. Fuzzy MCDM is an approach for handling
decisions with multiple criteria under uncertainty. It com-
bines FS theory with traditional MCDM methods to enable
decision-making where the goals, constraints, and conse-
quences are vague or imprecise. This allows for capturing
the inherent ambiguity and subjectivity in many real-world
decision problems. In a decision-making situation involving
many information sources, Dursun and Karsak [9] suggested
managing information appraised using both linguistic and
numerical scales. Wu et al. [10] introduced the fuzzyMCDM
approach for assessing banking performance based on Bal-
anced Scorecard. Chu and Lin [11] propose an addition to
the fuzzy MCDM model in which the importance weights of
each criterion and the ratings of alternatives against criteria
are evaluated in terms of linguistic values represented by
fuzzy numbers. Airline service quality is a mixture of many
different factors, many of which are intangible and challeng-
ing to quantify. To address this problem, fuzzy MCDM was
introduced into performance evaluation by Tsaur et al. [12].
A different method, the non-additive fuzzy integral, was pro-
posed by Chiou et al. [13] to handle the evaluation of fuzzy
MCDM problems, especially when there are dependencies
among the criteria taken into consideration. The creation of a
fuzzy decision support system using a multi-criteria analysis
technique is described by Chen et al. [14] as a means of
choosing the best plan options or strategies in an environment
watershed.

In various real-life dilemmas, there is always a need for
extra fuzzy information, to overcome this, Ramot et al. [15]
originated the theory of complex fuzzy set (CFS) in the
polar framework. In this notion, the degree of belonging
contains amplitude and phase terms which are placed in a
unit circle of a complex plane. After that, Tamir et al. [16]
deduced another theory of CFS in a cartesian framework,
where each degree of belonging contains real and unreal
parts which are placed in unit squares of a complex plane.
CFS can be applied to model more complicated inter-
actions and uncertainties in various domains, including
artificial intelligence, control systems, pattern recognition,
and decision-making. It’s essential to remember that, in con-
trast to FS, working with CFS may require more intricate
computations, and their use may necessitate a deep under-
standing of fuzzy logic and associated concepts. Sobhi and
Dick’s [17] study on CFS for massive learning was presented.
Bi et al. [18] developed entropy measurements for CFS,
while Luqman et al. [19] identified a hypergraph. CF mor-
phisms were covered by Imtiaz et al. [20]. Rehman [21]
devised certain AOs for CFSs.
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Software reliability is critical for quality and dependability.
However, it is impacted by many technical and manage-
rial parameters related to software development, making
it difficult to analyze and optimize. Subjective and qual-
itative factors also affect reliability measurement, adding
uncertainty. Existing reliability models using statistical dis-
tributions have limitations in handling real-world complexity.
Fuzzy set techniques can address uncertainty but lack multi-
dimensionalmodeling capabilities. This research ismotivated
by the need for a comprehensive methodology to assess
the influence of different software parameters on reliability
under uncertainty. CFS can capture nonlinear interactions
between decision variables better than traditional fuzzy sets.
Integrating complex fuzzy numbers with MCDM provides
a promising approach to evaluating alternatives and making
optimal choices for maximizing reliability. The proposed
technique will enhance decision support during software
design and development by consolidating the multiple factors
affecting reliability into a single analysis framework. This
can guide effective parameter selection to improve software
reliability based on quantitative data as well as qualitative
insights. The flowchart of the research methodology is shown
in Figure 1.

The rest of the manuscript is organized as: In Section II,
we review basic notions such as FS, CFS, and linked prop-
erties of CFSs. In Section III, we first develop the notion of
TTCFN and then devise some elementary operational laws.
In Section IV, we propose aggregation operators in the set-
ting of CFS such as TTCFWA and TTCFWG, and indicate
their properties. In Section V, we devise the concept of the
WASPAS technique in the setting of CFS. Section VI, con-
tains the results and discussion, and Section VII contains the
comparative analysis. The concluding remarks are devised in
Section 8. The flow chart of the section-wise study is given
in Figure 2.

II. PRELIMINARIES
To make the manuscript self-contained this section is ded-
icated to the basic view of FS, CFS, and linked properties
of CFS.
Definition 1 [8]: A FS is a mathematical structure UFS ={
x, δUFS (x) : x∈X

}
, where, the degree of belonging is placed

in [0, 1] and identified by δUFS (x).
Definition 2 [16]: A CFS is a mathematical structure

UCFS =
{
x, δUCFS (x) : x∈X

}
=
{
x, δRUCFS (x) + ι δIUCFS (x) :

x∈X
}
, where degree of belonging δUCFS (x) has real part

δRUCFS (x) and unreal part δIUCFS (x) and placed in complex
plane’s unit square. The CF number (CFN) would be dis-
closed as

UCFS =
(
δUCFS

)
=

(
δRUCFS (x) + ι δIUCFS

)
Definition 3 [21]: Let two CFNs UCFS−1 =

(
δUCFS−1

)
=(

δRUCFS−1
+ ι δIUCFS−1

)
and UCFS−2 =

(
δUCFS−2

)
=
(
δRUCFS−2

+

ι δIUCFS−2

)
and w≥0, then

FIGURE 1. The flowchart of research methodology.

FIGURE 2. The flowchart of the section-wise study.

1. UCFS−1 ⊕ UCFS−2

=

(δRUCFS−1
+ δRUCFS−2

−

(
δRUCFS−1

δRUCFS−2

))
+ι(δIUCFS−1

+ δIUCFS−2
−

(
δIUCFS−1

δIUCFS−2

)
2. UCFS−1 ⊗ UCFS−2 =

(
δRUCFS−1

δRUCFS−2

+ι δIUCFS−1
δIUCFS−2

)

3. wUCFS−1 =

 (
1 −

(
1 − δRUCFS−1

))w
+ι
(
1 −

(
1 − δIUCFS−1

))w
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4. Uw
CFS−1 =

((
δRUw

CFS−1

)
+ ι

(
δRUw

CFS−1

))
Definition 4 [21]: For UCFS = δUCFS =

(
δRUCFS (x) +

ι δIUCFS

)
the score and accuracy functions are defined as

follows

‘̃Y (UCFS ) = δRUCFS − δIUCFS, ‘̃Y (UCFS )∈ [−1, 1] (1)

’̃H (UCFS ) =
δRUCFS + δIUCFS,

2
’̃H (UCFS )∈ [0, 1] (2)

From Eq. (1) and (2), we have
1. If ‘̃Y (UCFS−1) < ‘̃Y (UCFS−2) then UCFS−1 < UCFS−2
2. If ‘̃Y (UCFS−1) > ‘̃Y (UCFS−2) then UCFS−1 > UCFS−2
3. If ‘̃Y (UCFS−1) = ‘̃Y (UCFS−2) then we have UCFS−1 =

UCFS−2

i. If ’̃H (UCFS−1) < ’̃H (UCFS−2) then UCFS−1 <

UCFS−2

ii. If ’̃H (UCFS−1) > ’̃H (UCFS−2) then UCFS−1 >

UCFS−2

iii. If ’̃H (UCFS−1) = ’̃H (UCFS−2) then UCFS−1 =

UCFS−2

III. TTCFN OPERATIONAL LAWS
In this section, we first develop the notion of TTCFN and then
devise some elementary operational laws.
Definition 5: Set CFN as UCFS =

(
δUCFS

)
=
(
δRUCFS (x) +

ι δIUCFS

)
then TTCFN is defined as follows:

tan (UCFS) =

(
tan

(π

4
δRUCFS

)
+ ι tan

(π

4
δIUCFS

))
Observed that the real and unreal parts of the degree of
belonging are given as

tan
(π

4
δRUCFS

)
: Y → [0, 1] , tan

(π

4
δIUCFS

)
: Y → [0, 1]

Then, tan (UCFS) is named the tangent trigonometric operator
and its value is TTCFN.
Definition 6: Set two TTCFNs as tan (UCFS−1) =(
tan

(
π
4 δRUCFS−1

)
+ ι tan

(
π
4 δIUCFS−1

))
and tan (UCFS−2) =(

tan
(

π
4 δRUCFS−2

)
+ ι tan

(
π
4 δIUCFS−2

))
then their operational

law is defined as:
1. tan (UCFS−1) ⊕ tan (UCFS−2)

=


(
1 − tan

(π

4
δRUCFS−1

)) (
1 − tan

(π

4
δRUCFS−2

))
+ι
(
1 − tan

(π

4
δIUCFS−1

)) (
1 − tan

(π

4
δIUCFS−2

))


2. tan (UCFS−1) ⊗ tan (UCFS−2)

=


(
tan

(π

4
δRUCFS−1

)) (
tan

(π

4
δRUCFS−2

))
+ι
(
tan

(π

4
δIUCFS−1

)) (
tan

(π

4
δIUCFS−2

))


3. w.tan (UCFS−1) =

 1 −

(
1 − tan

(π

4
δRUCFS−1

))w
+ι
(
1 −

(
1 − tan

(π

4
δIUCFS−1

))w)


4. (tan (UCFS−1))
w

=


(
tan

(π

4
δRUCFS−1

))w
+ι
(
tan

(π

4
δIUCFS−1

))w


IV. TANGENT TRIGONOMETRIC COMPLEX FUZZY
AGGREGATION OPERATORS
This section proposes aggregation operators in the setting
of CFS such as TTCFWA and TTCFWGand indicates their
properties.
Definition 7: Let UCFS−g =

(
δRUCFS−g

+ ι δIUCFS−g

)
where

(g = 1, 2, . . . , n) be a collection of CFNs and W =

(w1,w2, . . . ,wn) be a weight vector with wg∈ [0, 1] and∑n
g=1 wg = 1. A TTCFWA operator is developed as

TTCFWA (UCFS−1,UCFS−2, . . . , UCFS−n)

=

n
⊕

g = 1
wg
(
tan

(
UCFS−g

))
Theorem 1: Set UCFS−g =

(
δRUCFS−g

+ ι δIUCFS−g

)
where

(g = 1, 2, . . . , n) as a collection of CFNs, then the value
after using TTCFWA is again a CFN i.e.,

TTCFWA
(
UCFS−1,UCFS−2 . . . . . . UCFS−g

)

=


1 −

n∏
g=1

(
1 − tan

(π

4

(
δRUCFS−g

)))wg
+ι

1 −

n∏
g=1

(
1 − tan

(π

4

(
δIUCFS−g

)))wg

 (3)

Proof: We can verify this Theorem 1 in view of the
mathematical induction for n = 2 we obtain the operational
result:

TTCFWA
(
δUCFS−1 , δUCFS−2

)
=

2
⊕

g = 1
wg
(
tan

(
UCFS−g

))
= w1 (tan (UCFS−1)) ⊕ w2 (tan (UCFS−2))

=



 1 −

(
1 − tan

(π

4

(
δRUCFS−1

)))w1

+ι
(
1 −

(
1 − tan

(π

4

(
δIUCFS−1

)))w1
)


⊕

 1 −

(
1 − tan

(π

4

(
δRUCFS−2

)))w2

+ι
(
1 −

(
1 − tan

(π

4

(
δIUCFS−2

)))w2
)




=


1 −

2∏
g=1

(
1 − tan

(π

4

(
δRUCFS−g

)))wg
+ ι

1 −

2∏
g=1

(
1 − tan

(π

4

(
δIUCFS−g

)))wg



Assume that Eq. (3) holds for n = p as follows:

TTCFWA
(
UCFS−1,UCFS−2 . . . . . . UCFS−p

)
=

p
⊕

g = 1
wg
(
tan

(
UCFS−g

))
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=


1 −

p∏
g=1

(
1 − tan

(π

4

(
δRUCFS−g

)))wg
+ι

1 −

p∏
g=1

(
1 − tan

(π

4

(
δIUCFS−g

)))wg


For n = p+ 1 we have the following results:

TTCFWA
(
UCFS−1,UCFS−2 . . . . . . UCFS−p , UCFS−p+1

)
=

p
⊕

g = 1
wg
(
tan

(
UCFS−g

))
⊕ wp+1

(
tan

(
UCFS−p+1

))

=




1 −

p∏
g=1

(
1 − tan

(π

4

(
δRUCFS−g

)))wg
+ι

1 −

p∏
g=1

(
1 − tan

(π

4

(
δIUCFS−g

)))wg


⊕

 1 −

(
1 − tan

(π

4

(
δRUCFS−p+1

)))w1

+ι
(
1 −

(
1 − tan

(π

4

(
δIUCFS−p+1

)))w1
)



=


1 −

p+1∏
g=1

(
1 − tan

(π

4

(
δRUCFS−g

)))wg
+ι

1 −

p+1∏
g=1

(
1 − tan

(π

4

(
δIUCFS−g

)))wg


Thus Eq. (03) can hold for n = p+ 1 and it can be held for

any value of n. Hence, the proof is finished.
Theorem 2: The proposed TTCFWA operator contains the

underneath properties based on the tangent trigonometric
function

[1] Idempotency: set UCFS−g =

(
δRUCFS−g

+ ιδIUCFS−g

)
=(

δRUCFS + ι δIUCFS

)
= UCFS where (g = 1, 2, . . . , n)

there is

TTCFWA
(
UCFS−1, UCFS−2, . . .UCFS−g

)
= tan(UCFS )

[2] Boundedness: Set U+

CFS = max
g

(
δRUCFS−g

)
+

ιmax
g

(
δIUCFS−g

)
and U−

CFS = min
g

(
δRUCFS−g

)
+

ιmin
g

(
δIUCFS−g

)
, then, there is

tan(U−

CFS )≤ TTCFWA
(
UCFS−g

)
≤ tan(U+

CFS )

[3] Monotonicity: Set UCFS = (δRUCFS + ι δIUCFS ) and

U∗
CFS =

(
δRU∗

CFS
+ ι δIU∗

CFS

)
where (g = 1, 2, . . . , n) are

two groups of CFS. Then

TTCFWA
(
UCFS−1, UCFS−2, . . .UCFS−g

)
≤ TTCFWA

(
U∗

CFS−1, U
∗

CFS−2, . . .U∗
CFS−n

)
exist, when

UCFS−g≤U∗
CFS−g

Proof:
[1] For UCFS−g = UCFS , we obtain

TTCFWA
(
UCFS−1, UCFS−2, . . .UCFS−g

)
=

n
⊕

g = 1
wg (tan (UCFS))

=


1 −

n∏
g=1

(
1 − tan

(π

4

(
δRUCFS−g

)))wg
+ ι

1 −

n∏
g=1

(
1 − tan

(π

4

(
δIUCFS−g

)))wg



=

 1 −

(
1 − tan

(π

4

(
δRUCFS−g

)))∑n
g=1 wg

+ι

(
1 −

(
1 − tan

(π

4

(
δIUCFS−g

)))∑n
g=1 wg

)


=

 tan
(π

4

(
δRUCFS−g

))
+ι tan

(π

4

(
δIUCFS−g

))


= tanUCFS

[2] When U−

CFS≤UCFS−g≤U
+

CFS , tan
(
U−

CFS

)
≤ tan(

UCFS−g
)
≤ tan

(
U+

CFS

)
exist since tan (x) for 0≤x≤π/4

is an increasing function. Then, there is also

n
⊕

g = 1
wg tan

(
U−

CFS

)

≤

n
⊕

g = 1
wg tan

(
UCFS−g

)
≤

n
⊕

g = 1
wg(tan

(
U+

CFS

)
)

Therefore, based on the property [1], there is

tan
(
U−

CFS

)
≤ TCFWA (UCFS−n) ≤ tan

(
U+

CFS

)
[3]WhenUCFS≤U∗

CFS , there is a tan (UCFS) ≤ tan
(
U∗
CFS

)
since tan (x) for 0≤x≤π/4 is an increasing function.
Then, there is also

n
⊕

g = 1
wg
(
tan

(
UCFS−g

))
≤

n
⊕

g = 1
wg
(
tan(U∗

CFS−g)
)

can hold in view of the property [2]. Thus, the following
attributes exist

TCFNWA
(
UCFS−1, UCFS−2, . . . UCFS−g

)
≤ TCFNWA

(
U∗

CFS−1 , U∗

CFS−2 . . . U∗
CFS−g

)
Definition 8: Let UCFS−g =

(
δRUCFS−g

+ ι δIUCFS−g

)
where (g = 1, 2, . . . , n) be a collection of CFNs and
W = (w1,w2, . . . ,wn) be a weight vector with wg∈ [0, 1]
and

∑n
g=1 wg = 1. A TTCFWG operator is developed as

TTCFWG
(
UCFS−1, UCFS−2, . . . , UCFS−n

)
=

n
⊗

g = 1

(
tan

(
UCFS−g

))wg
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Theorem 3: Set UCFS−g =

(
δRUCFS−g

+ ι δIUCFS−g

)
where

(g = 1, 2, . . . , n) as a collection of CFNs, then the value
after using TTCFWG is again a CFN i.e.,

TTCFWG
(
UCFS−1, UCFS−2, . . . , UCFS−n

)

=


n∏

g=1

(
tan

(π

4
δRUCFS−g

))wg
+ι

 n∏
g=1

(
tan

(π

4
δIUCFS−g

))wg


In view of the similar proof process of theorem 1, we can

easily verify the Theorem 3, which is omitted intentionally.
Theorem 4: The proposed TTCFWGoperator contains the

underneath properties based on the tangent trigonometric
function

[1] Idempotency: set UCFS =

(
δRUCFS−g

+ δIUCFS−g

)
where

(g = 1, 2, . . . , n) there is

TTCFWG
(
δUCFS−1 , δUCFS−2 . . . . . . δUCFS−g

)
= tan

(
δRUCFS−g

+ δIUCFS−g

)
[2] Boundedness: Set U+

CFS = max
g

(
δRUCFS−g

+ δIUCFS−g

)
and U−

CFS = min
g

(
δRUCFS−g

+ δIUCFS−g

)
[3] Monotonicity: Set UCFS =

(
δRUCFS−g

+ δIUCFS−g

)
and

U∗
CFS =

(
δRU∗

CFS−g
+ δIU∗

CFS−g

)
are two groups of CFS.

Then TTCFWG
(
δUCFS−1 , δUCFS−2 . . . . . . δUCFS−n

)
≤ TTCFWA

(
δU∗

CFS−1
, δU∗

CFS−2
. . . . . . δU∗

CFS−g

)
exist

when UCFS≤U∗
CFS .

The proof process of Theorem 4 is similar to that of Theo-
rem 2. Therefore, it has been omitted intentionally.

V. WASPAS APPROACH WITHIN COMPLEX
FUZZY INFORMATION
This section demonstrates the WASPAS method in the
environment of complex fuzzy by employing the invented
operators.

Let’s assume a set comprises over n alternatives K =

{K1,K2, . . . , Kn} and a set having several criteria C =

{C1,C2, . . . , Cm} related to a decision-making prob-
lem where the decision-maker assesses each option based
on the considered criteria. Because of the significance
of each criterion, the decision-maker provides weight
W = (w1,w2, . . . ,wm) wf ∈ [0, 1] and

∑m
f=1 wf = 1

to the criteria according to his/her preference. The assess-
ment values of the alternatives would be in the model of
CFNs that is UCFS =

(
δRUCFS−gf

+ δIUCFS−gf

)
n×m

which

would construct a complex fuzzy decision matrix D. To cope
with this decision-matrix we have the underneath WASPAS
technique.

A. COMPLEX FUZZY WASPAS (CF-WAPAS) TECHNIQUE
This technique has the following steps.
Step 1: Because of the cost and benefit types of attributes,

the first step is to standardize the complex fuzzy decision
matrix D. This would be done by following the formulas

UCFS−g =
UCFS−gf

max
g

UCFS−gf
=

 δRUCFS−gf
+ ι δIUCFS−gf

max
g

(
δRUCFS−gf

+ ι δIUCFS−gf

)

(4)

where,

max
g

(
δRUCFS−gf

+ ι δIUCFS−gf

)
= max

g
δRUCFS−gf

+ ι max
g

δIUCFS−gf
UCFS−gf

=

min
g

UCFS−gf

UCFS−gf
=

min
g

(
δRUCFS−gf

+ ι δIUCFS−gf

)
δRUCFS−gf

+ ι δIUCFS−gf

 (5)

The division of Eq. (4) and Eq. (5) would be performed as
follows

UCFS−1

UCFS−2
=


δRUCFS−1

δRUCFS−2

δRUCFS−1
+ δRUCFS−2

− δRUCFS−1
δRUCFS−2

+ι
δIUCFS−1

δIUCFS−2

δIUCFS−1
+ δIUCFS−2

− δIUCFS−1
δIUCFS−2

,


(6)

where UCFS−1 and UCFS−2 are CFNs.
Step 2: Employing TTCFWA operator to determine the

importance of each alternative based on the WSM
Step 3: Employing TTCFWG operator to determine the

importance of each alternative based on the WPM
Step 4: After applying both the sum and the product

operations. This method combines the advantages of both
operations to obtain the final importance of each alternative
by the following align:

‘̃Y (Kg)= 0.5WSM
(
Kg
)
+0.5WPM

(
Kg
)

(7)

Step 5: Rank the alternatives based on their score values.
The alternative with the highest score is considered the best
choice.

Step 6: Determining the stability of the acquired results
is crucial for demonstrating the efficacy of an MCDM-based
framework. The weights assigned to the selection criteria
have a significant impact on how the alternatives rank. Small
adjustments to the weights of the selection criteria may
have an impact on the stability of the ranks. We used the
technique outlined in [22] to conduct a sensitivity analy-
sis in order to verify the consistency of the findings. The
weights of the selection criteria are changed independently
by 10% to 30% in order to examine the performance sensitiv-
ity of the alternatives.
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B. RESULTS AND DISCUSSION OF CASE STUDY
In this case study, data was collected to evaluate software
reliability across four alternatives - software modules, oper-
ational profiles, testing techniques, and development teams.
Four criteria were selected - failure intensity, accuracy, failure
rate, and fault tolerance. To capture the multidimensional
aspects, a CFS was used. The real part quantified the prob-
ability of failure-free operation i.e. reliability. The imaginary
part measured defect density which indicates quality. i.e.
UCFS−gf =

(
δRUCFS−gf

+ ι δIUCFS−gf

)
. Data was synthesized

through rigorous testing and defect tracking across the exe-
cution cycles. Failures were mapped to modules, operational
profiles, test techniques, etc. Defect density was calculated
per line of code. The probability of failure-free operation was
computed from reliabilitymodels like execution time, failures
observed, etc. The proposed WASPAS approach within CFS
is applied to evaluate software parameters for maximizing
reliability.

TABLE 1 shows the software reliability matrix of alterna-
tives over criteria. The data is expressed in terms of CFNs
where the real part (a) represents reliability measured by the
probability of failure-free operation and the imaginary part
(b) represents reliability measured by defect density. In the
data expressed in TABLE 2. it can be observed that the
development teams have the highest failure intensity, testing
techniques have the lowest failure rate, and the operational
profiles have the lowest fault tolerance. The following section
discusses and analyzes these data in detail.
TABLE 2 shows the standardized data matrix, here stan-

dardization and weighting allow transforming raw criteria
data into comparable scales and integrating decision-maker
preferences into the analysis.

Weights are assigned to each criterion based on its relative
importance. The weights sum to 1. Criteria like failure rate
and failure intensity are given higher weights, indicating
their higher importance for software reliability. Criteria like
accuracy and fault tolerance have lower weights, suggesting
they are less critical factors. The assigned weights reflect
the decision maker’s preferences and priorities regarding the
criteria. Multiplying the standardized values with criteria
weights incorporates the relative importance of each criterion
in the analysis.

The approach provides a robust analysis to capture soft-
ware reliability. WSM stands for ‘‘Weighted Sum Model’’.
Table 4, shows the importance of each alternative based on
the WSM and WPM.

The overall importance of each alternative is devised in
Table 5, where (a) signifies the real part and (b) signifies the
unreal part of a CFN. They provide a more realistic repre-
sentation of each alternative’s performance with incorporated
uncertainty. The alternatives are ranked based on these scores
to identify the most reliable software module.

The top-ranked alternative has the best tradeoff between
the deterministic score and the uncertainty, based on the
computations the score values against the alternatives are
mentioned in TABLE 6 and Figure 3. The score values

FIGURE 3. The determined score values of alternative.

obtained indicate that software modules received the highest
positive score (0.00996), followed by operational profiles
(−0.00144), testing techniques (−0.00243), and develop-
ment teams (−0.00146). The positive score for software
modules highlights their importance as a key parameter
for enhancing software reliability. This aligns with previ-
ous research showing modular software design can contain
failures and support fault isolation. The modular structure
also allows easier testing, maintenance and troubleshoot-
ing. However, while important, relying solely on software
modules is insufficient. Operational profiles received the
second-highest score, indicating they also play a role in
software reliability. Well-defined operational profiles allow
testing to better reflect real-world usage scenarios. How-
ever, challenges in accurately capturing dynamic production
environments mean operational profiles alone are inade-
quate. Comparatively lower scores were obtained for testing
techniques and development teams. While improved testing
methodologies can reveal failures earlier, exhaustively test-
ing all paths and inputs is infeasible for complex systems.
Development teams follow established processes, but human
errors still occur. Comprehensive testing and best practices
are beneficial but cannot fully prevent reliability issues.

Therefore, the results suggest that focusing on software
modules provides the most impact, but needs to be com-
plemented by the other alternatives to holistically maximize
software reliability. A balanced approach across all four
parameters is recommended, rather than over-emphasizing
any single factor. Further studies could explore relative
weightings to quantify the contribution of each alternative.
Overall, the complex fuzzy-WASPAS method has demon-
strated its suitability for handling the imprecision and sub-
jectivity inherent in this multi-criteria decision problem.

The complex fuzzy formulation allowed the consolidation
of these quantitative and qualitative metrics into a single
model. The data collection focused on failure monitoring
as well as defect analysis. Trends were observed on how
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TABLE 1. Software reliability matrix of alternatives over criteria’s.

TABLE 2. Standardized data matrix.

TABLE 3. Computed weights.

TABLE 4. Computed WSM & WPM.

TABLE 5. Operational values of alternatives.

failure intensity and defect density changed over time for the
alternatives. This provided insights into the reliability behav-
iors. The case study demonstrated the feasibility of gathering

TABLE 6. Score values of alternatives.

multifaceted data for software reliability measurement using
complex fuzzy numbers. However, more streamlined pro-
cesses may be needed for large projects. Automated data
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FIGURE 4. The sensitivity analysis of determined score values.

collection tools could help with managing the scale while
retaining the integrated metrics. This study demonstrated the
application of complex fuzzy numbers for MCDM in soft-
ware reliability assessment. The key criteria considered were
failure intensity, accuracy, failure rate, and fault tolerance.
These encompass both quantitative metrics and qualitative
aspects relevant to reliability measurement. The alternatives
evaluated were software modules, operational profiles, test-
ing techniques, and development teams. The data showed that
testing techniques had the highest failure intensity while oper-
ational profiles had the lowest fault tolerance. This indicates
testing techniques are most impacting in revealing failures
early which is positive. However, operational profiles need to
be enhanced to improve fault tolerance. Development teams
had a tradeoff between high failure intensity and also highest
accuracy.

Overall, the complex fuzzy number approach allowed the
consolidation of the multidimensional criteria into a single
model for comparison. The subjective and conflicting nature
of reliability measurement was handled through the real and
imaginary components. This provides a more nuanced evalu-
ation than using single-dimension criteria.

Future research can validate this approach on real software
projects and with larger criteria and alternative sets. Com-
parative analysis with other multi-criteria methods like AHP,
TOPSIS, etc. will also be relevant.

VI. COMPARATIVE ANALYSIS
The proposed approach integrates complex fuzzy sets with
the weighted aggregated sum product assessment (WASPAS)
method to evaluate software reliability parameters. Tangent
Trigonometric complex fuzzy aggregation operators provide
a way to aggregate fuzzy information and deal with uncertain-
ties in data. This is useful for parameter estimation problems
where the data contains ambiguities or imprecision. In our
case study there are four criteria’s and all such criteria

Algorithm 1 Implementation Algorithm for Python Platform
1. Import necessary modules: cmath, math, itertools
2. Define input data as a 2D list of complex numbers
3. Extract real and imaginary parts into separate 2D lists
4. For each column:
- Extract column from real and imaginary parts
- Find min ans for real and imaginary maxima using column
maximad max of each column
- Store in separate lists for real and imaginary parts

5. Create 2D list
6. Combine real and imaginary maxima lists into 2D list of
complex numbers (complex max matrix)
7. Repeat steps 4-6 for minima instead of maxima (complex
min matrix)
8. Print complex max and min matrices
9. Normalize input data:
- For each element:
- Divide real part by corresponding real max
- Divide imaginary part by corresponding imaginary max
- Store normalized values in 2D list

10. Print normalized matrix
11. Compute row weights:

- Sum absolute values in each row
- Divide each element by row sum to get weights
- Store weights in 2D list

12. Print weights
13. Compute significance scores:
- For each row:
- Extract real and imaginary parts
- Compute product of tangent raised to weight power for

each
- Subtract from 1 to get score
- Store scores as complex numbers

14. Print significance scores

reflecting both probability of failure-free operation and defect
density.

These operators utilize trigonometric functions like sine,
cosine, tangent etc. to map the fuzzy inputs into a range
of [−1, 1]. This normalized range allows easier mathemat-
ical operations and aggregation of fuzzy sets. Here, tangent
function used in these operators also captures both positive
and negative correlations in the data, making the aggregated
results more reasonable. This is important for parameter
estimation where both positive and negative relationships
exist. Furthermore, compared to simpler weighted averaging
operators, tangent trigonometric complex fuzzy aggregation
operators consider interaction and correlation between input
variables. This avoids loss of information and improves accu-
racy of estimated parameters. Keeping in view, the proposed
methodology has several enhancements that is expressed
in TABLE 7:
The mean absolute percentage error (MAPE) between

the actual and estimated fuzzy data sets was calculated
to be 19.51% using the Algo (2) implemented in Python.
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Algorithm 2 Compute MAPE forActual and Normalized
Fuzzy Data
INPUT:

data1[][]: 2D array containing actual fuzzy data
data_norm[][]: 2D array containing

estimated/normalized fuzzy data

STEPS:
Initialize empty list errors to store absolute percentage errors

Loop through each row i in data1:
2.1 Loop through each element j in row i:
2.1.1 Get actual value a = data1[i][j]
2.1.2 Get estimated value e = data_norm[i][j]
2.1.3 Compute absolute percentage error = (|a - e|)/

|a| * 100
2.1.4 Append computed error to list errors

Calculate mean of all errors in list:
mape = sum(errors) / length(errors)

Print computed MAPE value

TABLE 7. Comparison of standard and proposed complex fuzzy WASPAS
method.

This provides a quantitative measure of the error or accu-
racy of the parameter estimation method used in the study.
The relatively low MAPE value indicates that the param-
eter estimation technique based on tangent trigonometric
complex fuzzy aggregation operators and WASPAS had a
reasonably good performance. It was able to estimate the
complex fuzzy parameter within about 20% of the actual
observed values on average. While there is still scope to fur-
ther reduce the errors, the obtainedMAPE is encouraging and
demonstrates the applicability of the proposed approach for
parameter estimation tasks involving ambiguous, vague data.
Overall, the low MAPE highlights the benefits of using tan-
gent trigonometric complex fuzzy aggregation operators over

traditional methods. In future work, we can explore fine-
tuning the operator parameters or trying different fuzzy set
representations to further minimize the estimation errors.
However, the current results provide a proof of concept and
confirm the superiority of the proposed approach.

VII. CONCLUSION
This work presented an innovative method of MCDM for
software reliability analysis involving complex fuzzy sets
combined with theWASPAS technique. In particular, the tan-
gent trigonometric complex fuzzy aggregation operators were
proposed as an efficient way to take into account the complex-
ities and uncertainties involved in the relationships between
the software reliability parameters. The operators were used
to determine four main alternatives such as software modules,
operational profiles, testing methods, and development teams
that were evaluated based on failure intensity, correctness,
failure rate, and fault tolerance. The software modules drew
the most positive responses from the participants, indicating
their high importance in the context of reliability. On the other
hand, all parameters must be given equal weight rather than
the modules being the main focal point. The complex fuzzy
formulation was used to tie the multidimensional quantita-
tive and qualitative criteria into a single integrated model. It
facilitated a more detailed and complex analysis of the uncer-
tainty alternatives than the standard methods. The suggested
technique expands the power of standard fuzzy WASPAS
via a hybrid model that can take into account the weighted
sum and product models, use trigonometric computing, and
handle higher dimensionality. It offers an advanced decision
support methodology that can deal with the imprecise data
and complexity present in the software reliability assessment.

A. LIMITATIONS AND FUTURE DIRECTION
The research can’t cope with information that is in the gen-
eralized form of CFS such as bipolar complex fuzzy set [23],
and hesitant bipolar complex fuzzy sets [24]. This work also
can’t cope with the negative aspect that is the concept of
bipolar fuzzy set [25]. That’s why, in the future, we aim to
expand this work in these domains.

Further, future research can be validated through
real-world case studies across different domains. Compar-
ative analysis with other MCDM techniques like AHP,
TOPSIS, etc. will also be relevant. The complex fuzzy
aggregation operators can be further enhanced by exploring
different membership functions and decision weight models.
Opportunities exist to apply the developed approach for soft-
ware quality factors beyond reliability. As software systems
continue to grow more complex, the proposed methodology
can provide an effective solution for MCDM under uncer-
tainty.
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