
Received 13 February 2024, accepted 24 April 2024, date of publication 6 May 2024, date of current version 13 May 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3397195

Case Study: Optimization Methods With TVM
Hybrid-OP on RISC-V Packed SIMD
MENG-SHIUN YU , CHUAN-YUE YUAN, TAI-LIANG CHEN , AND JENQ-KUEN LEE
Department of Computer Science, National Tsing Hua University, Hsinchu 300, Taiwan

Corresponding author: Jenq-Kuen Lee (jklee@cs.nthu.edu.tw)

This work was supported in part by Google, and in part by the National Science and Technology Council (NSTC) of Taiwan under
Grant 111-2221-E-007-080-MY3.

ABSTRACT In recent years, considerable research has focused on the use of custom hardware to accelerate
deep learning on edge devices. However, the end-to-end flow of deep learning includes preprocessing and
postprocessing. Deep learning hardware accelerators cannot accelerate these operations, which consequently
becomes a performance bottleneck in the execution flow. In this study, we propose optimization methods to
improve preprocessing and postprocessing at the edge devices. For this purpose, we adopt Tensor Virtual
Machine (TVM), an end-to-end machine learning compiler framework. TVM provides hybrid script, which
is a front-end language that allows users to write programs for preprocessing and postprocessing.We propose
rewriting strategies to improve the performance of operators written in hybrid script through the RISC-V
Packed SIMD extension (P extension). RISC-V is an open instruction set architecture (ISA) that provides
base instructions and many extensions for different use cases. The P extension defines specific subword
single-instruction multiple-data (SIMD) instructions that allow complex computations to be efficiently
performed on edge devices. In this study, we design custom instructions based on the RISC-V P extension
for rewriting strategies to accelerate deep learning operations. Experimental results indicate that our methods
improve performance by a factor of 1.28 to 15.29.

INDEX TERMS TVM, machine learning compiler, RISC-V, custom instruction.

I. INTRODUCTION
Deep learning has achieved remarkable successes across
various fields, particularly in tasks such as object detection
in computer vision [1], [2], keyword spotting in speech [3],
[4], natural language processing [5], [6] and industrial defect
inspection [7], [8], [9]. However, as these models find
applications in real-world scenarios, such as on mobile
and edge devices, a new set of challenges is emerging.
In these contexts, the constraints on computing resources
become pronounced, presenting challenges for the effective
execution of deep learning algorithms. For instance, consider
the domain of real-time object detection on edge devices,
in which stringent latency requirements are imposed. Current
approaches, such as MobileNet and SqueezeNet, have made
progress in reducing computational demands. Nevertheless,
the end-to-end execution flow, which includes preprocessing

The associate editor coordinating the review of this manuscript and

approving it for publication was Alicia Fornés .

and postprocessing, remains a bottleneck. Preprocessing and
postprocessing operations often cannot be accelerated by
standard deep learning accelerators, making optimization
in these stages critical. In light of these challenges, our
motivation stems from the need to address the limitations
of existing solutions and to enhance the overall efficiency
of deep learning execution on resource-constrained devices.
This study focuses on proposing novel methods to optimize
both the preprocessing and postprocessing stages by lever-
aging the rewriting of Tensor Virtual Machine (TVM) [10]
hybrid script and the design of custom instructions based on
the RISC-V Packed SIMD extension (P extension).

TVM is an end-to-end deep learning compiler for machine
learning models, such as object detection models and
decision trees [11]. TVM allows tensor operations to be
optimized through a tensor-level intermediate representation
(TIR) and provides hybrid script to describe how to
complete operational calculations. TVM hybrid script is
a programming language based on Python syntax. Many

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

64193

https://orcid.org/0000-0002-0471-0216
https://orcid.org/0000-0002-3347-8161
https://orcid.org/0000-0001-9919-6258
https://orcid.org/0000-0002-0023-1891

M.-S. Yu et al.: Case Study: Optimization Methods With TVM Hybrid-OP on RISC-V Packed SIMD

operators use hybrid scripts to complete their operations.
The hybrid script provides four loop annotations: serial,
unrolled, parallel, and vectorized. In this paper, we rewrite
these annotations to improve the performance of the pre-
processing and postprocessing stages. RISC-V is a free and
open instruction set architecture (ISA) based on a reduced
instruction set computer (RISC) architecture with various
optional extensions, such as the packed SIMD (P) and vector
(V) extensions, that provide SIMD instructions with powerful
features for parallel computing for different use cases.

This study takes a comprehensive approach to optimizing
nonmaximum suppression(NMS) computation, addressing
both software and hardware aspects. In the software domain,
we propose rewriting strategies for hybrid scripts to enhance
their efficiency. Simultaneously, in the hardware domain,
we introduce custom instructions based on the RISC-V P
extension, aiming to reduce the instruction count and enable
simultaneous computations on multiple data elements. Our
methodology is specifically tailored for low-power embedded
systems, offering a holistic solution to improve NMS perfor-
mance. To implement these optimizations, we advocate two
key methods: the rewriting strategies for hybrid scripts and
the design of custom instructions. Additionally, we enable
the LLVM code generator to support RISC-V P extension
(RVP) instructions within TVM, ensuring the generation
of RVP instructions and reinforcing our commitment to
an all-encompassing enhancement of NMS computation
performance.

To verify our proposedmethod, we use NMS as an example
and the Microsoft COCO [12] dataset as our test data. The
NMS algorithm is commonly used in the postprocessing
step for object detection models to eliminate redundant or
overlapping bounding boxes. We take the original TVM
version of NMS as the baseline for comparison with our
optimized version, using the number of instructions and
accuracy as indicators. Regarding the number of instructions,
we use the RISC-V simulator Spike to accumulate the number
of instructions required to complete NMS on a test image, and
we calculate the accuracy by comparing the detection results
with the ground-truth annotation data provided in the dataset.
The experimental results indicate that our approach reduces
the number of assembly instructions by a factor of 1.28 to
15.29 while the average precision decreases by 0.002 - 0.03.
This research makes the following contributions:

1) We propose rewriting strategies for TVM hybrid script
to enhance the performance of pre- and postprocessing
operations.

2) We enable LLVM code generation for the RISC-V
Packed SIMD extension in TVM, allowing the end-to-
end deep learning flow to be executed efficiently on
low-power devices.

3) We design custom instructions based on the RISC-V
Packed SIMD extension to further enhance the perfor-
mance of NMS.

The remainder of this paper is organized as follows.
In Section II, we present the background TVM and

FIGURE 1. Overview of TVM software architecture, from the neural
network model to the hardware target.

RISC-V. In Section III, we describe how to enable the
RISC-V P extension in TVM. In Section IV, we introduce
our rewriting strategies, and in Section V, we present custom
instructions based on the RISC-V P extension, along with
a running example. In Section VI, experimental results are
reported. Section VII, we present the previous work and
compare it with our research. Finally, we summarize our
conclusions in Section VIII.

II. BACKGROUND
A. TVM AND HYBRID SCRIPT
TVM [10] is an end-to-end machine learning compiler
framework for CPUs, GPUs, and accelerators. It is an
intermediary platform that can integrate various applications
and systems, including blockly applications [13], runtime
support for Android NNAPI [14], compiler optimizations
across many machine learning computers [15], [16] and
underlying integration with a GPU [17], [18]. Fig. 1
illustrates the entire software architecture. The top layer is
the Relay intermediate representation (IR), which describes
the contents of the directed acyclic graph (DAG) used to
define many Ops. There are many optimization methods
for DAG. For example, [19] decomposed a task into a
decomposition-coordination DAG (DC-DAG) to improve
performance further. The optimizations provided by TVM
for the DAG of artificial intelligence (AI) models include
dead node elimination, constant folding, and operator fusion,
among others. The second layer is the TVM Operator
Inventory (TOPI), which implements each Op defined in
Relay. TOPI describes two types of implementations: one
consists of computations for tensor operations, and the other
is hybrid script, designed using a subset of the Python
language, which can be used to implement algorithms other
than tensor operations. The third layer is TIR, which provides
a middle-level expression describing low-level programs,
including loops, tensor data load/store operations, and built-in

64194 VOLUME 12, 2024

M.-S. Yu et al.: Case Study: Optimization Methods With TVM Hybrid-OP on RISC-V Packed SIMD

intrinsic functions. It is typically used to present how the
operator in a model completes their calculation. The fourth
layer is the target and includes code generators for different
backends, such as LLVM [20] (for CPU), C code, OpenCL,
and CUDA.

There are twomethods for describing how anOp completes
its calculation in TVM. The first one is the tensor expression,
which is suitable for tensor operations such as convolution
and elementwise addition and subtraction. The other method
is hybrid script, which is based on partial Python syntax; this
method offers a more flexible programming model than the
compute expression method and is suitable for describing
preprocessing or postprocessing operations. In addition,
hybrid script provides loop annotations (unroll, parallel,
vectorize, and bind), loop manipulations (split and fuse), and
reordering, allowing developers to schedule the execution
order at the source level and write more efficient programs.
TVM provides an autotuning module called AutoTVM,
which can generate more efficient TIR but does not support
the more flexible Python-based hybrid script. Taking vector
addition as an example, Listing III-A and Listing 2 use the
tensor express and hybrid script, respectively, to describe how
to complete the operation of adding two vectors. In line 3
of Listing 1, the te.compute function takes the output shape
(dshape) and the lambda function as arguments. The number
of arguments of the lambda function depends on the shape
of the output tensor. Because the output tensor shape in
this example is one-dimensional, the lambda function takes
only one argument, denoted by i. The lambda function
returns the value to be input into the output tensor by
the arguments and the value of the axis. In Listing 2,
an output tensor is first created based on the data type and
shape of the left-hand side input value in lines 2 and 3.
Following the conventions of hybrid script, a loop is used
to iterate over the data and add values to the output in
lines 6 and 7. Finally, the output tensor is returned. Hybrid
script is similar to the C and Python languages, and the
TVM computations are based on the output tensor shape for
programming.

Listing 1. Tensor expression description of vector addition.

Listing 2. Hybrid script description of vector addition.

FIGURE 2. RISC-V instruction format related to custom instructions.

TABLE 1. Examples of SIMD instructions in the RISC-V P extension.

B. RISC-V AND THE PACKED SIMD EXTENSION
RISC-V is an open ISA based on RISC architecture.
The instruction format is illustrated in Fig. 2. Different
combinations of opcode fields indicate different functions
for each set of instructions. The red words in Fig. 2
indicate fields that RISC-V reserves for developers who
want to design custom instructions; we use these two
fields in this work to design and implement our custom
instructions. RISC-V has open-source licenses with many
extensions for different use cases [21], [22], and allows the
addition of specific custom instructions, as in [23]. Since
2010, five basic instruction sets (RVWMO, RV32I, RV32E,
RV64I, and RV128I) and 21 different feature extensions,
including the V extension [24] and the draft cryptography
extension [25], have been released. In addition to setting
standard specifications, RISC-V International and volunteers
from various fields maintain the software tools required for
RISC-V development, such as the compiler (LLVM/GNU
toolchain) and simulators (Spike and QEMU). In this study,
we use these frameworks as the basis for developing custom
instructions and performance enhancements.

The RISC-V P extension was contributed to RISC-V Inter-
national by Andes Technology in 2019.1 The architecture of
the P extension instruction set defines many subword SIMD
instructions, including add, subtract, bit shift, compare, and
multiply. In contrast to the V extension, which is also a SIMD
instruction set, the P extension uses general-purpose registers
to complete operations without additional vector registers.
The P extension supports saturation and rounding. The

1http://www.andestech.com/en/2019/12/31/a-look-back-at-the-
achievements-andes-made-in-2019/

VOLUME 12, 2024 64195

M.-S. Yu et al.: Case Study: Optimization Methods With TVM Hybrid-OP on RISC-V Packed SIMD

possible data types for operations include integers and fixed-
point numbers, and the supported element sizes are 8, 16,
and 32 bits. The latest version is V0.9.11 (20211209), which
defines 112 instructions.2 This extension enables relatively
low-level devices to efficiently complete complex operations,
such as audio/speech decoding and processing and Internet
of Things (IoT) sensor data fusion. Table 1 lists examples of
instructions from the RISC-V P extension that are used in this
study. In the case of these SIMD instructions, each element
contains eight bits. KADD8, KSUB8, KHM8 perform
saturating arithmetic operations; SLL8 andKSLRA8 perform
saturating logical operations; and SCMPLT8, CMPEQ8, and
SCMPLE8 perform comparison operations.

C. LLVM
LLVM [20] is a modular compiler infrastructure that can
compile multiple high-level programming languages into
its LLVM IR. There are many IR transformations between
different IRs; the transformation from TVM TIR to LLVM
IR is one example. In practice, LLVM optimization functions
[20] can be further utilized for compiler optimization with
advanced architectures [26], [27]. After optimizing the IR,
users can choose different backend targets to generate
target-dependent code. Our work extends the LLVM with
RISC-V P extension and custom instructions for conducting
experiments.

III. OUR ENHANCED COMPILATION FLOW IN TVM
BASED ON THE RISC-V P SIMD EXTENSION
A. ENABLING THE RISC-V P SIMD EXTENSION IN TVM
The process of generating assembly code from Ops written in
the TVM hybrid script is divided into four phases, as shown
in Fig. 3, where we consider the maximumOp as an example.
In the hybrid script shown in Fig. 3, the value of the output
tensor is based on the maximum value between the two input
tensors. Once the behavior of this Op has been described
in hybrid script, it is converted into TIR by TVM, which
then generates corresponding code by the backend specified
by the user. Because we have chosen the RISC-V 64-bit
architecture as our backend, in this example, TVM uses
the TIR to generate an LLVM IR for the RISC-V backend.
When generating the LLVM IR code, TVM provides a
well-designed interface that allows users to choose whether to
generate the default LLVM IR code or to implement a specific
class for code generation.

In our research, we have developed the RISC-V CodeGen
class, which is utilized in the transformation of a TIR
MaxNode into an LLVM IR intrinsic function. We illustrate
this process in Algorithm 1. Here, we outline the key steps
involved in Algorithm 1 that enable the lowering of TVM into
LLVM with the RISC-V P extension. When the TIR visitor
encounters a TIR MaxNode, the VisitMaxNode function is
invoked in line 7. To generate the LLVM IR intrinsic, we first

2https://github.com/riscv/riscv-p-spec/commit/5a12c90b2c206c501a448
9eb79e5d4d46afa1014

check whether the MaxNode corresponds to the SIMD type,
which consists of eight lanes and eight bits in a 64-bit RISC-V
target (line 8). If it is a SIMD-type MaxNode, we convert
it into a TIR CallNode by utilizing the CreateVectorMax
function (line 9), as defined in line 1. This function employs
the MaxNode to obtain the LLVM intrinsic ID. Subsequently,
the TIR CallNode is created with the right-hand side (RHS)
and left-hand side (LHS) parameters (lines 3-5). Finally, the
CreateLLVMIntrinsic function (line 10) generates the LLVM
IR intrinsic. Additionally, we need to implement the CodeGen
rules for generating RISC-V instructions from LLVM IR
in the target assembly language in LLVM. This involves
defining the LLVM IR intrinsics and employing LLVM’s
TableGen to define the RISC-V instructions. In our study,
each phase described above incorporates a specific amount of
implementation code, making model execution from TVM to
RISC-V feasible.

Algorithm 1 CodeGen: RVP LLVM IR From TVM SIMD
TIR

Input : SIMD TIR
Output: RVP LLVM IR

1: procedure RISCV::CreateVectorMax(MaxOp)
2: ID = ::llvm::Intrinsic::riscv_simd_smax
3: LHSExpr = MaxOp.lhs()
4: RHSExpr = MaxOp.rhs()
5: return tir::Call(ID, LHSExpr, RHSExpr)
6: end procedure
7: procedure RISCV::VisitMaxNode(MaxOp)
8: if IsSIMDType(MaxOp) then
9: CallNode = CreateVectorMax(MaxOp)
10: return tir::CreateLLVMIntrisic(CallNode)
11: else
12: return tvm::llvm::VisitMaxNode(MaxOp)
13: end if
14: end procedure

B. ADDING CUSTOM INSTRUCTIONS TO THE RISC-V GNU
TOOLCHAIN
To add custom instructions in the RISC-V GNU toolchain for
the RISC-V architecture, certain modifications are necessary.
First, the format of the custom instructions needs to be
defined in the ‘‘riscv-opc.h’’3 file, specifying the opcode,
encoding, and other relevant information. Second, corre-
sponding modifications are needed in the ‘‘riscv-opc.c’’4

file, which handles the decoding and encoding of RISC-V
instructions. These modifications ensure that the custom
instructions will be properly recognized and processed by
the RISC-V GCC compiler during compilation. Additionally,
adjustments are required in the instruction selection logic,
instruction selection table, and target description file of GCC
to fully support and generate code for the custom instructions.
With these modifications, GCC can be used to effectively

3riscv-gnu-toolchain/binutils/include/opcode/riscv-opc.h
4riscv-gnu-toolchain/binutils/opcodes/riscv-opc.c

64196 VOLUME 12, 2024

M.-S. Yu et al.: Case Study: Optimization Methods With TVM Hybrid-OP on RISC-V Packed SIMD

FIGURE 3. TVM compilation flow: taking the maximum Op as an example, from hybrid script to RISC-V assembly.

incorporate and optimize custom instructions within the
RISC-V architecture.

IV. STRATEGIES FOR REWRITING TVM HYBRID SCRIPT
This section presents the rewriting strategies proposed in this
study. As shown in Fig. 1, hybrid script is a Python-based
subgrammar in the TVM architecture that is a description
language suitable for optimizing preprocessing and postpro-
cessing operations. This hybrid script supports a flexible
programming model and provides various optimizations
for application programming interfaces (APIs), including
loop annotations (unroll, parallel, vectorize, and bind), loop
manipulations (split and fuse), and reordering. This allows
developers to schedule execution sequences at the source
level and write more efficient programs.

A. SUBWORD SIMD VECTORIZATION
In AI and deep learning computations, for loop is frequently
utilized to execute identical operations on each element of a
tensor. However, conventional for loop is typically designed
to process one data element at a time, resulting in suboptimal
computational efficiency. To address this issue, we propose

Listing 3. Rewriting strategy with subword SIMD vectorization: if the data
type of input and output data is int8 or int16, then we can tile the for
loop and use the subword SIMD instruction KADD8 or KADD16 to
improve performance.

an approach that enhances performance by reconfiguring a
for loop using hybrid script and generating RISC-V subword
SIMD instructions. For example, consider the operation of
vector addition. To optimize its execution, we split the for
loop into inner and outer loops. The inner loop uses the
vectorize syntax and the vector size of the subword SIMD
instruction, and the outer loop controls the number of times
the inner loop is executed. In the subsequent compilation

VOLUME 12, 2024 64197

M.-S. Yu et al.: Case Study: Optimization Methods With TVM Hybrid-OP on RISC-V Packed SIMD

process, the TIR will be converted into an LLVM IR. During
this stage, different subword SIMD instructions will be
chosen based on the data type. For signed 8-bit data, the
KADD8 instruction will be used; for unsigned 8-bit data, the
UKADD8 instruction will be used. Similarly, for signed or
unsigned 16-bit data, the TIR description will be converted
into KADD16 or UKADD16 instructions, respectively.

For a for loop to be amenable to vectorization, the
following conditions need to be met. 1. The body of the for
loop must not contain other nested loops. 2. The number of
iterations of the loop should exceed the vector size. 3. Each
operation within the loop body must have a corresponding
SIMD instruction. 4. Each iteration must have no dependency
on any other iteration. If the conditions for loop vectorization
are satisfied, then the for loop can be split into outer and inner
loops. The body of the inner loop is represented using ‘‘for j
in vectorize(XLEN)’’ notation, enabling acceleration through
SIMD instructions. Here, XLEN represents the number of
data elements that can be processed in a single SIMD
instruction. Conversely, the outer loop is a conventional
sequentially executed for loop. The difference is that the
iteration count of this loop is divided by XLEN. This is
expressed as ‘‘for i in range(len/XLEN)’’ to ensure optimal
utilization of hardware resources.

Listing 3 shows an example of this strategy. The original
version has a loop structure that contains descriptions of
the initialization, conditions, and advancement to the next
iteration. After applying the proposed strategy, an additional
loop is added as the outer loop, and the iteration count is
divided by XLEN. The inner loop runs over the index value
from zero to XLEN - 1, and we can vectorize it with the
KADD8 SIMD instruction. Thus, rewriting the for loop in
this way allows us to improve the performance.

B. TERNARY OPERATION
In general, if-else statements make conditional decisions
based on specific criteria. However, this approach may
introduce branching, which can adversely affect performance
due to potential pipeline stalls and mispredictions. To solve
this problem, we propose replacing the if-else construction
with a ternary operation. This strategy is accomplished by
combining the select function of TIR in TVM with the
instructions of the RISC-V P extension. Two instructions are
used to complete the ternary operation. The first is a com-
parison instruction CMPEQ8, which performs elementwise
equality comparisons of 8-bit integers in parallel for use in if
statements. The other is the BPICK instruction, which selects
from two source operands by a bitmask in the third operand
for the expression after if or else statements are found to be
true.

For this strategy to be applicable, the following conditions
must be met: 1. The conditions evaluated by the if statements
must be equality, greater-than, or less-than comparisons.
Such operations are well-suited for vectorized execution.
2. The data types of the variables being compared in the
if-else statements and being assigned should all be int8.

This aligns with the capabilities of the RISC-V P extension
for efficient parallel integer operations. 3. Both the if and
else branches should declare and assign values to the same
variable. This is essential for ensuring consistent results
when utilizing ternary operations. If the conditions for the
ternary operation strategy are satisfied, then we can apply the
following form:

result = true value if conditions else false value

Listing 4 illustrates an example of this strategy. The
original version presents a program description using
if-else statements. Upon applying the proposed strategy, the
program description transforms into a ternary operation.
This operation involves three operands: the expression
executed if the condition is true (is_valid = 1), followed by
another expression specifying the condition to be checked
(if area > 0), and finally, a value determining the alternative
expression (is_valid = 0) to be executed if the condition is
false.

Listing 4. Rewriting Strategy Based on Ternary Operation: If the sole
operations within an if-else construct are assignment operations, the
construct can be refactored using ternary syntax. Additionally,
performance improvement can be achieved by leveraging subword SIMD
instructions, specifically CMPEQ8 and BPICK.

Listing 5. Rewriting Strategy Considering Saturation Arithmetic: Due to
the utilization of subword SIMD instructions, there is a reduction in the
value range. Consequently, the order of operations needs to be adjusted
to prevent saturation without compromising the integrity of the results.

C. SATURATION ARITHMETIC
Quantization is a common technique for optimizing the
computations of AI models. Performance can be improved by
reducing the bit width of the data to minimize the amount of
data transferred and the number of computing cycles needed.
However, reducing the bit width also reduces the range of
representable values. For example, for an int8 variable (an
8-bit integer), the representable value range is−128 to+127.
Saturation occurs when the result of an arithmetic operation
exceeds this range, causing apparent incorrect. For example,
if we use KADD8 to add 200 + 100 since the result exceeds
the representable range, the final result will be 127 instead

64198 VOLUME 12, 2024

M.-S. Yu et al.: Case Study: Optimization Methods With TVM Hybrid-OP on RISC-V Packed SIMD

of 300. To avoid this situation, we can rearrange the order of
operations to keep the results within the representable range.
For this rewriting strategy, to be applicable the following
conditions need to be met: 1. Consistency of data types: all
variables involved in the operations, including the input and
outputs, should share the same data type. 2. Use of test data to
determine value ranges: test data should be used to evaluate
the possibility of saturation or underflow.

If the above conditions are met, we can rearrange the
order of operations to avoid saturation or underflow. If the
analysis indicates that some operations may be saturated,
the data range can be reduced by performing subtraction or
division first. This helps prevent saturation. Conversely, if the
analysis indicates that there is a risk of underflow, addition or
multiplication can be performed first to expand the range of
the data.

Listing 5 shows an example of this strategy, where the data
type is int8. The original version is a program describing the
process of adding area_a and area_b and then subtracting
area_intersection. After the proposed strategy is applied,
area_intersection is first subtracted from area_b, and area_a
is then added to obtain the final value. This strategy can
reduce the occurrence of saturation beyond the numerical
range during runtime execution.

D. QUANTIZED INTEGER DIVISION
Among general arithmetic operations, the division operation
involves floating-point calculations. When both the input and
output values are int8 type, the typical process is to first
convert the inputs into floating-point numbers for division
and then convert the result back to an integer; however,
this process incurs additional computational overhead due to
these conversions and the floating-point division operation
itself. Python provides two forms of division, namely,
standard floating-point division ’/’ and floor division ’//’,
where the latter returns the integer quotient. Therefore, when
all variables involved in an operation are integers, leveraging
floor division can be advantageous. By combining this
operation with low-level code generation to utilize hardware
instructions specifically designed for integer division, the
need for intermediate floating-point conversions can be
mitigated.

For this rewriting strategy to be applicable, only one
condition needs to be satisfied: all variables involved in the
operations, including the inputs and outputs, should share the
same int8 data type. When this condition is met, the original
floating-point division operation can be transformed into
an integer division operation to obtain the integer quotient
directly.

Listing 6 demonstrates the application of this strategy.
In the provided example, both the dividend and divisor
in the original version are typed as floating-point data.
Consequently, when performing an int8 division operation,
the dividend and divisor must undergo forced conversion
into floating-point numbers for the division, followed by
conversion back to int8 to obtain the final result. The

Listing 6. Rewriting strategy for quantized integer division: if the value
range is from −128 to 127 or from 0 to 255, then we can rewrite the
integer division operation in hybrid script syntax and use a custom SIMD
instruction QUOT8 to improve performance.

proposed strategy introduces an additional step using a divi-
sion instruction, ‘div,’ which eliminates the need for reverting
to a floating-point representation. This step facilitates direct
SIMD integer division, denoted by the double slash (//).
Within a 64-bit system architecture, SIMD vectorization
can be leveraged for the custom hardware instruction
‘div,’ dividing the elements into eight components, each
comprising an 8-bit integer (int8). As the int8 data type
cannot represent decimal places, the result is an integer
division outcome, yielding a quotient value of QUOT8 (refer
to Section V-B4 for more details).

Algorithm 2 CodeGen Custom Instruction LLVM IR From
TVM TIR

Input : TIR
Output: LLVM IR with custom instruction

1: procedure RISCV::CreateStrideLoad(LoadOp)
2: ID = ::llvm::Intrinsic::riscv_custom_plse8
3: BasePtr = tvm::CreateBufferPtr(LoadOp)
4: Stride = LoadOp.stride
5: return tir::Call(ID, BasePtr, Stride)
6: end procedure
7: procedure RISCV::VisitLoadNode(LoadOp)
8: if IsSIMDType(LoadOp) and LoadOp.stride > 1

then
9: CallNode = CreateStrideLoad(LoadOp)
10: return tir::CreateLLVMIntrisic(CallNode)
11: else
12: return tvm::llvm::VisitLoadNode(Op)
13: end if
14: end procedure

V. DESIGN OF CUSTOM INSTRUCTIONS BASED ON THE
RISC-V P EXTENSION
A. CUSTOM INSTRUCTION FLOW
In addition to the original RVP instructions, we propose
custom instructions to improve the preprocessing and post-
processing performance. Additional steps were needed to
enable these custom instructions in TVM. The first step was
to define the instruction format and opcode. The second
step was to add the new custom instructions to the RISC-V

VOLUME 12, 2024 64199

M.-S. Yu et al.: Case Study: Optimization Methods With TVM Hybrid-OP on RISC-V Packed SIMD

FIGURE 4. Enabling RISC-V custom instructions. We take PLSE8 as an example to show how we enable the transformation of custom
instructions from TVM to RISC-V assembly language.

FIGURE 5. Custom instruction format proposed to improve preprocessing and postprocessing.

GNU toolchain. As a third step, we also needed to define
the instruction behavior in the RISC-V simulator Spike
because we used the Spike to conduct our experiments.
Once the behavior of a custom instruction had been defined
in the simulator and the RISC-V GNU toolchain, TVM
implementation was needed. Fig. 4 shows the process
of generating custom instructions from hybrid script to
RISC-V assembly. We use the custom instruction PLSE8 as
an example. PLSE8 is the memory stride load instruction,

which can load data from memory to registers at given
distances. To generate the PLSE8 instruction, we obtain data
for every six elements from an 8 × 6 tensor, as described
in the hybrid script shown in Fig. 4. To utilize the PLSE8
instruction, a TIR with the corresponding pattern generated
from the hybrid script, is needed; then, the TIR can be
transformed throughCodeGen into LLVM IR,which includes
the intrinsics corresponding to the custom instruction.
The stride memory load instruction plse8 will be briefly

64200 VOLUME 12, 2024

M.-S. Yu et al.: Case Study: Optimization Methods With TVM Hybrid-OP on RISC-V Packed SIMD

introduced in a later subsection. Algorithm 2 shows how
CodeGen processes for this custom instruction using TIR.
The algorithm starts by visiting the TIR LoadOp in line 7
and checking whether this LoadOp is of the SIMD type and
whether its stride is greater than that in line 8. If this condition
is true, then the algorithm proceeds to line 1 to create the
TIR CallNode by the LLVM intrinsic ID, the base pointer,
and the stride value from lines 2 to 5. After creating the TIR
CallNode, the algorithm proceeds to line 10 to generate the
LLVM intrinsic. Finally, we use the corresponding LLVM IR
to generate the RISC-V assembly.

B. CUSTOM INSTRUCTIONS
RISC-V, an open Instruction Set Architecture (ISA), com-
prises base instruction sets and various extensions, among
which the P extension is utilized in our experiments.
In addition to the originally defined instruction set, RISC-V
allows for user-defined instructions. Instruction opcode
is specifically reserved for these instructions in defined
positions, distinct from the standard instruction set. Notably,
RISC-V allocates a custom 4-cluster instruction type with an
instruction length of 32 bits. In this study, we have devised six
custom instructions featuring unique 0/1 opcodes to augment
the P-extension set. These instructions encompass four
memory load and store instructions, one for broadcasting, and
another for integer division.

1) PLU32 AND PSU32
General load/store instructions involve reading or writing
a single data element from or to a given memory address.
We design two custom instructions plu32 and psu32, to not
only read and write multiple data elements at one time but
also read and write by a given index.

plu32 is the memory index load instruction. In this
instruction, a base register (rs1) stores the base address, and
a general-purpose register (rs2) contains two 32-bit integers
(offsets), which are added to the base register, to obtain the
memory location from which to fetch the data. The fetched
data are then converted into two 32-bit data elements to be
stored in the destination register(rd), a 64-bit general-purpose
register that can hold two 32-bit integers.

psu32 is the memory index store instruction. In this
instruction, rd stores the base address, rs1 contains two 32-bit
integers (offsets), rs2 also contains two 32-bit integers (data),
and two memory locations are obtained by adding the two
offsets to the base store. Then, the two int32 data values in
rs2 are stored in these two memory locations. The instruction
format is shown in Fig. 5.
Listings 7 to 9 compare the differences between baseline

and custom instructions corresponding to the same hybrid
script. In the baseline version(Listing 8), out[indices[i]]
and updates[i] need to be loaded into registers a4 and
a5, respectively, through two load instructions and one
add instruction. Then, the addition is completed through
the add instruction, and the result needs to be written
back to the memory through one addi instruction and

one load instruction. In contrast to the baseline version,
only 10 instructions are needed when using our custom
instructions. First, out[indices[i]] is loaded into register a2 via
the custom instruction plu32, and then the addition operation
is completed through kadd32. Finally, the result is written
back to the memory through psu32.

The pattern of the hybrid script used to generate the plu32
and psu32 instructions is shown in line 2 of Listing 7. On the
LHS of the plus-equal Op, the output tensor takes the indices
indicated by the tensor of the other indices. Once the TIR
description corresponding to this pattern is obtained, in this
example, we can reduce the number of instructions by seven
by using our custom instructions plu32 and psu32.

Listing 7. Hybrid script for index load and store.

Listing 8. Baseline version of index load.

Listing 9. Optimized version of index load.

2) PLSE8 AND PSSE8
General load/store instructions involve reading or writing
a single data element from or to a given memory address.
We design plse8 and psse8 to not only read and write multiple
data elements at one time but also read and write by a given
stride.

plse8 is the memory stride load instruction. In this
instruction, rs1 is the base register, which immediately
records the value of the stride. This instruction grabs a byte
from each of eight memory locations by the base address

VOLUME 12, 2024 64201

M.-S. Yu et al.: Case Study: Optimization Methods With TVM Hybrid-OP on RISC-V Packed SIMD

and stride and stores these eight pieces of data in the 64-bit
destination register rd.

psse8 is the memory stride store instruction. In this
instruction, rd stores the base address and immediately
records the value of the stride, and rs1 holds the eight-byte
data that are to be stored in the memory. This instruction
stores the eight data elements in rs1 into eight memory
locations by to the base address and stride. The instruction
format is shown in Fig. 5.
Listings 10 to 12 compare the differences between baseline

and custom instructions corresponding to the same hybrid
script. In the baseline version, 32 instructions are needed to
complete the addition of the eight int8 elements of two arrays.
For each element, two lb instructions are needed to load the
data from the LHS and RHS arrays into registers a3 and a4.
Then, the contents of registers a3 and a4 are added, the result
is stored back into a3, and finally, the result from register a3
is stored back into the memory through the store instruction.
In contrast, only four instructions are needed when using our
custom instructions. The first and second instructions load the
eight elements of the first and second arrays with a stride of
6 into a2 and a1, respectively; for this, the custom instruction
is used plse8. Then, using the SIMD add instruction kadd8,
the eight elements in each register are added and the results
are stored in register a1; then the results are stored back
into memory with stride 8 through the psse8 instruction.
In this way, the number of instructions can be reduced by
twenty-eight through the use of our custom instructions. The
pattern of the hybrid script used to generate plse8 and psse8
instructions is shown in line 2 of Listing 10. Because the
hybrid script is row-major, annotating the column loop with
the vectorize keyword, then will access the memory with a
fixed-length offset, referred to as the stride. Once the TIR
corresponding to this pattern is obtained, we can generate the
corresponding LLVM Intrinsics.

Listing 10. Hybrid script for stride load and store.

3) PCSV8
Typically, addi (addition of a constant value) is used to set
a register to a given value. We design a custom instruction
pcsv8, which copies an immediate value to each element of
rd, with an element size of eight bits. There are eight elements
in the RV64 architecture. The instruction format is shown in
Fig. 5.

Listings 13 to 15 compare the differences between baseline
and custom instructions corresponding to the same hybrid
script. In the baseline version, 24 instructions are needed to
complete the operation on an eight-element array, adding a
constant value to each element. In each iteration, the LHS

Listing 11. Baseline version of stride load and store.

Listing 12. Optimized version of stride load and store.

element needs to be loaded into register a2 through the load
instruction (ld). Then, a constant value of 3 is added to a2
through the addi instruction, and the result stored in register
a2 is subsequently written back to the memory through the
store instruction. In contrast, only 4 instructions are needed
when our custom instruction is used. First, the ld instruction
is used to load the continuous data of the HLS array into a1;
then the constant value of 3 is copied to each element in a2
through the pcsv8 instruction. Subsequently, a1 and a2 are
added through kadd8 and the result is written back to a1.
Finally, the result stored in a1 is written back to the memory
using the store instruction.

The pattern of the hybrid script used to generate the pcsv8
instruction is shown in line 2 of Listing 13. In this case,
we annotate a loop with the vectorize keyword, and the
loop involves a binary Op with one tensor and one constant
scalar. Once the TIR corresponding to this pattern is obtained,
we can generate the corresponding LLVM Intrinsics. In this
example, we reduce the number of instructions by 20 by using
the custom instruction pcsv8.

Listing 13. Hybrid script for constant add.

64202 VOLUME 12, 2024

M.-S. Yu et al.: Case Study: Optimization Methods With TVM Hybrid-OP on RISC-V Packed SIMD

Listing 14. Baseline version of constant add.

Listing 15. Optimized version of constant add.

4) QUOT8
In the RISC-V basic instruction set, an instruction for integer
division (div) is provided. Herewe further extend it to a SIMD
version, by designing quot8, which is an integer division
instruction that performs elementwise division on rs1 and
rs2 and returns the quotients to rd. The element size is eight
bits. There are eight elements in the RV64 architecture. The
instruction format is shown in Fig. 5.
Listings 16, 17 and 18 compare the differences between

baseline and custom instructions corresponding to the same
hybrid script. In the baseline version, 32 instructions are
needed to complete the division of eight pairs of int8
elements. For each data pair, two load instructions are needed
to load the data from the memory to register a3 and a4. Then,
integer division is performed, and the results are stored back
to a3. Subsequently, the contents of a3 are written back to
the memory through the store instruction. In contrast, only
four instructions are needed when our custom instruction is
used. First, two load instructions(ld) are used to load two sets
of eight consecutive int8 data elements into registers a2 and
a1 from the memory. Then, the integer division and quotient
operations are performed through the custom instruction
quot8, and the results are written back to register a1. Finally,
the results are written back to the memory through the store
instruction. The pattern of the hybrid script used to generate
the quot8 instruction is shown in line 2 of Listing 16. In this
case, the div function, which represents our integer quotient
function, is used. Once the TIR corresponds to this pattern,
we can generate the corresponding LLVM intrinsics. In this

example, we reduce the number of instructions by 26 by using
our custom instruction quot8.

Listing 16. Hybrid script for division.

Listing 17. Baseline version of division.

Listing 18. Optimized version of division.

C. RUNNING EXAMPLE: NONMAXIMUM SUPPRESSION
(NMS)
NMS is widely used for object detection in computer vision
and deep learning applications to retain the bounding boxes
that are most likely to correspond to objects of interest. Here,
we use NMS as an example to illustrate the performance
improvement archived with our rewriting strategies and
custom instructions. The input for NMS is a set of sorted
object data, where each object has six pieces of associated
information: the confidence of the object, the class of the
object, and the coordinate information of the upper left and
lower right corners. All the candidate objects are sorted by
their confidence; the higher the confidence value is, the
higher the ranking. Fig. 6 shows the flow of NMS. In the
first step, the first element is selected as the candidate, and
it is assumed that this candidate indeed contains an object.

VOLUME 12, 2024 64203

M.-S. Yu et al.: Case Study: Optimization Methods With TVM Hybrid-OP on RISC-V Packed SIMD

Second, other bounding boxes are suppressed if they are
too close. Out of the remaining bounding boxes, the next
top-scoring box is then selected, and the first and second steps
are repeated until no more bounding boxes remain. Third, all
bounding boxes that have not been suppressed are returned as
results.

Listing 19 shows the baseline version of NMS, in which
we cannot vectorize if-else statements, nor min, max add,
or other operations. We apply our rewriting rules for
a RISC-V 64-bit hardware target with the P extension;
accordingly, the vector size is eight and each element is of
the int8 type. Listing 20 shows the optimized version of the
NMS algorithm, which we flatten into two loops. The number
of iterations of the inner loop is equal to the vector size, while
for the outer loop, the number of iterations is the original
range divided by 8. The main difference between Listings 19
and 20 is that the code of the latter is vectorizable, whereas
that of the former is not because of the if-else construction
fromLines 11 to 14 in Listing 19, which cannot be vectorized.
In Listing 20, we rewrite the if-else construction using the
ternary operation strategy described in Section IV-B to make
it vectorizable.

Listing 19. Baseline version of the NMS algorithm.

Listing 20. Optimized version of the NMS algorithm.

Once the hybrid script is vectorizable, we divide the axis
with iterator j in line 3 of Listing 19 by XLEN, resulting in

lines 4 and 5 of Listing 20, using the strategy described in
Section IV-A. Notably, we use the vectorize annotation in
line 5 to tell TVM that the instructions in this loop should be
generated into SIMD instructions. Lines 6 to 9 in Listing 19
compute the areas of the intersection. and union between two
boxes. To maintain the accuracy of the data type of int8,
it is necessary to check whether the width and height of the
intersection area are greater than zero in lines 10 and 11 of
Listing 20. To compute the area of the union of the two boxes
under the constraints on the value range for the int8 type,
it is necessary to first subtract the intersection area from the
area of one box and then add the area of the other box to
ensure that the value of the union area will be as precise
as possible, as shown in lines 14 and 15 of Listing 20 and
described in Section IV-C. line 10 in Listing 19 computes
the intersection over union (IoU) value. Because the area of
intersection of two boxes is always smaller than the area of
their union, area of their union, the corresponding integer
division operation cannot be directly applied in the int8
version of NMS, as the calculated IoU value would always
be zero. Therefore, we modify the algorithm to calculate
the union divided by the intersection and check the result
against the inverse of the IoU threshold, as expressed in lines
16 and 17 of Listing 20. Thus, the rewriting of the entire NMS
algorithm is completed.

VI. EXPERIMENTS
To evaluate the performance of the proposed method,
we use NMS as an example and compare the baseline
NMS algorithm with the version optimized using our hybrid
script rewriting strategies and the RISC-V P extension with
our proposed custom instructions. We use the Microsoft
COCO [12] dataset as the input data for testing and the Single
Shot MultiBox detector(SSD) [28] as the neural network
model for object detection.

A. EXPERIMENTAL FLOW AND ENVIRONMENTS
Our experimental flow is divided into three major steps:
compiling the compute graph through TVM, using the LLVM
and GNU toolchains to compile the kernel code and TVM
runtime into RISC-V ELF, and running the compiled RISC-V
ELF executable on the RISC-V simulator Spike with test data
to obtain the final results. Taking NMS as an example, the
experimental flow is shown in Fig. 7. The first step is to
compile the NMS algorithm through TVM,which generates a
kernel code, execution graph, and set of parameters (Param).
The kernel code is in the LLVM IR format and is the
implementation of the NMS algorithm. The execution graph
is a file in JavaScript Object Notation (JSON) format that
describes the operation execution sequence. Param contains
the pre-trained weights or constant data used in neural
network model inference. There is no weight information in
NMS; therefore, there are no parameters in our experiments.
The RISC-V assembly code is generated as part of the
LLVM tool. The host code is the main program that drives

64204 VOLUME 12, 2024

M.-S. Yu et al.: Case Study: Optimization Methods With TVM Hybrid-OP on RISC-V Packed SIMD

FIGURE 6. Flow of the nonmaximum suppression(NMS) algorithm. In this example, the input consists of five candidate bounding boxes. After the
NMS operation, three are excluded and the remaining two represent the ranges of the detected objects.

FIGURE 7. Compilation and execution flow with TVM on RISC-V.

the entire NMS execution flow, which includes topological
sorting of the execution graph to obtain the operation process,
adding parameters to the neural network model, performing
inference, and generating results. The RISC-V ELF file is
a RISC-V executable file compiled via the RISC-V GNU
toolchain. The input bounding boxes are the data generated

by the object detection model. We use TVM to produce a
model containing the NMS operator and other transformed
operators; thus, TVM generates the kernel code, execution
graph, and parameters. To run on the RISC-V simulator,
a RISC-V executable must be compiled using the GNU
toolchain with objects generated by TVM and our host code,

VOLUME 12, 2024 64205

M.-S. Yu et al.: Case Study: Optimization Methods With TVM Hybrid-OP on RISC-V Packed SIMD

FIGURE 8. Object detection flow with the Single Shot MultiBox Detector (SSD) neural network model.

which is also the reason why we use LLVM tools to compile
the kernel code into assembly code. Fig. 8 shows the object
detection flow from the input image to the SSD model
for object detection and finally to the NMS algorithm for
postprocessing. We run this flow based on TVM.

B. EXPERIMENTAL RESULTS
The Microsoft COCO [12] dataset is used to evaluate the
performance and accuracy of the baseline and optimized
NMS algorithms. There are 287k images in the COCO
2017 dataset, including 118k for model training, 41k for the
testing trained model, 5k for validation, and 123k unlabeled
images. We use the 5k validation images as the input data
to evaluate the instruction count and accuracy Fig. 9 shows
the experimental results for two example test images from
the COCO dataset. Panels (a) to (d) correspond to the
image with ID 281553, which contains five labeled objects,
and panels (e) to (h) correspond to the image with ID
465404, which contains 54 labeled objects. Panels (a) and
(e) show the original images, panels (b) and (f) show the
ground-truth labeled data, panels (c) and (g) show the objects
detected with the baseline version of NMS, and (d) and
(h) show the objects detected with the optimized version
of NMS.

We use the instruction count as a performance indicator.
We measured the number of instructions required to execute
NMS in Spike. Fig. 10 shows the speedup results for the
5,000 validation images. The results show that with our
optimizations the performance is improved by factor of
1.28 to 15.29 on the COCO dataset. We find that when
there are more objects in the image, the speedup will be
greater; thus in Fig. 11, we also present the number of objects
in comparison with the speedup results. We take images
255664 and 498919 from the COCO dataset as specific
examples. For image 255664 which contains two objects,
the baseline version requires 228,201,029 instructions to
perform the NMS operations; in the optimized version,
only 176,912,542 instructions are needed, corresponding
to a speedup of 1.28. For comparison, in image 498919,
there are 23 labeled objects; in this case, the baseline
version requires 9,775,751,198 instructions, whereas the
optimized version requires only 639,265,800 instructions,
corresponding to a speedup of 15.29. This is mainly because
in the NMS algorithm, if there are more objects, more

TABLE 2. Instruction count reduction rate for the top ten instructions in
the baseline version of the NMS algorithm.

TABLE 3. Top 10 subword SIMD instructions utilized in the optimized
version of the NMS.

loops must be executed, and the optimized version uses
SIMD instructions to process multiple data elements simul-
taneously to improve performance. We further analyze the
distributions of the instructions before and after optimization,
as illustrated in Fig. 12 and Fig. 13. Before optimization,
the top 10 most frequently occurring instructions account
for 66% of the total; after optimization, our analysis
reveals reductions ranging from 98.48% to 100% for
these instructions, as shown in Table 2. Additionally, the
top 10 SIMD instructions after optimization are presented
in Table 3.
In the baseline version, the most frequently used instruc-

tion is ‘‘bne’’. This is because the NMS algorithm involves
numerous conditional operations, including checking for a
nonzero intersection between two bounding boxes before
calculating the IoU and evaluating whether the computed
IoU exceeds a specified threshold. In the optimized version,

64206 VOLUME 12, 2024

M.-S. Yu et al.: Case Study: Optimization Methods With TVM Hybrid-OP on RISC-V Packed SIMD

FIGURE 9. Test images from the COCO dataset and corresponding detection results. The colored boxes mark the locations of the detected objects.
Upper row: test image 281533. Lower row: test image 465404.

FIGURE 10. Results obtained when using the 5000 validation images in
the Microsoft COCO 2017 dataset as test data to compare the numbers of
instructions used in the baseline and optimized versions.

FIGURE 11. Results obtained when using 5000 validation images from
the Microsoft COCO 2017 dataset as test data, to compare the numbers of
instructions in the baseline and optimized versions. This figure shows the
speedup and the number of objects for each test image in the Microsoft
COCO dataset.

we employ the ternary operation based on rewriting strategy
and replace ‘‘bne’’ with ‘‘CMPEQ8’’ and ‘‘BPICK’’. This
modification not only enables simultaneous data comparisons

FIGURE 12. Statistics for the number of instructions used and executed in
the baseline version of the NMS algorithm.

FIGURE 13. Statistics for the number of instructions used and executed in
the optimized version of the NMS algorithm.

through SIMD instructions but also helps avoid potential
performance losses associated with branch misprediction.
Reducing the instruction count is believed to offer various
benefits, although empirical verification is challenging.
It has been suggested that such optimizations may enhance

VOLUME 12, 2024 64207

M.-S. Yu et al.: Case Study: Optimization Methods With TVM Hybrid-OP on RISC-V Packed SIMD

FIGURE 14. Comparison of the results obtained when multiplying the
instruction counts for the custom load/store instructions by factors of 1,
2, 4, and 8 to analyze the potential speedup under different
microarchitectures and memory hierarchies.

performance by streamlining program execution, potentially
expediting task completion and improving overall system
efficiency. Lowering CPU power consumption also seems
plausible, especially in energy-sensitive environments such
as mobile devices and embedded systems. The assumption
is that fewer instructions may contribute to increased
resource utilization efficiency by minimizing memory access
and register usage demands. Another potential outcome
could be more compact executable code, which might help
address storage space limitations, particularly for systems
with restricted memory. In addition to the mentioned
advantages, our analysis reveals significant reductions in
the number of load and store instructions, reducing the
number of read and write operations to memory. A decrease
in the quantity of these instructions alleviates pressure
on the memory system, potentially resulting in faster
access. This is crucial for enhancing the overall system
efficiency, especially in applications where high efficiency is
essential.

In addition to the number of instructions affecting per-
formance, the cycle of memory load/store instructions may
be influenced by differences in the microarchitecture and
memory hierarchy. To further analyze the impact of various
hardware implementations, we multiplied the instruction
counts for the custom memory load/stores (plse8, psse8) by
factors of 1, 2, 4, and 8 in the optimized version. We observed
a speedup across all images, as shown in Fig. 14 The results
indicate that even with the highest weight (8x), the speedup
factor can still reach 12.219.

We additionally selected 5000 images from the unlabeled
category in COCO 2017 and 5000 images from the validation
category in the COCO 2014 dataset to validate the speedup
results on different datasets, as illustrated in Fig. 15 and
Fig. 16. Here, the performance improvement factors range
from 1.27 to 13.2 and from 2.45 to 16.07, respectively.

We used the API provided for the Microsoft COCO dataset
to obtain the ground-truth labels for the test images and
calculate the mean average precision. Fig. 17 compares
the results for the 5,000 test images between the baseline

FIGURE 15. Results obtained when using 5000 images from the unlabeled
category of the Microsoft COCO 2017 dataset as test data to compare the
numbers of instructions used in the baseline and optimized versions.

FIGURE 16. Results obtained when using 5000 images from the validation
category of the Microsoft COCO 2014 dataset as test data to compare the
numbers of instructions used in the baseline and optimized versions.

and optimized versions. In Fig. 17, IoU denotes the IoU
threshold, and 0.50:0.95 denotes a range of IoU thresholds
from 0.5 to 0.95 in increments of 0.05, corresponding to a
total of 10 different IoU threshold; ‘‘area’’ is used to indicate
the scales across which the average precision is calculated,
with ‘‘small’’ scales corresponding to area < 322 pixels,
‘‘medium’’ scales corresponding to 322 < area < 962 pixels,
and ‘‘large’’ scales corresponding to area > 962 pixels.
The notation ‘‘maxDets’’ indicates the maximum number of
detected objects. For example, the first column represents
the average precision achieved across all 10 IoU thresholds
and all different scales, where the maximum number of
detected objects is 100. Our experimental results show that
the optimized version exhibits a loss in average precision
that ranges from 0.002(@[IoU=0.50:0.95 | area=small |
maxDets=100]) to 0.03(@[IoU=0.50:0.95 | area=large |
maxDets=100]). The main reason for this is that for the
IoU computation, it is necessary to compute the areas of
two bounding boxes, which requires multiple instructions,
and the value range of int8 may not be sufficient to hold
the area value, which may cause a box with a lower
score to be suppressed when two objects of the same class
overlap.

64208 VOLUME 12, 2024

M.-S. Yu et al.: Case Study: Optimization Methods With TVM Hybrid-OP on RISC-V Packed SIMD

FIGURE 17. Average precision of the baseline and optimized NMS
algorithms on the Microsoft COCO 2017 dataset.

VII. RELATED WORKS AND DISCUSSION
The end-to-end deep learning flow includes preprocessing,
model inference, and postprocessing steps. Previous research
aiming to enhance the performance of preprocessing and
postprocessing has focused on two aspects: software and
hardware. Liang et al. [29] proposed a customized hardware
accelerator specifically designed for deep learning algorithm
preprocessing and postprocessing. However, while custom
hardware can be effective at accelerating specific algorithms,
its applicability is limited to optimizations tailored for those
algorithms. Due to these constraints, achieving hardware
acceleration across different algorithms is challenging.
Hence, the present study proposes custom instructions
that integrate software and hardware design aspects. This
approach enables the potential of customized hardware to be
exploited for various algorithms, thereby improving program
execution performance. On the software side, Kim et al. [30]
introduced task-level pipeline parallelism to maximize CPU
and GPU resource utilization, consequently improving object
detection performance. However, acceleration relying solely
on software also has limitations. In our research, we intro-
duce new instructions for calculations commonly used in
algorithms and integrate software and hardware design to
maximize performance.

Nonmaximum suppression (NMS) is widely used as a
postprocessing technique for object detection models and
computer vision tasks. The goal is to select the most
representative targets from among overlapping candidate
detection boxes to eliminate redundant detections. The NMS
algorithm sorts candidate boxes based on their predicted
confidence scores and gradually adds the highest-scoring
boxes to the final detection results while removing any
boxes with overlap above a specified threshold. However,
NMS faces performance challenges, particularly in terms
of computational cost. The computational expense of pair-
wise comparisons with many candidate boxes, and overlap
calculations can significantly affect the processing speed.
Additionally, determining an appropriate overlap threshold
is crucial, as an excessively high or low threshold can
result in missed targets or improper box selection. In the
realm of NMS optimization, Bolya et al. [31] analyzed
the operational characteristics of NMS and reported that

the computation time can be effectively reduced by repre-
senting the intersection-over-union (IoU) operation between
bounding boxes as a symmetric matrix and utilizing GPUs.
However, this method sacrifices a small amount of accuracy
due to redundant suppression. Building upon this concept,
Zheng et al. [32] further modified their research to maintain
the mean average precision(mAP). However, these methods
primarily rely on GPU acceleration, which may not be
suitable for low-power embedded systems.

In recent years, many applications have begun to leverage
the advantages of RISC-V for optimization and acceleration
in lower-power embedded systems. For example, in [33], the
utilization of the P extension of RISC-V led to accelerated
model execution based on TVM. The acceleration achieved
through the P-extension enables faster inference computa-
tions. Reference [34] used the RISC-V vector extension to
accelerate commonly used scan operations in recurrent neural
networks (RNNs), which are crucial for processing sequential
data in applications such as natural language processing and
speech recognition. References [35] and [36] focused on
accelerating computations for convolutional neural networks
(CNNs) and the k-nearest neighbors (k-NN) algorithm,
respectively, through the introduction of custom instructions.
However, these research endeavors primarily concentrated on
accelerating model inference without addressing acceleration
during the preprocessing and postprocessing stages. In our
research, we use NMS, a commonly used postprocessing
step in object detection, as a case study. We design custom
instructions specifically to accelerate NMS computations,
contributing to the broader improvement of essential tasks in
the object detection pipeline.

The choice of using the instruction count as a metric is
constrained by the current limitations of our experimental
environment. Currently, only Spike supports the simulation of
RVP instructions. Future research could explore more accu-
rate performance metrics, such as execution time, memory
behavior, and power consumption analysis. Such exploration
is contingent upon the future support of gem5 [37] or a
RISC-V performance model (Olympia) [38]. Contingent on
this support integrating these advanced simulation environ-
ments would enable a more comprehensive and precise
analysis of our proposed optimizations.

VIII. CONCLUSION
In this research, we propose optimization methods for TVM
hybrid script, employing rewriting strategies and custom
RISC-V instructions. Our experiments demonstrate a notable
reduction in instruction count by a factor of approximately
1.28 to 15.29, with a minimal decrease in average precision
(0.002 to 0.03). In the particular example of the NMS
algorithm, the reduction in instructions correlates with the
number of objects in the target image. Experiments were
conducted on a single CPU core utilizing the RISC-V P
extension with our custom instructions, oriented toward
low-power embedded systems.

VOLUME 12, 2024 64209

M.-S. Yu et al.: Case Study: Optimization Methods With TVM Hybrid-OP on RISC-V Packed SIMD

REFERENCES
[1] Z.-Q. Zhao, P. Zheng, S.-T. Xu, and X. Wu, ‘‘Object detection with deep

learning: A review,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 30, no. 11,
pp. 3212–3232, Nov. 2019.

[2] M.-T. Chiu, H.-Y. Cheng, C.-Y. Wang, and S.-H. Lai, ‘‘High-accuracy
RGB-D face recognition via segmentation-aware face depth estimation
and mask-guided attention network,’’ in Proc. 16th IEEE Int. Conf. Autom.
Face Gesture Recognit. (FG), Dec. 2021, pp. 1–8.

[3] Y. Zhang, N. Suda, L. Lai, and V. Chandra, ‘‘Hello edge: Keyword spotting
on microcontrollers,’’ 2017, arXiv:1711.07128.

[4] D. Seo, H.-S. Oh, and Y. Jung, ‘‘Wav2KWS: Transfer learning from
speech representations for keyword spotting,’’ IEEE Access, vol. 9,
pp. 80682–80691, 2021.

[5] U. Kamath, J. Liu, and J. Whitaker, Deep Learning for NLP and Speech
Recognition, 1st ed. Berlin, Germany: Springer, 2019.

[6] I. Fursov, A. Zaytsev, P. Burnyshev, E. Dmitrieva, N. Klyuchnikov,
A. Kravchenko, E. Artemova, E. Komleva, and E. Burnaev, ‘‘A differen-
tiable language model adversarial attack on text classifiers,’’ IEEE Access,
vol. 10, pp. 17966–17976, 2022.

[7] M. Abdelaty, R. Doriguzzi-Corin, and D. Siracusa, ‘‘DAICS: A deep
learning solution for anomaly detection in industrial control systems,’’
IEEE Trans. Emerg. Topics Comput., vol. 10, no. 2, pp. 1117–1129,
Apr. 2022.

[8] K.-J. Wang and Y.-C. Qiu, ‘‘A system deployment model of multi-CCD
automatic optical inspection for economical operations,’’ IEEE Access,
vol. 10, pp. 58040–58049, 2022.

[9] Y. Deng, X. Pan, X. Wang, and X. Zhong, ‘‘Vison-based 3D shape
measurement system for transparent microdefect characterization,’’ IEEE
Access, vol. 7, pp. 105721–105733, 2019.

[10] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, M. Cowan, H. Shen,
L. Wang, Y. Hu, L. Ceze, C. Guestrin, and A. Krishnamurthy, ‘‘TVM:
An automated end-to-end optimizing compiler for deep learning,’’ in Proc.
USENIXConf. Oper. Syst. Design Implement. (OSDI), Carlsbad, CA, USA,
2018, pp. 579–594.

[11] K.-H. Chen, C. Su, C. Hakert, S. Buschjäger, C.-L. Lee, J.-K. Lee,
K. Morik, and J.-J. Chen, ‘‘Efficient realization of decision trees for real-
time inference,’’ ACM Trans. Embedded Comput. Syst., vol. 21, no. 6,
pp. 1–26, Nov. 2022.

[12] T. Y. Lin, M.Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár,
and C. L. Zitnick, ‘‘Microsoft COCO: Common objects in context,’’
in Proc. Eur. Conf. Comput. Vis. Zurich, Switzerland: Springer, 2014,
pp. 740–755.

[13] T.-L. Chen, Y.-R. Chen, M.-S. Yu, and J.-K. Lee, ‘‘NNBlocks: A blockly
framework for AI computing,’’ J. Supercomput., vol. 77, no. 8,
pp. 8622–8652, Aug. 2021.

[14] M.-Y. Lai, C.-Y. Sung, J.-K. Lee, and M.-Y. Hung, ‘‘Enabling Android
NNAPI flow for TVM runtime,’’ in Proc. 49th Int. Conf. Parallel Process.,
Edmonton, AB, Canada, Aug. 2020, pp. 1–8.

[15] Y. Wen, Q. Guo, Z. Du, J. Xu, Z. Zhang, X. Hu, W. Li, R. Zhang,
C. Wang, X. Zhou, and T. Chen, ‘‘Enabling one-size-fits-all compilation
optimization for inference across machine learning computers,’’ IEEE
Trans. Comput., vol. 71, no. 9, pp. 2313–2326, Sep. 2022.

[16] X. Han and Y. Zhang, ‘‘Decomposition-coordination-based voltage control
for high photovoltaic-penetrated distribution networks under cloud-edge
collaborative architecture,’’ Int. Trans. Electr. Energy Syst., vol. 2022,
pp. 1–20, Jan. 2022.

[17] L. Zheng and T. Chen, ‘‘Optimizing deep learning workloads on ARM
GPU with TVM,’’ in Proc. ReQuEST, Williamsburg, VA, USA, 2018,
pp. 1–9.

[18] P. Y. Chang, T. L. Chen, Y. T. Huang, M. S. Yu, and J. K. Lee,
‘‘C++OpenCL4TVM: Support C++OpenCL kernel for TVM NN
operators,’’ in Proc. IWOCL, Bristol, U.K., 2022, pp. 1–2.

[19] T. Yang, X. Han, H. Li,W. Li, and A. Y. Zomaya, ‘‘Parallel scientific power
calculations in cloud data center based on decomposition-coordination
directed acyclic graph,’’ IEEE Trans. Cloud Comput., vol. 11, no. 3,
pp. 2491–2502, Jul./Sep. 2023.

[20] C. Lattner and V. Adve, ‘‘LLVM: A compilation framework for lifelong
program analysis & transformation,’’ in Proc. Int. Symp. Code Gener.
Optim., 2004, pp. 75–86.

[21] E. Cui, T. Li, and Q. Wei, ‘‘RISC-V instruction set architecture extensions:
A survey,’’ IEEE Access, vol. 11, pp. 24696–24711, 2023.

[22] E. Cheshmikhani, B. Peccerillo, A. Mondelli, and S. Bartolini, ‘‘A general
framework for accelerator management based on ISA extension,’’ IEEE
Access, vol. 10, pp. 120702–120713, 2022.

[23] C.-C. Lin, C.-L. Lee, J.-K. Lee, H. Wang, and M.-Y. Hung, ‘‘Accelerate
binarized neural networks with processing-in-memory enabled by RISC-V
custom instructions,’’ in Proc. 50th Int. Conf. Parallel Process. Workshop,
Lemont, IL, USA, Aug. 2021, pp. 1–8.

[24] H. Lin, P. Chen, Y.-S. Hwang, and J.-K. Lee, ‘‘Devise rust compiler
optimizations on RISC-V architectures with SIMD instructions,’’ in Proc.
48th Int. Conf. Parallel Process., Kyoto, Japan, Aug. 2019, pp. 1–7.

[25] B.Marshall, D. Page, and T. Pham, ‘‘Implementing the draft RISC-V scalar
cryptography extensions,’’ in Proc. Hardw. Architectural Support Secur.
Privacy, Virtual, Greece, Oct. 2020, pp. 1–8.

[26] S.-C. Wang, L.-Y. Yu, L.-A. Her, Y.-S. Hwang, and J.-K. Lee, ‘‘Pointer-
based divergence analysis for OpenCL 2.0 programs,’’ ACM Trans.
Parallel Comput., vol. 8, no. 4, pp. 1–23, Dec. 2021.

[27] S.-C. Wang, L.-C. Kan, C.-L. Lee, Y.-S. Hwang, and J.-K. Lee,
‘‘Architecture and compiler support for GPUs using energy-efficient affine
register files,’’ ACM Trans. Design Autom. Electron. Syst., vol. 23, no. 2,
pp. 1–25, Mar. 2018.

[28] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Y. Fu, and
A. C. Berg, ‘‘SSD: Single shot multibox detector,’’ in Proc. 14th Eur. Conf.
Amsterdam, The Netherlands: Springer, Oct. 2016, pp. 21–37.

[29] S. Liang, X.Ning, J. Yu, K.Guo, T. Lu, C. Tang, S. Zeng, Y.Wang, D.Yang,
and H. Yang, ‘‘Efficient computing platform design for autonomous
driving systems,’’ in Proc. 26th Asia South Pacific Design Autom. Conf.
(ASP-DAC), Tokyo, Japan, Jan. 2021, pp. 734–741.

[30] R. Kim, G. Kim, H. Kim, G. Yoon, and H. Yoo, ‘‘A method for optimizing
deep learning object detection in edge computing,’’ in Proc. Int. Conf.
Inf. Commun. Technol. Converg. (ICTC), Jeju, Korea (South), Oct. 2020,
pp. 1164–1167.

[31] D. Bolya, C. Zhou, F. Xiao, and Y. J. Lee, ‘‘YOLACT++ better real-time
instance segmentation,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 44,
no. 2, pp. 1108–1121, Feb. 2022.

[32] Z. Zheng, P. Wang, D. Ren, W. Liu, R. Ye, Q. Hu, and W. Zuo,
‘‘Enhancing geometric factors in model learning and inference for object
detection and instance segmentation,’’ IEEE Trans. Cybern., vol. 52, no. 8,
pp. 8574–8586, Aug. 2022.

[33] Y.-R. Chen, H.-H. Liao, C.-H. Chang, C.-C. Lin, C.-L. Lee, Y.-M. Chang,
C.-C. Yang, and J.-K. Lee, ‘‘Experiments and optimizations for TVM on
RISC-V architectures with P extension,’’ in Proc. Int. Symp. VLSI Design,
Autom. Test (VLSI-DAT), Aug. 2020, pp. 1–4.

[34] H.-M. Lai and J.-K. Lee, ‘‘Efficient support of the scan vector model
for RISC-V vector extension,’’ in Proc. 51st Int. Conf. Parallel Process.
New York, NY, USA: Association for Computing Machinery, Aug. 2022,
pp. 1–8, doi: 10.1145/3547276.3548518.

[35] N. Wu, T. Jiang, L. Zhang, F. Zhou, and F. Ge, ‘‘A reconfigurable
convolutional neural network-accelerated coprocessor based on RISC-V
instruction set,’’ Electronics, vol. 9, no. 6, p. 1005, Jun. 2020.

[36] H.W. Oh and S. E. Lee, ‘‘The design of optimized RISC processor for edge
artificial intelligence based on custom instruction set extension,’’ IEEE
Access, vol. 11, pp. 49409–49421, 2023.

[37] Gem5. Accessed: Dec. 6, 2022. [Online]. Available: http://www.gem5.org
[38] Risc-v Performance Model. Accessed: Dec. 6, 2022. [Online]. Available:

https://github.com/riscv-software-src/riscv-perf-model

MENG-SHIUN YU received the B.S. degree in
electrical engineering from the National Chin-Yi
University of Technology, and the M.S. degree in
electrical engineering fromNational Chung Cheng
University. He is currently pursuing the Ph.D.
degree with the Department of Computer Sci-
ence, National Tsinghua University, Taiwan. His
research interests include compiler optimization
for deep neural networks and computer vision and
compiler construction for hardware accelerators.

64210 VOLUME 12, 2024

http://dx.doi.org/10.1145/3547276.3548518

M.-S. Yu et al.: Case Study: Optimization Methods With TVM Hybrid-OP on RISC-V Packed SIMD

CHUAN-YUE YUAN is currently pursuing the
degree with the Department of Computer Sci-
ence, National Tsing Hua University, Taiwan.
His thesis advisor is Prof. Jenq-Kuen Lee. His
research interests include compiler optimizations
on RISC-Vwith SIMD computations, AI compiler
optimizations, and compiler analysis for program
reliability.

TAI-LIANG CHEN received the B.S. degree in
information management from Shih Chien Uni-
versity, Taipei, Taiwan, in 2002, the M.S. degree
in computer science and information engineering
from Asia University, Taichung, Taiwan, in 2005,
and the Ph.D. degree in computer science from
National Tsing Hua University, Hsinchu, Taiwan,
in 2022. His research interests include visual
programming language, parallel computing, and
compiler design and optimizations.

JENQ-KUEN LEE received the M.S. and Ph.D.
degrees in computer science from Indiana Univer-
sity, Bloomington, IN, USA, in 1991 and 1992,
respectively. He is currently a Professor with
the Department of Computer Science, National
Tsing Hua University, Taiwan, which he joined,
in 1992. He also leads the research team in the
effort to develop AI compilers using RISC-V
with SIMD computations. His current research
interests include optimizing compilers, AI frame-

work compilers, embedded multicore compilers and systems, and computer
architectures. He received the Google Research Award in 2009. In addition,
he was a recipient of Taiwan MOEA Economic Contribution Award (Deep
Plow Award) in 2010. From 2015 to 2018, he participated in the new version
of the OpenCL proposals with the Khronos OpenCLDSP Feature Set. He has
given presentations on his research at the TVM Conference, in 2018, 2019,
2020, and 2021.

VOLUME 12, 2024 64211

