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ABSTRACT Effective energy management from the demand side and smart meters play an important
role in achieving carbon neutrality. The government and utilities in South Korea are working to expand
the installation of smart meters and develop time-of-use (TOU) tariffs for residential customers. Although
these efforts have expanded the selection of tariffs for customers, it has become increasingly difficult
to determine electricity tariffs. Therefore, some studies have been conducted to recommend tariffs for
residential customers with historical metering data. However, recommending tariffs for customers who
have recently installed smart meters or have failed to obtain historical metering data is a challenging task.
Therefore, this paper presents a systematic method to estimate energy consumption patterns and incorporate
behavioral changes based on the input profiles of residential customers for personalized electricity tariff
recommendations. The proposed method attempts to predict bills by estimating energy consumption patterns
using customer profiles. It is designed to reflect the behavioral changes in each pattern caused by the TOU
tariff in predicting bills. In addition, the bill prediction model uses deep learning-based matrix factorization
with the estimated patterns to improve bill prediction performance. The proposed method increases the
probability of selecting TOU tariffs that reduce bills. It can be used as an effective tool for recommending
tariffs to residential customers, helping them reduce their bills based on the prediction results. An increase
in the number of customers selecting TOU tariffs also contributes to improving the stability and reducing
the capital investment cost of the power system through peak shaving.

INDEX TERMS Customer profile, energy consumption pattern, time-of-use tariff, K-medoids, random
forest, matrix factorization, deep learning, recommendation.

I. INTRODUCTION
Smart metering devices and energy management from the
demand side are important research topics for the tran-
sition from traditional grids toward smart grids, as they
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enable efficient energy management for residential cus-
tomers [1], [2]. Energy management includes components
such as demand response (DR) and dynamic pricing, which
play crucial roles in energy systems aimed at achieving car-
bon neutrality [3], [4], [5].

To achieve carbon neutrality, numerous electric utilities
have implemented time-based electricity tariff structures
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and flat tariffs [5], [6]. These tariffs consist of real-time
price (RTP), critical peak price (CPP), and time-of-use (TOU)
tariffs, formed by a combination of static and dynamic struc-
tures [7]. The RTP is designed considering hourly energy
consumption and fluctuations in hourly prices, and the price
charged reflects to the market price of the wholesale elec-
tricity market [8]. The CPP tariffs charge a predetermined
high energy consumption price for a specific period, which
is defined as a peak event [9]. TOU tariffs indicate variations
based on time blocks in which the price is generally higher
during peak periods than at other times. These time blocks
are divided into two or three distinct periods [10].
Smart metering devices are key components of energy

management and are used to effectively manage customer
energy consumption and collect data [1]. The Korea Electric
Power Corporation (KEPCO) is expanding and distributing
an advanced metering infrastructure (AMI) in South Korea.
This establishes a strong foundation for the implementation
of energy policies to activate demand-side energy manage-
ment. Additionally, the analysis of energy data gathered from
AMI offers significant insights into the behavioral patterns of
customers in relation to their energy consumption [11].
Residential customers in South Korea typically utilize a

single tariff structure known as the progressive (PRG) tariff.
It was recognized by residential customers that it charges
higher electricity bills than TOU tariffs for industrial and
commercial customers [12]. Currently, the SouthKorean gov-
ernment and its utilities implement TOU tariffs designed for
residential customers. Although these efforts have expanded
the selection of tariffs for customers, it has become increas-
ingly difficult to determine electricity tariffs. In the retail
electricity markets of various nations, customers frequently
encounter difficulties when selecting tariffs because of the
numerous electricity tariffs [13]. Therefore, electricity tariff
recommendation methods are required to support residential
customers’ decision-making processes.

The recommendation method is extensively utilized across
diverse fields, including e-commerce, social networks,
YouTube, Netflix, and others, for the purpose of suggesting
products to consumers [14], [15], [16], [17], [18]. Numer-
ous personalized recommendation (PR) methods have been
developed over the past few decades to provide recommen-
dations for users of various products. PR uses collaborative
filtering (CF) to filter and learn from customers with similar
interests and preferences, thereby providing recommen-
dations for products and services. CF-based PR utilizes
historical rating information from both the target and other
users to predict the ratings that the target user assigned to
specific items [19].

A CF-based PR method has also been used to make
electricity tariff recommendations. Luo et al. proposed an
electricity tariff recommendation method based on energy
consumption features. They extracted features from energy
consumption data collected through smart metering, con-
sidering seasons and working times. The customers were

grouped using fuzzy c-means clustering based on the
extracted features. The electricity bill of the target customer
was predicted using the cosine similarity within the same
group. The top K tariff was recommended based on the
prediction results [20]. Zhang et al. recommended electricity
tariffs based on the operating hours of individual household
appliancesmeasured using specific devices. They categorized
the operating hours of household appliances into five groups
based on the cumulative distribution function of each appli-
ance. Five groups were defined based on the features of each
household appliance. Customers with similar features were
grouped using machine learning. The customer’s bills were
predicted using weighted cosine similarity. The predicted
bills and recommended tariffs for users were also com-
pared [21]. Li et al. utilized non-shiftable energy consumption
data to recommend electricity tariffs. They compared the
cosine similarity using the average non-shiftable energy con-
sumption vector for each user. The target user was grouped
with other users with high cosine similarities. They predicted
bills using probabilistic matrix factorization (MF) for each
group, analyzed the prediction results, and recommended a
tariff to the user [22].

However, these previous studies have limitations in rec-
ommending electricity tariffs. They primarily recommend
electricity tariffs based on metering data, which makes it
impossible to recommend electricity tariffs to customers who
have recently installed smart meters or have failed to obtain
historical metering data. Moreover, the CF-based PR method
using only metering data makes it difficult to reflect behav-
ioral changes such as shifting the usage time of household
appliances or saving energy consumption to avoid peak peri-
ods of TOU tariffs, which might claim high electricity bill.
This is because residential customers have different behav-
ioral changes based on their profiles, such as demographic
information and whether they are photovoltaic (PV) owners.
Therefore, a systematic method for recommending electricity
tariffs that considers not only metering data but also customer
profiles is necessary.

This paper presents a personalized electricity tariff rec-
ommendation method using customer profiles. The proposed
method is designed to estimates customers’ energy con-
sumption patterns using customer profiles and recommends
electricity tariffs incorporating behavioral changes. The main
contributions of this paper are as follows:

1) The proposed method estimates energy consumption
patterns using customer profiles, such as demographic
information, PV owners, and past electricity bills. Con-
sequently, it can use the customer profile to estimate the
energy consumption patterns of customers who have
recently installed smart meters or have failed to obtain
historical metering data. Therefore, it is possible to
recommend the electricity tariff through the estimation
results of the energy consumption pattern using the cus-
tomer profile. In addition, utilizing customer profiles to
recommend electricity tariffs improves the accessibility
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of electricity tariff recommendations and helps increase
the number of customers who select TOU tariffs.

2) The proposed method estimates the energy consump-
tion patterns of customers without historical metering
data using the data of customers with installed smart
meters. Subsequently, it predicts the TOU bills for
customers through deep-learning-based matrix fac-
torization using the estimated energy consumption
patterns. Consequently, the proposed method shows a
lower prediction error than previous studies because it
effectively reflects the impact of the behavioral changes
of residential customers in predicting TOU bills.

3) The proposed method predicts TOU bills by effec-
tively reflecting the behavioral changes of residential
customers and recommends an electricity tariff based
on the prediction results. Therefore, it can show
customers’ electricity bill reductions resulting from
behavioral changes. This increases the probability that
residential customers will select a TOU tariff that
reduces their electricity bills. Consequently, an increase
in the number of customers selecting TOU tariffs also
contributes to improving the stability and reducing the
capital investment cost of the power system through
peak shaving.

The remainder of this paper is organized as follows:
Section II explains the problems that arise when electricity
tariffs are recommended using metering data. Section III
introduces the proposed method. Section IV presents the
results of applying the proposed method to residential con-
sumers in South Korea. Section V concludes the study.

II. PERSONALIZED ELECTRICITY TARIFF
RECOMMENDATION
During the transition from a traditional grid to a smart
grid, various changes occurred in the electricity industry.
Among these changes, the installation of smart meters and the
implementation of various electricity tariffs led to studies on
electricity tariff recommendations. However, many of these
studies have inherent limitations arising from the dependence
on utilized data from smart meters.

Electricity tariff recommendations have been actively stud-
ied due to the introduction of competition in the retail
electricity market. Electricity tariffs are charged based on
customer energy consumption. Therefore, previous studies
primarily focused on recommending electricity tariffs using
energy consumption data collected from smart meters.

However, the traditional electricity tariff recommendations
suffer from problems arising from the use of metering data.
The biggest problem is that without historical metering data,
it is impossible to recommend electricity tariffs for cus-
tomers. These customers do not have historical metering data
because they have recently installed smart meters or have
failed to obtain metering data because of network obstacles.

The next problem is that there is a limitation to reflecting
the behavioral changes of residential customers using meter-
ing data. Residential customers have different behavioral

changes depending on their profiles and the metering data.
For example, PV owners show little change in behavior owing
to TOU tariffs, as they show low energy consumption during
the daytime. However, families with babies are more likely to
stay at home during peak periods of the TOU tariff, making
it easier to change their behavior.

In this study, the aforementioned problem is resolved using
an enhanced CF-based personalized electricity tariff recom-
mendation method that uses customer profiles.

The proposed method can suggest electricity tariffs using
customer profiles even to customers without past metering
data. Using customer profiles reflects changes in the behavior
of residential customers better than using existing methods.

III. PERSONALIZED ELECTRICITY TARIFF
RECOMMENDATION METHOD INCORPORATING
BEHAVIOR CHANGES USING CUSTOMER PROFILES
FOR RESIDENTIAL CUSTOMER WITHOUT
HISTORICAL METERING DATA
This section introduces a method for recommending electric-
ity tariffs by using customer profiles without metering data.
In the proposed method, the target customer is one with-
out historical metering data, and the training customers are
those who install smart meters to obtain historical metering
data. The proposed method consists of three steps: esti-
mating the energy consumption pattern using the profiles
of the target customer; predicting the TOU bills through
deep-learning-based matrix factorization using the estimated
energy consumption patterns; and recommending an electric-
ity tariff using the prediction result. Fig. 1 shows an overview
of the proposed method.

A. ENERGY CONSUMPTION PATTERN ESTIMATION USING
THE PROFILES OF THE TARGET CUSTOMER WITHOUT
HISTORICAL METERING DATA
This study estimates the energy consumption pattern of a
target customer using two types of customer training features:
the extrema selected from the metering data and the customer
profile. The estimation of energy consumption patterns con-
sists of clustering and classification.

First, clustering uses the extrema and their profiles. In this
study, the extrema represent the maxima and minima of
the metered data. The maxima are the highest values, and
the minima are the lowest values within a specific range,
respectively. Residential customers have different energy
consumptions depending on the time of day. Therefore, this
study uses the maxima and minima as features representing
the energy consumption at four specific times: morning, after-
noon, evening, and night. Further technical details regarding
the process of selecting the energy consumption features of
residential customers at specific times frommetering data are
provided in [23].

In this study, customer profiles include data on fam-
ily composition, the age of the householder, and the PV
owner. Family composition includes data on the number
of family members: babies (six years old or younger),
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FIGURE 1. Overview of the enhanced CF-based personalized electricity tariff recommendation method using customer profiles for residential
customers without historical metering data.

students (over six years old), workers, and unemployed
adults. This study classifies the age of householders into
groups of people in their 30s or younger, 40s, 50s, and 60s
or older. The PV owner indicates by ‘Yes’ or ‘No.’

This study describes a Gower distance-based K-medoid
clustering method that groups energy consumption patterns
using a mixed dataset that includes profiles and extrema.
Gower distance calculates the pairwise distance between
each customer. The pairwise distance is computed using the
weighted average of the distances for each feature. In this
study, the continuous feature is the extrema, and the cate-
gorical feature is the profile. The distance for continuous
features is the normalized value of the Manhattan distance,
as follows [24] and [25]:

dCNTn,m =
|CNT n − CNTm|

max (CNT ) − min (CNT )
, (1)

where dCNTn,m denote the pairwise distances between customers
n and m for continuous features. CNTn and CNTm denote
the values of the continuous features for customers n and m,
respectively.

The distance for categorical features is zero if the features
between customers are in the same category and one if they
are in different categories, as follows [24] and [25]:

dCATn,m =

{
0,CAT n = CATm
1,CAT n ̸= CATm

}
, (2)

where dCATn,m denotes the pairwise distances between cus-
tomers n and m for categorical features. CATn and CATm
denote the values of the categorical features for customers n
and m, respectively.
The Gower distance is the weighted average of the distance

for each feature, as follows [24] and [25]:

GDn,m =

∑
f ∈F wf d

f
n,m∑

f ∈F wf
, (3)

where GDn,m indicates the Gower distance between cus-
tomers n and m, and d fn,m denotes the pairwise distances
between customers n and m for feature f . F denotes a set of
features in a mixed dataset that includes continuous and cat-
egorical features. wf denotes the weighted value of feature f .
Theweighted value can be set differently for each feature, and
the sum of the weighted values needs to equal 1. Typically, the
weighted values are set to the same value [24].

The Gower distance-based K-medoid clustering method
groups customers according to the Gower distance between
specific and other customers. The specific customer is a
medoid customer, the centroid of each cluster. The clustering
method performs a swapping process to identify the medoid
customers with the smallest Gower distance between cus-
tomers. The swapping process compares the total cost, which
is the sum of the Gower distances for each cluster. After the
swap, if the total cost decreases, the medoid customers swap.
However, if the total cost increases, medoid customers will
not swap. This process is repeated until the medoid customers
in each cluster no longer swap. The swapping process of
the Gower distance-based K-medoids clustering method is as
follows [26], [27], and [28]:

TCbefore =

∑K

k=0

∑
fn∈Ck

GD(fn,MDI
before
k ) (4)

TCafter =

∑K

k=0

∑
fn∈Ck

GD(fn,MDI
after
k ), (5)

MDI swapk =

{
MDIbeforek ,TCbefore < TCafter

MDIafterk ,TCbefore > TCafter

}
, (6)

where TCbefore and TCafter denote the total costs before and
after the medoid-swapping process, respectively. Ck denotes
the set of customers in the k-th cluster. fn denotes the fea-
tures of customer n in Ck . MDI

before
k denotes the medoids

for Ck before the swapping process, and MDIafterk denotes
the medoid customers for Ck after the swapping process,
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excluding MDIbeforek . MDI swapk denotes the medoid customer
determined by the swapping process.

The Gower distance-based K-medoids clustering method
uses the Davies–Bouldin index (DBI) to determine the opti-
mal value of K . The DBI calculates as follows [29]:

DBI =
1
K

∑
(k,k ′)∈K

maxk ̸=k ′

(
DCHk + DCHk ′

DSPk,k ′

)
, (7)

where DCHk and DCHk ′ indicate the average between the cen-
troid of the cluster and data points that are part of the
same cluster.DSPk,k ′ represents the distance between the center
points of cluster k and another cluster k ′. Low DBI indicates
that each cluster can be distinguished sufficiently.

This study estimates the energy consumption patterns of
target customers using a Random Forest (RF) classifica-
tion model. In the RF classification model, the input is the
customer profile, and the output is the energy consumption
pattern. The RF generates several different decision trees
and estimates the energy consumption pattern of the target
customer through the aggregate voting of these decision
trees [30], [31]. RF aims to minimize impurities at each
node. In this study, impurities are calculated using the Gini
index (GI) [32], [33], [34]:

GI = 1 −

∑
k=1

p2k , (8)

where pk indicates the probability of a feature belonging to
the k-th cluster in a decision tree node. The minimum value of
the GI is zero, which means that all features of the set belong
to the same cluster.

B. TOU BILLS PREDICTION THROUGH DEEP
LEARNING-BASED MF REFLECTING THE
BEHAVIORAL CHANGES
This study describes a deep learning-based MF (DMF)
method that uses energy consumption patterns for the pre-
diction of TOU bills. The proposed method constructs a
customer-tariff bill matrix with a set of training customers
and an energy consumption pattern that is similar to the
estimated energy consumption pattern by customer profile.
It predicts TOU bills by performing DMF using a customer
tariff bill matrix. Therefore, behavioral changes according
to the customer profiles are reflected in the TOU bill pre-
diction. DMF is a neural collaborative filtering (NCF)-based
prediction method that combines the generalized matrix fac-
torization (GMF) of linear characteristics with the multilayer
perceptron (MLP) of nonlinear characteristics [35]. DMF
comprises layers of different forms (input, embedding, hid-
den, and output), as shown in Fig. 2. The input is a vector
derived from the one-hot encoding of customer Nu and tar-
iff Tv indices. For example, customer N2 is encoded into
−→
N2 = [0100 . . .], and T3 is encoded into

−→
T3 = [0010 . . .]. The

embedding layer is a fully connected layer that transforms
a sparse input vector into a dense latent factor vector. This
study identifies potential customer and tariff factors using
an embedding process [36]. The embedding process includes

FIGURE 2. Deep learning-based MF for the prediction of TOU bills.

the utilization of backpropagation to update the randomly
initialized dense vectors. The dense latent factor matrix is
calculated using the weight matrix as follows:

−→
hu = wNHL

−→
Nu, (9)

−→
hv = wTHL

−→
Tv , (10)

where
−→
hu and

−→
hv are dense latent factor vectors for each

customerNu and tariff Tv, respectively.H indicates the length
of the customer and tariff indices, and L denotes the length of
the latent factors.wNHL represents the customer weight matrix,
and wTHL represents the tariff weight matrix.

The hidden layer consists of the GMF and MLP. The GMF
is the result of calculating the Hadamard product of the latent
factor matrices obtained from the input and embedding. The
Hadamard product is a mathematical function that defines
the product of corresponding elements in two matrices of
equal dimensions. In this study, the GMF using the Hadamard
product is calculated as follows [35]:

ZGMF =

−−−→

hGMFu ⊙

−−−→

hGMFv , (11)

where
−−−→
hGMFu and

−−−→
hGMFv represent the dense latent factor vec-

tors for the GMF of customer Nu and tariff Tv, respectively.
ZGMF represents the result of the Hadamard product.
The MLP is a multilayer input of the latent factor matrix

that concatenates the embedding results of the tariff and
customer. The activation function and the number of layers
determine the structure of the MLP. The MLP is calculated
as follows:

ZX (ZX−1) = Fact (wXZX−1 + σX ), (12)

ZMLP = ZX (. . . Z2(Z1(Fconcat (
−−→

hMLPu ,
−−→

hMLPv ))) . . .), (13)

where ZX indicates the multilayer. Fact refers to the activation
function, and Fconcat refers to the concatenated function.
wx represents the weight vectors for each layer. σx is biased

for each layer.
−−→
−−→
hMLPu and

−−→
hMLPv represent the dense latent factor
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vectors for theMLP of customerNu and tariff Tv, respectively.
ZMLP represents the result by the MLP.

The output layer trains to reduce the difference in losses
between the known and prediction of TOU bills. The output
layer predicts TOU bills by concatenating the results of the
GMF andMLP through the final hidden layer. The prediction
of the TOU bills is calculated as follows [35]:

b̂uv = Zpred (Fconcat (ZGMF ,ZMLP)), (14)

where Zpred indicates the output layer for predicting the TOU
bills. b̂uv indicates the prediction for the TOU bill.
This study evaluates the TOU bill prediction of DMF using

the mean absolute percentage error (MAPE).

MAPE =
100

|Ntest |

∑
(u,v)∈Ntest

∣∣∣∣buv − b̂uv
buv

∣∣∣∣ (15)

where Ntest is the test dataset, and |Ntest | is the length of the
test dataset. buv denotes known TOU bills in test dataset.

C. ELECTRICITY TARIFF RECOMMENDATION USING THE
PREDICTION OF TOU BILLS
This study estimates energy consumption patterns using cus-
tomer profiles without historical metering data and predicts
TOU bills through DMF using estimated energy consumption
patterns. The proposedmethod recommends electricity tariffs
by comparing past electricity bills with the prediction results
of TOU bills.

The proposed method recommends electricity tariffs based
on the bill difference between past electricity bills and the
prediction results of TOU bills. The recommendation for the
electricity tariff suggests maintaining the PRG tariff if the bill
difference is positive and changing to the TOU tariff if it is
negative. The bill differences are calculated as follows:

bpredictiondiff = b̂uv − bpast (16)

Trecommend =

{
PRG, bdiff > 0
TOU , bdiff < 0

}
, (17)

where bpredictiondiff denotes the bill difference between the pre-
diction of TOU bills and past electricity bills. bpast denotes
past electricity bills using the PRG tariffs. Trecommend denotes
the result of a recommendation based on bill differences.

In addition, this study compares the bill differences caused
by structural differences in electricity tariffs to analyze
whether the proposed method reflects behavioral changes
according to customer profiles. The bill differences caused
by structural differences in electricity tariffs are the difference
between the electricity bill calculated based on the TOU tariff
and the electricity bill calculated based on the PRG tariff.
The bill differences caused by the structural differences in
electricity tariffs are calculated as follows:

bstructurediff = bTOU − bpast (18)

where bstructurediff denotes the bill differences caused by the
structural differences in electricity tariffs. bTOU is the elec-
tricity bill of the target customer which is calculated based

on the TOU tariff. This is the calculated electricity bill when
only the electricity tariff is changed from the PRG tariff
to the TOU tariff without considering the target customer
behavioral changes.

Consequently, the main steps of the proposed method in
this research can be described as follows:

Step 1: Select features using the profile and meter-
ing data of the training customers, and calculate the
Gower distance between the training customers using Equa-
tions (1), (2), and (3). Train for customer clustering using the
Gower distance-based K-medoid. The profile of the training
customers and the clustering results are then used to train the
RF classification model to estimate the energy consumption
pattern of the target customer.

Step 2: Construct the customer-tariff matrix with the set of
training customers, the same group as the estimated energy
consumption pattern, using the profiles of the target cus-
tomer. TOU bills are predicted by performing DMF using a
customer-tariff matrix.

Step 3: Recommend electricity tariffs through the bill dif-
ference calculated using Equations (16) and (17).

IV. CASE STUDY
This study recommends TOU tariffs to residential customers
in South Korea using the proposed method and analyzes
the results. Fig. 3 shows a representative single-line dia-
gram of residential customers in South Korea. Residential
customers comprise 1,031 TOU and 985 PRG customers.
In this study, TOU customers are used to train the model,
and PRG customers are the target customers. TOU customers
use PRG tariffs until September 2019, and TOU tariffs from
October 2019 to September 2020. PRG customers use only
PRG tariffs.

FIGURE 3. Single-line diagram for residential customers in South Korea.

In this study, the Pearson correlation coefficient is used
to analyze the similarity of energy consumption patterns
between TOU and PRG customers. The correlation coeffi-
cient is 0.986, and the energy consumption pattern between
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TABLE 1. PRG tariff table for residential customers [12].

TABLE 2. TOU tariff table for residential customers [12].

TOU and PRG customers has a high similarity, so an effective
case study is possible.

The PRG tariff consists of a fixed price and an energy price
per kWh. The PRG tariffs in South Korea are three-tiered,
as listed in Table 1. The TOU tariff comprises two types:
TOU A and TOU B, as shown in Table 2. The TOU tariff
uses the same fixed price as the PRG tariff. However, energy
prices differ according to the season and period. TOU A and
TOU B differ in terms of the period and energy price. This
study examined the average exchange rate during the period
when TOU customers used TOU tariffs. Therefore, prices are
calculated at 1194.5 KRW per USD.

A. ANALYSIS OF ENERGY CONSUMPTION PATTERN
ESTIMATION USING CUSTOMER PROFILES
This study analyzes the results of clustering energy con-
sumption patterns using the profiles and historical metering
data of TOU customers. To determine optimal number of the
cluster, this study compared DBI value of 2 to 10 clusters.

FIGURE 4. Comparison of DBI results by number of clusters using the
Gower distance-based K-medoids.

TABLE 3. Customer profile analysis based on energy consumption
patterns of TOU customers.

Fig. 4 shows the DBI results by the number of clusters.
Consequently, the number of clusters K for the Gower
distance-based K-medoids method is determined to be 5 with
the lowest DBI.

Table 3 shows the results of the analysis of customer
profiles based on energy consumption patterns. Fig. 5 shows
the energy consumption patterns of TOU customers clustered
using the Gower distance-based K-medoids method.
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FIGURE 5. Energy consumption patterns of TOU customers clustered
using the Gower distance-based K-medoids.

Class 1 includes 81.82% of the customers with three or
more workers. Therefore, the characteristic of Class 1 defines
as the workers’ families. In addition, Class 1 indicates that
the house is empty during the daytime because all fam-
ily members go to work. Consequently, Class 1 shows a
relatively low energy consumption pattern during the morn-
ing and afternoon compared with the other classes. Class 2
includes 94.12% of the customers with two or more stu-
dents. Therefore, the characteristic of Class 2 defines as the
students’ parents. In addition, Class 2 shows a relatively
lower energy consumption pattern during the morning and
afternoon compared to the other classes because the children
went to school. The characteristics of Class 1 and Class 2’s
profiles lead to differences in their energy consumption pat-
terns at specific times. Comparison of the changes in energy
consumption between Class 1 and Class 2 from 14:00 to
17:00, Class 1 shows a 0.24 increase, whereas Class 2 shows a
0.30 increase. This distinction arises from the different times
at which workers and students return home. This is because
workers’ work schedules are from 9:00 to 18:00, but students
return home between 15:00 and 17:00. Class 3 has a higher
proportion of unemployed individuals than the other classes.
Class 3 includes 66.14% of the householders in their 60s or
older. Therefore, the characteristic of Class 3 defines as the
old couples. Moreover, Class 3 shows a relatively high energy
consumption pattern during the morning and afternoon com-
pared to the other classes, especially during the morning.
In addition, Class 3 indicates that the time for increasing
energy consumption is 04:00, one hour earlier than other
classes. Their energy consumption increases relatively signif-
icantly compared to other classes. Such differences indicate
that the behavior patterns of the old couples differ from those
of other classes. Class 4 includes 77.19% of customers with
two or more babies. Therefore, the characteristic of Class 4
defines as newlyweds with babies. In addition, Class 4 shows
relatively high energy consumption and less change in energy
consumption during the morning and afternoon compared
to other classes because these customers have to take care
of their babies. Class 5 includes 96.43% of the customers
who are PV owners. Therefore, the characteristic of Class 5
defines as the PV owners. Consequently, Class 5 shows a
similar energy consumption at night and during the daytime
owing to PV.

FIGURE 6. Analysis of bill differences based on electricity bills of PRG
tariff for PRG customers.

RF classification model using the profiles and energy con-
sumption patterns of TOU customers to estimate the energy
consumption patterns of PRG customers. It evaluates the
accuracy by splitting TOU customer data into training and test
data. Consequently, the accuracy of the energy consumption
pattern estimation is 92.35%. Therefore, the proposedmethod
can estimate the energy consumption patterns of PRG cus-
tomers using their profiles without historical metering data.

B. TOU BILL PREDICTION AND ELECTRICITY TARIFF
RECOMMENDATION RESULTS
This study predicts the TOU bills of PRG customers using
a set of TOU customers, which is the same group used to
estimate the energy consumption pattern of PRG customer
profiles. Furthermore, this study uses a 5-fold validation
method that minimizes MAPE to determine the optimal
number of latent factors and layers for the DMF model.
In addition, it compares the mean absolute percentage error
(MAPE) of the prediction methods used in the metering
data-based electricity tariff recommendation method.

Fig. 6 shows the bstructurediff and the bdiff based on the past
average electricity bill for the PRG customers. bstructurediff is

negative from Tier 3 of the PRG tariff, and bpredictiondiff is nega-
tive from Tier 2 of the PRG tariff. Therefore, the proposed
method recommends TOU tariffs to a greater number of
PRG customers. This increases the probability that residential
customers will select the TOU tariff, which can reduce their
electricity bills.

Table 4 presents the prediction results of TOU bills for each
method. As indicated in Table 4, the MAPE of the proposed
method is 13.7%, indicating superior performance compared
to the other methods. Therefore, effective electricity-bill pre-
diction for residential customers should include not only
metering data but also customer profiles. This is because
residential customers indicate different behavioral changes
depending on their profiles.

This study analyzes the TOU tariff recommendation results
by comparing the bill differences calculated using Equa-
tions (16) and (18). Table 5 presents the average bill
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TABLE 4. Comparison of the MAPE of TOU bill prediction by each method.

TABLE 5. Analysis of the average electricity bill differences customers
recommending TOU tariffs to PRG customers.

TABLE 6. Proportion of customers who recommend the TOU tariffs by
energy consumption patterns.

difference of customers recommending TOU tariffs to PRG
customers according to Equation (17). The bstructurediff is pos-
itive, so the bill increases when PRG customers change to
TOU tariffs. This is because PRG tariffs below Tier 2 are less
expensive than TOU tariffs. However, bpredictiondiff is negative
because it reflects the behavioral changes of residential cus-
tomers. In addition, TOU B has higher prices than TOU A;
therefore, the increase in bills owing to structural differences
is significant. In comparison with bdiff , TOU B indicates
a larger reduction in bills than TOU A. Therefore, it can
be inferred that TOU B has a greater potential to influence
behavioral changes than TOU A.

This study analyzes the TOU tariffs recommended to
PRG customers based on their estimated energy consumption
patterns. Table 6 shows the proportion of customers who
recommend TOU tariffs based on their energy consump-
tion patterns. Classes 1 and 2 have more customers who
are recommends to TOU A than TOU B. This is because
Classes 1 and 2 each have characteristics of workers and
students’ parents, making it difficult to change their behavior
during peak periods. Classes 3 and 4 have more customers
who are recommends to TOU B than TOU A. This is because
Classes 3 and 4 each have characteristics of old couples and
families with babies, making it easy to change their behavior

during peak periods. Class 5 demonstrated the lowest energy
consumption during the morning and afternoon because of
the PV. Therefore, a TOUAwith a long peak period is recom-
mended for Class 5.

The results indicate that the proposed method recommends
TOU A for customers who have difficulty changing their
behavior because they do not stay at home during peak peri-
ods, and TOU B for customers who can easily change their
behavior because they stay at home.

V. CONCLUSION
In this paper, a systematic method for recommending per-
sonalized electricity tariffs based on customer profiles is
proposed. The proposed method estimates the energy con-
sumption pattern using customer profiles and predicts TOU
bills through DMF using the estimated energy consumption
patterns. Finally, the proposed method recommends an elec-
tricity tariff based on the prediction results.

Consequently, the proposed method effectively recom-
mends personalized electricity tariffs even to residen-
tial customers without historical metering data. Therefore,
it improves the accessibility of electricity tariff recommenda-
tions and increases the number of customers who select TOU
tariffs. Moreover, the proposed method shows a lower pre-
diction error than the existing methods because it effectively
reflects the impact of the behavioral changes of residential
customers in predicting TOU bills. Finally, the proposed
method recommends TOU tariffs to more customers because
they effectively reflect changes in customer behavior. This
increases the probability that residential customers will select
a TOU tariff that reduces their electricity bills. Consequently,
an increase in the number of customers selecting TOU tariffs
also contributes to improving the stability and reducing the
capital investment cost of the power system through peak
shaving.

Furthermore, while this paper categorizes residential cus-
tomers into five classes based on their characteristics, certain
customers may have multiple characteristics at the same
time, such as students’ parents with PV owners, families of
workers with babies, and so on. Future research is required
to recommend tariffs to these customers by optimizing the
weighted value of the Gower distances of each feature
in accordance with the tariff structure. In addition, future
research should focus on developing an operation schedule
for an energy storage system using the recommended results,
as well as developing DR participation strategies for residen-
tial customers. This will be useful for designing a residential
microgrid to achieve carbon neutrality.
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