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ABSTRACT In its long history, chum salmon has been propagated by hatching and stocking. Age assessment
is necessary to monitor the migration status of chum salmon, and it is desirable to increase the number
of assessments in order to obtain precise and accurate knowledge about salmon as a resource. This study
introduced an automated age assessment system that uses information technologies, such as artificial neural
networks and image processing, to improve efficiency compared to manual assessment. Specifically, we first
developed a method for extracting scale regions from scale replica sample images and creating a database.
We then used a resting zone detection technique based on semantic segmentation, allowing us to automate
evaluation using scaled images as part of the age assessment method. Age assessment from resting zone
images was realized by an image processing method based on the skills of the staff of the Japanese Fisheries
Research Institute, such as an age counting method using circular structures. Experimental results show that
our proposed method outperforms other approaches; salmon age assessment was accurate to within an error
of 0.5 years. Our method encompasses automatic data processing of scale images, resting zone detection,
and age assessment, and will contribute to the efficiency of the Fisheries Research Institute in terms of both
work efficiency and salmon data research.

INDEX TERMS Age assessment, scale analysis, fisheries data, deep learning, neural network, image
processing, object detection.

I. INTRODUCTION
Seafood is an important food resource for mankind, and the
status of fisheries resources must be elucidated in order to
use those resources sustainably. Since it is impossible to
visualize the entire ocean, monitoringmethods are commonly
used in fisheries resource surveys [1], [2], [3]. Chum salmon
have proliferated through hatching and stocking by humans,
and the number and age distribution of migrating chum
salmon are the primary data for understanding their resource
status [4]. The age of all chum salmon caught as seafood
needs to be determined. Age is estimated from the scales of
salmon captured as samples, and the number of fish at each
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age is predicted from the age distribution of the sample and
the chum salmon catch [1], [2], [3]. Recently, approximately
20 million chum salmon were observed in the waters around
Hokkaido, Japan. Hokkaido’s share of the salmon catch
exceeds 80% of Japan’s total. The number of samples needed
for age estimation is approximately 20,000 fish, however,
to improve the accuracy of distribution estimation for four
or more ages, it is desirable to have samples of more than
20,000 fish. To that end, it is essential to speed up age
assessment based on the examination of scales.

Fisheries Research Institutes in Japan carry out marine
resource management, research, and surveys for fishers. The
age of many fish species can be determined by analyzing
scales and otoliths, which are manifestations of the growth
state of the fish often used in fisheries science [5], [6], [7].
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More than 20 years ago, the Fisheries Research Institute
in Hokkaido created salmon scale samples and predicted
the number of chum salmon visits by age assessment,
as shown in Fig. 1. Specifically, for salmon scale samples,
Fisheries Research Institute staff annually collect scales from
approximately 20,000 salmon that migrate to rivers and
estuaries in Hokkaido and transfer them to plastic plates
to create replica scale samples (upper image in Fig. 2).
In addition, experts predict the number of visiting salmon
through the use of magnifying glasses to assess the age
of replica samples based on their scale patterns, and they
annually calculate the number of individuals of each age
group based on the results of 20,000 samples. These tasks
take up a large percentage of the experts’ annual work
time and require a great deal of effort by a limited number
of individuals due to the specialized nature of the work.
Comprehensive investigations based on the scales and climate
change data collected to date are required for the root
cause analysis of defects [4], [8], [9], [10], [11], [12].
Specifically, since the scale pattern embeds the growth record
of salmon, a non-fishing survey based on the scale features of
many replica samples should be conducted. For this reason,
a system for the data conversion of the scale replicas stored at
the Fisheries Research Institute and the subsequent extraction
of scale features is required by the institute staff. However,
the time for such investigations is limited because the work
of age assessment requires a great deal of labor. Thus, the
efficiency of age assessment work at Fisheries Research
Institutes must be improved by utilizing information
technology.

Information science and technology-based analyses of
scales have been conducted previously [13], [14], [15],
[16], [17], [18]. Specifically, age assessment methods
utilizing image processing and neural networks have been
proposed [16], [17], [18]. These methods [16], [17] manually
extract scale regions from scale images from plastic plates
using a microscope to obtain images for age assessment,
and then calculate age using image processing and neural
networks. One method [16] assesses age by applying image
processing to focus on the shading of pixels according to
the annual rings of scales. However, this method is affected
by variations in the shape and spacing of scale patterns
among individual salmon, as well as by the unevenness
of pixel shading, making it difficult to assess the age of
salmon consistently. Another method [17] classifies annual
ring labels for each patch image, which makes it difficult to
detect resting zones, which are the curves that determine age,
on a pixel-by-pixel basis. This difficulty reduces the accuracy
of age assessment. Therefore, these methods are still in the
basic research stage of scale age analysis and have not yet led
to high accuracy or to the automation of scale age assessment
from replica samples from plastic plates. On the other hand,
one method [18] used neural networks to assess the age of
salmon based on raw scale images taken with a microscope;
the age can be estimated as an image classification task.
However, since that method is a classification model of

FIGURE 1. Left figure presents the five districts and the location of
Fisheries Research Institute of Eniwa and the Eastern Hokkaido Center,
and right figure shows the workflow of salmon age assessment.

images, it is difficult to obtain the positions and numbers of
resting zones or false annual rings (lower image in Fig. 2) on
the scales as output data, which are what expert staff focus
on during age assessment [19], [20]. The automation of the
age assessment process should be based on the integration of
experts’ decisions and strategies, coupled with deep learning
and image processing technologies. From the above, it is
clear that it is necessary to construct a new system that
simultaneously performs feature detection of scale patterns
on scales while automating age assessment with high per-
formance to improve the operation of the Fisheries Research
Institute. For this purpose, it is especially important that the
processing to be done by the new system reflect the current
age assessment process conducted by experts working at
Japanese Fisheries Research Institutes, such as the detection
of resting zones that signify the age of the salmon and the
method of age assessment based on circular structures [21].
Therefore, to speed up high-accuracy scale age assessment,
it is necessary to automatically extract scale regions from
replica samples to create a database of scale images
and to construct a method that integrates deep learning
and image processing to improve the performance of age
assessment.

This paper proposes a method for automatically assessing
the age of salmon based on their scales using deep learning
and image processing. The proposed method is overviewed
in Fig. 3. First, scale regions are extracted from replica
sample images by a fine-tuned convolutional neural network
(CNN) [22] that detects objects based on deep learning [23].
Next, each scale region image is linked to an individual
salmon by labeling based on clustering [24] using the position
data of multiple extracted scale regions. The resting zone
is then detected on scale images based on the semantic
segmentation model [25]. Finally, scale age is assessed by
expanding the resting zone image using polar coordinates
based on the scale center and calculating the number of
resting zones. At this point, precise age assessment is realized
by supplementing the missing parts of the detected resting
zones. Thus, it is possible to automatically assess the age of
salmon from replica sample images with high accuracy.

The contributions of our research include the following:
- Partial streamlining and automation of scale age

assessment operations
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FIGURE 2. Replica sample of chum salmon scales and detailed salmon
scale features.

Most scales can be assessed by a computer running
the software that contains our method, while scales that
are difficult to assess because of defects in shape can be
handled by expert staff. This approach is expected to improve
operational efficiency. To automate the process, the system
must have a certain level of performance. However, the
present study newly developed two methods that enable
precise age assessment: a method for completing the missing
part of the resting zone, and a method for restoring the
circulus and excluding false rings from the age count, which
is based on the process used by Fisheries Research Institute
staff who predict the circular structure of the part of the scale
interrupted by the resting zone.

- Data sufficiency for age assessment and resting zones
for predicting salmon migration

The proposed method enables the age assessment of
a larger number of individuals than can be assessed by
the conventional method at the Fisheries Research Insti-
tute. Therefore, it is expected to improve the reliability
of the regression rate [1], [2], [3] calculated from the
number of released salmon and the number of migrating
salmon. The regression rate is an important indicator in the
determination of stock trends because it can sequentially
predict the percentage of migrating 3-year-old salmon that
will return the following year as 4-year-olds. Furthermore,
in addition to age assessment, the proposed method can
comprehensively create an image database of scale replicas
and detect resting zones. Therefore, a large amount of
replica sample data stored in Fisheries Research Institutes to
investigate poor catches can be effectively utilized by institute
staff.

This paper is organized as follows. Scale sampling of chum
salmon and age assessment at the Fisheries Research Institute
inHokkaido are presented in Section II. The proposedmethod
is presented in Section III. Experimental results verifying the
effectiveness of the proposed method are shown in Section V.
Finally, concluding remarks are presented in Section VI.

II. SCALE SAMPLING OF CHUM SALMON AND AGE
ASSESSMENT AT FISHERIES
This section describes the age assessment operations at the
Fisheries Research Institute. This work is performed by
several staff according to a manual based on [21]. Scales
used for age assessment are obtained from salmon caught
in several estuaries in Hokkaido. Salmon scale replicas are
prepared by molding the scales in plastic, after which the
replicas are stored at the institute. Fig. 2 shows a replica
sample of a salmon scale. Each plate includes 2-3 scales from
each of 20 salmon [26]. For age assessment, experts examine
the replica samples with a magnifying glass and assess the
salmon’s age based on the number of resting zones, as shown
in Fig. 4 [19]. Three experts assess age comprehensively from
the results of these evaluations. The resting zones shown
in Fig. 2 are areas where the circuli are closely spaced,
indicating that they formed in winter, when growth was
stagnant [19], [20]. In other words, when water temperature
and the growth rate are both high, the gap between the
circuli widens, while, when the water temperature is low,
the growth rate is low, and thus the gap between the circuli
narrows. By counting the resting zones, the fisheries staff
can determine how many winters a salmon has spent in the
ocean, i.e., its age. When an area of interrupted rest zone
occurs, the staff counts the age while predicting the circular
structure. Specifically, the staff finds areas with no defects
and where the number of the resting zones is easy to count
and then predicts an extension line from those areas. Note
that the experts exclude the fake annual ring found in the
nucleus of the scales from the resting zone count because it is
located in an area other than the one where age traits form
during the first and second years of growth (circuli 15-17
from the nucleus). For samples that are difficult to assess
due to missing scales, age is confirmed by viewing the scales
directly under a microscope. The number of missing scales
should be small, and an automatic age assessment of a large
number of scales with clean shapes is necessary.

III. AGE ASSESSMENT USING NEURAL NETWORKS AND
IMAGE PROCESSING
This section describes a method using neural networks and
image processing to assess salmon age collaboratively based
on images of scales. The proposed method consists of four
phases, as shown in Fig. 3. In the first phase, a replica
sample of the scales (described above) is scanned by a high-
resolution scanner. In the second phase, scale regions are
detected based on the object detection model, and a database
of scale images is created based on the k-means [24] method.
In the third phase, resting zones are detected by PSPNet [25],
which is a segmentation model that operates via a CNN.
Since the previously reported method of detecting resting
zones in scale images [15] performs well, we use the same
method here. In the fourth phase, salmon age is assessed by
counting the resting zones, which is done by expanding the
polar coordinates of the image from the nucleus of the scale
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FIGURE 3. Overview of the proposed method. In pre-processing, scale replica samples are scanned (Section III-A). Next, scale regions are detected based
on YOLOv5 (Section III-B). The resting zones are then detected by PSPNet, which is a semantic segmentation model (Section III-C). Finally, image
processing (Section III-D) assesses the age of the salmon based on one of its scales.

FIGURE 4. Scale magnifier at the Fisheries Research Institute.

using image processing. The following sections describe each
of these processes in greater detail.

A. PRE-PROCESSING: SCANNING OF SCALE REPLICA
SAMPLES USING A HIGH-RESOLUTION SCANNER
A scan of the replica sample is required to create an
automated system for age assessment. Therefore, as a

FIGURE 5. Settings of film scanner for the high-resolution scanning of
replica samples in III-A.

pre-processing step for evaluating scale age, a replica of the
scale is scanned at high resolution. Specifically, the replica
is scanned using a film scanner ,1 as shown in Fig. 3. The
scanner illuminates the replica and reads the transmitted light.
The replica is placed in the center of the scanner and its
outline is scanned. Specifically, we adjust the scan area using
the software (Fig. 5) supplied with the scanner (red box on
the right in the figure) and scan the replica samples (red box
on the bottom left). In the present study, the resolution of the

1URL: https://www.epson.jp/products/scanner/gtx980/

64782 VOLUME 12, 2024



G. Suzuki et al.: Age Assessment Using Chum Salmon Scale by Neural Networks and Image Processing

FIGURE 6. Example of scale regions detected using YOLOv5 and labeled
scales. The red boxes indicate scale regions detected by III-B. The blue
numerals indicate individual salmon numbers (1)–20), and each scale of
each individual salmon is labeled with the letter a, b, or c by k-means
clustering.

scanned images was 27,716 × 13.010, and the film scanner
makes it possible to capture the delicate patterns of the scales.

B. SALMON SCALE DETECTION BASED ON YOLOV5
This section explains the detection of salmon scale regions
using YOLOv5 [27]. More than one scale per individual
are arranged in a column in a sample image of scales.
The scales vary slightly in size depending on the age of
the fish, but the overall average scale size is relatively
consistent across ages. However, there are cases in which
fisheries staff decide not to use scales for age assessment
because they are missing too many, and the collected scales
are marked with crosses (replica sample image in Fig. 3).
Furthermore, since scales are biological samples, there are
cases in which not all scales were collected in triplicate
(Fig. 6). Therefore, it is necessary to devise a method for
the precise detection of scale areas. For example, an image
processing approach based on changes in pixel values can be
considered, but it would be necessary to create conditions
that take into account the positions of replicas, characters,
and lines, and the conditions may become more complex
depending on the state of each replica. Therefore, we used
the object detection model YOLOv5 to enable the proposed
method to detect scale regions that are robust to changes
in scale position, orientation, and size. YOLOv5 is a model
that simultaneously detects the target object location and
classifies the object. First, the model is trained by fine-tuning
using other prepared scale images of chum salmon. Fine-
tuning entails the adaptation of knowledge of object shape
and color learned in images from other domains to train
the target domain image [22]. This enables the detection
of scale regions that are robust to changes in the position,
orientation, and size of scales. In training, the loss of
YOLOv5 is calculated as a combination of three individual
loss components as follows:

lossYOLO = λ1Lcls + λ2Lobj + λ3Lloc (1)

where λ is the balance weight. Lcls calculates the error of
the classification task. Lobj computes the error in detecting
whether a target object exists in a particular grid cell
of the training image divided into rectangular regions. Lloc is

the loss of intersection over union (IoU) [28] and calculates
the error in localizing the object in the grid cell. Then, the
proposed method detects the scale region by inputting target
images of salmon scales acquired during III-A into the trained
model. Fig. 6 shows an example of scale region detection
using YOLOv5. The red boxes indicate the detected scale
regions. Because scales may not fit within a red box in
YOLOv5 detection, a box can be enlarged by moving the top
line up or the bottom line down.

As shown in Fig. 6, each replica sample consists of
up to three scales from each of 20 salmon. On occasion,
a single scale or two scales were collected from an individual,
instead of the usual three, when scales that exhibited severe
deficiencies were eliminated. To automate age assessment,
it is necessary to associate the unique identification number
of each salmon in the replica sample with every image of its
scales detected using YOLOv5. Therefore, we use clustering
to label scale regions detected byYOLOv5. The k-means [24]
method, a nonhierarchical clustering method for machine
learning, is an algorithm for separating a set of multivariate
numerical data into an arbitrary number of clusters. Since
the numbers of vertical and horizontal arrangements of scale
replica samples vary from one Fisheries Research Institute
to another, the k-means method, which allows adjustment of
the number of clusters, helps label various replica samples.
First, the proposed method obtains the center coordinates
of each scale region detected by YOLOv5. Next, each scale
region’s clustering is carried out using the k-means method.
The numbers of clusters for k-means are set to 10 along the
x-axis and 6 along the y-axis, since the replica sample in
this study has scales arranged in 10 columns (Nx = 10) and
6 rows (Ny = 6). In the proposed method, the segmentation
of scale regions is achieved by applying the k-means method
separately to the cluster centers along each axis direction
(x- and y-axes) of the scale regions, as shown in Fig. 7.
Specifically, the clustering procedure using k-means is as
follows. Step 1: Randomly assign cluster numbers from 1 to
Nx (Ny in the y-axis direction) to the center coordinate data of
each scale region. Step 2: Iterate the following two processes
until the cluster number does not change. Step 2-1: Calculate
the coordinates of the cluster’s center for each cluster number
using the center coordinate data of the scale region. Step 2-
2: Update the cluster number of each piece of data to the
cluster number with the closest cluster’s center coordinates.
Finally, the obtained clustering results are used to label
the scale regions. Labeling is performed on the obtained
clustering results based on the placement rules used by the
Fisheries Research Institute to create scale replica samples
as described in Section II. Specifically, as shown in Fig. 6,
based on the clustering results, each salmon is associated with
its scales by assigning a numerical label from 1 to 20 as
the individual salmon identifier, with each scale from that
individual being designated as a, b, or c. From the above, the
scale region extraction results are labeled, and then aligned
to create scale region images denoted as Ii,j (where i ranges
from 1 to 20, representing the individual salmon, and j can
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FIGURE 7. Overview of scale region clustering.

be either a, b, or c, corresponding to the scales of the same
salmon).

C. RESTING ZONE DETECTION BASED ON PSPNET
Here, we used a segmentation-based neural network model
to detect rest zones in salmon scale images based on [15].
A resting zone of salmon scales is caused by the narrowing
of the distance between scale circuli when the scales are
formed during cold water temperatures in winter. Since the
identification of resting zones by experts using a magnifying
glass is time-consuming, it is essential to automate resting
zone detection using neural networks.

1) INTRODUCING THE PSPNET NETWORK
Semantic segmentation is the estimation of the class of each
pixel in an image. It is widely used in research to separate
pedestrians, sidewalks, and vehicles in images for automated
driving [29], [30]; to detect defects in material images [31];
and to process medical images [32], [33], [34]. SegNet [30]
and U-Net [34], the best known networks in semantic
segmentation, use an encoder-decoder structure [35], [36],
which many recent semantic segmentation systems employ.
PSPNet, which we use for resting zone detection, also
has an encoder-decoder structure, but this model consists
of a pyramid pooling module, as described in [37] and
[38], between the encoder and decoder. In general, CNNs
used in semantic segmentation artificially determine the
size and scale of the input, which leads to a decrease
in recognition accuracy for partial images. To solve this
problem, various approaches that incorporate a wide range of
contexts as additional information have been proposed [37],
[39]. Among them, PSPNet is a model that applies a pyramid
pooling module, which uses multiresolution and multiscale
features as context, to semantic segmentation. When the
feature map obtained at the encoder side is enlarged, it is
possible to capture features with different scales using the
pyramid pooling module, which enlarges the feature map at
multiple scales. This enables the generation of fixed-length
representations regardless of image size or scale. In other
words, PSPNet can pick up both the global context of the

FIGURE 8. Overview of PSPNet-based resting zone detection.

image and information about smaller parts of the image,
and it is robust to object deformation [39]. This makes it
effective for detecting resting zones on scales that consist
of continuous curves and shapes similar to those of normal
circuli. In the following, we outline the network architecture
of PSPNet and detail a technique for identifying resting zones
within scale region images.

2) PSPNET NETWORK ARCHITECTURE
PSPNet is a network that adds a pyramid pooling module to
the terminal layer of RESNet [40]. The network architecture
is shown in Fig. 8. PSPNet first extracts a feature map
for the input image by CNN (ResNet), which is pretrained
with the correct labels of the resting zone of the scale based on
the dilated network strategy [35], [41]. During this extraction,
the feature map is 1

8 of the original input image due to
downsampling. Next, max-pooling is applied to the feature
map by passing it through four pyramid-type pooling layers.
The features are represented as the whole, a half, and small
portions of the image by multiscale max-pooling of 1 × 1,
2 × 2, 3 × 3, and 6 × 6. Then, dimensionality reduction in
the channel direction is performed using a 1 × 1 convolution
layer. If the number of layers in the pyramid pooling module
is M , the number of channels in each feature map after
reduction is 1

M . Next, each feature map is upsampled by
bilinear interpolation with convolution processing for each
size. The four upsampled feature maps are combined with
the channels behind the original feature maps. This produces
an extended feature map with both global context and local
information. Finally, a 1 × 1 convolution is applied to each
element in the channel direction of the extended feature map
to generate a prediction map for the resting zone.

To detect scale resting zones, ResNet is trained using
scale images and correct labels created by experts based
on the scale images. First, the scale and correctly labeled
images are divided into rectangular patch images Ii,j(w,h)
with a width w of 10 (w = 1, 2, · · · , 10) and a height h
of 13 (h = 1, 2, · · · , 13). Next, the resting zone detection
model is constructed by training with the original segmented
image and the image with the correct label. Specifically,
PSPNet calculates a loss for each pixel in the training image.
This loss is based on cross-entropy loss using probability,
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FIGURE 9. Details of the age assessment.

and the loss is used by PSPNet to calculate the probability
of any given pixel being in the resting zone. Cross-entropy
loss is an important element in neural network classification
problems, including semantic segmentation, and is often used
for training. In the training phase, for example, when the
output value of a pixel in a patch output from PSPNet is z
and the index of the correct answer class of the corresponding
pixel (pixel in the resting zone) is q, the loss is calculated
using probability-based cross-entropy loss as in the following
formula:

loss = −log
(

exp(zq)∑C
r=1 exp(zr )

)
, (2)

where C is the number of classes. Here we use the case of
C = 2 to detect whether or not the pixel in question lies in the
resting zone. Then, the resting zone is detected by inputting
the segmented scale images of the test into the constructed
resting zone detection model as follows:

Oi,j(w,h) = PSPNet(Ii,j(w,h)). (3)

Finally, the output image Oi,j(w,h) group for each patch is
combined into an image of the same size as the input image
to obtain a detection image Oi,j of the rest band. This process
allows the detection of resting zones at the pixel level based
on the overall context of the resting zone and local features.

D. AGE ASSESSMENT BASED ON IMAGE PROCESSING
Next, we assess salmon age from a scale image using image
processing. Counting the resting zones makes it possible
to assess the age of a salmon based on the number of
times it has overwintered. Specifically, we describe a method

for assessing age from the resting zones based on polar
coordinate expansion and line interpolation. Experts at the
Fisheries Research Institute assess scale age by counting
the resting zones from the nucleus outward. In the previous
method based on image processing, salmon age was assessed
by counting resting zones using the same method used by the
experts [16]. Therefore, in the proposed method, the nucleus
of the scale is calculated, pixel values are referenced from
the nucleus to the contour of the scale, and age is assessed
based on the number of resting zones detected in the previous
section.

1) DETERMINING THE NUCLEUS OF A SCALE
Patterns in salmon scales appear as concentric circles, which
are often half ellipses rather than regular circles. As a result,
determining the center of a scale by using circle detection
methods like the Hough transform can be a challenging
task [42]. Therefore, we use a nucleus calculation method
based on the pattern shapes of scales using [16]. First, the
pattern of a salmon scale is characterized by concentric
overlapping circles, and their stripes are oriented toward
the center of the scale. Therefore, the Fourier intensity is
calculated from the 2D Fourier transform of a small section
of the input image. The direction of the frequency intensity
with the highest value is used as the direction of the pattern to
calculate the line toward the center. Finally, by counting the
intersections of lines in each section of the image divided into
a grid, the section with the highest number of intersections is
designated the nucleus of the scale. To enhance the precision
of center calculation, the final nucleus is determined by
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employing the same process, during which the calculated
nucleus section of the scale is divided into grids.

2) EXPANDING THE RESTING ZONE IMAGE INTO POLAR
COORDINATES AND CORRECTION
To count the resting zones, a rectangular image is generated
by transforming the resting zone image into polar coordinates
centered around the determined nucleus. This transformation
maintains the circular scales with the characteristics of the
resting zones. At this point, the resting zones detected by
PSPNet are incomplete, missing lines and scale outlines.
Since this group of lines affects the resting zone counts,
a correction is applied as shown in Fig. 9.
First, to ensure a reliable count of resting zones, the

detected areas where the lines are interrupted are filled in
or complemented. Specifically, Fig. 9 shows an overview of
the method for interpolating the resting zones. The endpoints
of all missing resting zones are detected, and a set of
coordinates for each end is created. The distance is calculated
by Equation (4) using Euclidean distance. The angle is
calculated by Equations (5) and (6), with the lower end point
of the connection source as Pa = (ax , ay) and the upper end
point of the connection destination area as Pb = (bx , by).

distance =

√
(ax − bx)2 + (ay − by)2 (4)

cos θ =
axbx + b2y√

a2x + b2y
√
b2x + b2y

(5)

θ = arccos(cos θ) (6)

θ is obtained from the inner product of
−−→
PaPc and

−−→
PaPb, where

Pc = (ax , by) is the point consisting of the x-coordinate of
point Pa and the y-coordinate of point Pb. This process makes
it possible to supplement the missing parts of the resting
zones interrupted during detection.

Next, given that salmon scales exhibit false annual ring
lines close to the nucleus (circuli 15-17 from the nucleus)
that resemble resting zones in shape, a masking process is
implemented on the left side of the expanded image (in the
direction of the nucleus) to remove the false annual ring lines
as shown in the center of Fig. 9. Finally, to remove the outer
contour lines of the scales, a mask image of the original
scale image is generated [16], and the lines in the expanded
image of the resting zone at the position corresponding to the
contour lines in that image are removed.

3) AGE ESTIMATION BY COUNTING RESTING ZONES
Finally, age is assessed from the polar coordinate image
supplemented by the resting zones by measuring the number
of resting zones from the left side of the image. Since the
number of resting zones differs depending on the location of
the measurement, the number of resting zones is defined as
the largest number of resting zones after counting the number
of resting zones in the X -axis direction at all Y -coordinates.
Once the number of resting zones has been determined,
one is then added to that number based on the definition

of age assessment. The result is the estimated age of the
salmon. This process enables the automation of salmon age
assessment using scales by using information technology
based on the age assessment process used by experts at the
Fisheries Research Institute.

IV. PRELIMINARY EXPERIMENTS
A poor performance of YOLOv5 in detecting scaled regions
and clustering by k-means is likely to adversely affect the
performance evaluation of resting zone detection and age
assessment. Here, we discuss the results of preliminary
experiments regarding performance evaluation. Specifically,
we first checked the performance of YOLOv5 in detecting
scaled regions using the following IoU, an object detection
evaluation index. λ1, λ2, and λ3 were set to 0.5, 1.0, and
0.05 in the training phase based on [27] in the literature.
In addition, the number of epochs was set to 100 and the batch
size to 4. After manually setting the correct scale regions, the
IoU score was very high at 97% when the dataset of 3,480
images was randomly divided into training and test data at a
ratio of 9 to 1 in Table 1. Note that the dataset in Table 1 is
used as test data in the next section.

IoU

=
Product set of correct and detected regions

Union set of the correct region and the detected region
.

(7)

On the other hand, the correctness rate of clustering (the
percentage of correct labels clustered vertically (1)-(6) and
horizontally (1)-(10)) was calculated for k-means using a
dataset of 3,480 data sets, and a correctness rate of 98%
was obtained. The number of iteration was set to 100.
Since the method of scale placement is determined by the
operational manual of the Fisheries Research Institute and
the replica samples are checked by several institute staff
members, it can be said that any discrepancy in placement
has little impact on labeling by k-means. The above results
indicate that preprocessing has little negative impact on
resting zone detection or age assessment, as both tasks can
be accomplished with high performance.

V. EXPERIMENTS
We conducted experiments that assess the age of scales in
order to test the effectiveness of the proposed method. First,
the experimental conditions are described in Section V-A.
The experimental results are then presented and discussed in
Section V-B.

A. EXPERIMENTAL CONDITIONS
In the experiments, we confirmed the effectiveness of
the proposed method using salmon scale images. First,
the scanned resolution of the replica sample images was
27,716 × 13.010. Two or three scales per salmon were
crimped onto replica samples. Approximately 60 scales
were crimped onto each replica sample. Test data were
then constructed of all salmon scale replica sample images
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TABLE 1. Numbers of individual salmon and scales of each age of
salmon along the Tokoro coast in 2018 (Test data: 1,076 images).

TABLE 2. Numbers of individual salmon and scales of each age of
salmon along the Tokoro coast (Training data: 71 images).

collected on the Tokoro coast of Hokkaido, Japan, in 2018
(Table 1). The training data (Table 2) consisted of 71 scale
replica sample images collected in years other than 2018.
These 71 images were selected by expert staff from candidate
scales of salmon aged 3 to 7 years; the candidate scales
were selected by the Fisheries Research Institute and had
little damage or shape deformation. Finally, images of scales
from salmon aged 4-6 years with little damage and clean
shapes were constructed as the training dataset. Note that the
number of 3- to 5-year-old salmon migrating to Hokkaido
is high, while the number of 6- to 7-year-old salmon is low
(Table 1). Therefore, it is of utmost importance to estimate the
age of 3- to 5-year-old salmon with high accuracy. Ground
truth was considered the consensus result of three expert staff
members’ age assessments of the scales. Two expert staff
members set the correct resting zone lines.

To quantitatively and qualitatively evaluate the effective-
ness of the age assessment, we compared the proposed
method with the eight methods described below.
Comparative method 1 (Comp. 1) [16]

Overview: Comp. 1 is a baseline method based on
image processing for age assessment, which we
reported recently [16]. First, the method calculates
the nucleus of the scale from the 2D Fourier
transform. Next, a rectangular image is generated
by expanding the salmon scale image into polar
coordinates based on the determined nucleus.
Finally, age is assessed by summarizing the closed
annuli regions (resting zones) of the scale, which
determine the annuli-frequency distribution.

Comparative method 2 (Comp. 2)

Overview: This is an age assessment method based
on fully convolutional network (FCN)-8 [43],
a semantic segmentation model. Specifically, the
network consists of FCNs, constructed entirely
with convolutional layers except for the pooling
layer and activation functions, which are upscaled
by a factor of 8 in the training phase to obtain a
resolution of 224× 224 for the output. This method
inputs a test image, detects resting zones, and then
applies an age assessment method similar to that of
the proposed method.

Comparative method 3 (Comp. 3)

Overview: This is an age assessment method based
on FCN-16 [43], a semantic segmentation model.
Specifically, the network consists of FCNs, con-
structed entirely with convolutional layers except
for the pooling layer and activation functions,
which are upscaled by a factor of 16 in the training
phase to obtain a resolution of 224 × 224 for the
output. This method inputs a test image, detects
resting zones, and then applies an age assessment
method similar to that of the proposed method.

Comparative method 4 (Comp. 4)
Overview: This is an age assessment method
that uses U-Net [34], a semantic segmentation
model. Specifically, U-Net consists of a network
of encoders and decoders that compress and
upsample feature maps. In addition, the encoders
and decoders at each layer are concatenated to
complement the positional information on the
feature map. This method inputs a test image,
detects resting zones, and then applies an age
assessment method similar to that of the proposed
method.

Comparative method 5 (Comp. 5)
Overview: This method detects resting zones from
scale images using PSPNet and applies the same
age assessment method as the proposed method
without complementing missing lines.

Comparative method 6 (Comp. 6)
Overview: This method detects resting zones from
scale images using PSPNet and employs the same
age assessment approach as the proposed method,
without the need to remove lines based on the
region of the fake annual ring or the maximum
radius of scale.

Comparative method 7 (Comp. 7)
Overview: This is an age assessment method by
visual geometry group (VGG)-16 [44], which is a
classification model fine-tuned for analyzing scale
images.

Comparative method 8 (Comp. 8)
Overview: This is an age assessment method [18]
utilizing EfficientNet [45] as a state-of-the-art
classification model, fine-tuned with our scale
image dataset. The age assessment results are
obtained by inputting a test scale image.

Comp. 2 - Comp. 6 were employed as ablation studies.
Specifically, it is possible to show the effectiveness of each
process in the proposed method as a combination and as an
overall configuration by comparing the performance of each
combination with a method in which a part of the proposed
method is replaced by another method. Comp. 7 and Comp.
8 are different approaches from the proposed method in that
they apply a CNN-based classification task to age assessment.
The recent decade has seen explosive development in deep
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TABLE 3. Deep learning framework, hardware requirements, and training environment in implementation.

TABLE 4. Parameters used in the proposed method.

learning, especially in the performance of CNNs. Since
most image recognition tasks currently employ CNN-based
image classification approaches, it is necessary to confirm
the detection performance of CNNs in the age assessment
task from replica sample images, which we address in this
paper.

Comps. 2 - 4 use VGG-16 [44] as their backbone. The input
data format for PSPNet was 130 images, with 10 vertical
segments and 13 horizontal segments per single salmon scale.
Note that the number of background patch images in the
scale image was set to equal the number of scale patch
images in order to balance the data volume. Specifically,
3,335 patch images of the scale region part and 3,335
patch images of the background of the scale image were
constructed from 71 training data images. All methods were
implemented with the equipment and software environment
shown in Table 3. The parameters of the proposed method
are shown in Table 4. The proposed method was fully tuned
with the training dataset of scales, as the number of training
epochs was 100. Note that the learning rate was set to
0.01. The model parameters were taken as the values at
which each method was most accurate. The scale regions
were manually designated to ensure the accurate selection
of regions for generating the training data. To detect a scale
region, fine-tuning was performed on the YOLOv5 model,
which had been previously trained on the common objects

in context (COCO) dataset [48], using 3,480 salmon scale
images.

The quantitative evaluation of age assessment used mean
absolute error (MAE) [49], precision, and accuracy to
elucidate differences between actual age and estimated
age.

MAE

=
1
n

n∑
k=1

|fk − yk |, (8)

Precision

=
No. of images from which age was correctly estimated

No. of scale images with estimated ages
,

(9)

Accuracy

=
No. of images from which age was correctly estimated

No. of all scale images
,

(10)

where fk and yk are the estimated and actual ages of a scale
image k , respectively. n is the number of scale images.

Moreover, in this experiment, from the viewpoint of
improving the efficiency of age assessment work, we used
the weighted average value for the age group with the
largest number of samples. The average in the Table 5
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TABLE 5. Quantitative comparison of age assessment performance between the proposed method and comparative methods.

TABLE 6. Comparison of parameters and floating-point
operations (FLOPs) between the proposed method and other methods on
the salmon scales dataset. Note that M and G indicate mega and giga,
respectively.

is the weighted average of the values for each age.
The formula for the weighted average (WA) MAE is as
follows.

WA MAE = (MAE3-years-old ∗ 63 + MAE4-years-old ∗ 804

+ MAE5-years-old ∗ 191 + MAE6-years-old ∗ 15

+ MAE7-years-old ∗ 3)/1, 076. (11)

The total number of test samples is 1,076 (= 63 + 804 +

191 + 15 + 3). The same formula is used for the weighted
average of Precision and Accuracy.

B. PERFORMANCE EVALUATIONS
Table 5 shows the age assessment accuracy of each method.
The proposed method has the highest performance on

average for each evaluation metric. Versus Comp. 1, the pro-
posed method performs significantly better than the base-
line method age assessment method. In particular, the
proposed method can contribute more to the efficiency of
age assessment operations than the conventional methods,
since the MAE of 4-year-olds, the group with the largest
number of samples, is low. Since Comp. 1 is based on image
processing, the shape and spacing of scale patterns and the
unevenness of pixel shading affect the performance of resting
zone detection. On the other hand, the proposed method
uses CNNs to train patch images of scale patterns, so it
is possible to detect resting zones by considering various
scale features. Versus Comps. 2-4, it was also demonstrated
that the proposed method’s semantic segmentation based
on PSPNet is the most suitable for detecting resting zones.
Specifically, the feature maps of multiple scales were used
to train features of scale patterns with different scales, which
improved performance. Moreover, the better performance of
the proposed method versus both Comp. 5 and Comp. 6
indicates that the correction and removal of lines based on
the region of fake annual rings and the maximum radius
of the scale contribute to consistent age assessment across
all ages. Additionally, the proposed method outperforms
Comp. 7, which exhibited subpar assessment performance
for ages 4 and 5 despite a large number of samples. This
highlights the validity of the proposed method, which aligns
more closely with the actual experts’ age assessment decision
process. Finally, Comp. 8 was found to perform better
than the proposed method, especially for MAE at age 3.
However, the proposed method showed superior overall
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FIGURE 10. Examples of salmon scales whose resting zones were detected by the proposed method and Comps. 1-5. Note that the
detection result of Comp. 6 is the same as that of the proposed method.

FIGURE 11. Confusion matrix of age assessment by the proposed method.

performance. The effectiveness of the proposed method can
be shown as follows. First, by comparing the proposed
method with the baseline (Comp. 1) and the state-of-
the-art (Comp. 8), which are based on image processing
and deep learning, respectively, the proposed method was
shown to have the best age assessment performance of
all the methods. Next, we verified that the PSPNet-based

age assessment method has the best resting zone detection
among all semantic segmentation models, such as FCN-8
(Comp. 2), FCN-16 (Comp. 3), and U-Net (Comp. 4).
Then, by comparing the proposed method and Comp. 5 and
Comp. 6, it was confirmed that complementing missing lines
and removing lines based on the region of the fake annual
rings and the maximum scale radius greatly improve the
accuracy of age counts. Finally, the effectiveness of the
age assessment approach utilizing both deep learning and
image processing is confirmed since the performance of
the proposed method is better than those of Comp. 7 and
Comp. 8. Furthermore, since the proposed method also
detects the resting zone, which is the basis for age assessment,
it is expected to be introduced into age assessment work
at Japanese Fisheries Research Institutes. Note that the 0%
precision and accuracy of all methods for 7-year-old salmon
may have occurred because the scales of older salmon are
more damaged. Therefore, the age of samples with severe
scale loss, such as those from 7-year-old salmon, should
be assessed by staff for the time being. In conclusion, the
effectiveness of the proposed method was quantitatively
confirmed.
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TABLE 7. Processing time of age assessment in training and testing. All numbers in the table are in seconds, and the tests represent the average time to
process one scale.

Then, we reported and evaluated the computational
complexity, number of parameters, and processing time for
all methods. In evaluating neural network-based methods and

tasks, it is expected to evaluate the computational cost in
addition to the evaluation of accuracy [50]. Specifically, since
convolutional neural networks and segmentation models
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are computationally expensive, it is essential to check the
processing speed and the number of computational resources.
Floating point operations (FLOPs) metrics commonly used
to calculate the computational complexity of deep learning
models [51], [52]. Tables 6 and 7 show the calculated values
for the scale image data set without scanner preprocessing.
Table 6 shows that Comp. 1 has fewer parameters and FLOPs
because it does not use neural networks for resting zone
detection and age assessment. On the other hand, methods
using semantic segmentation and classification models tend
to have exceptionally high FLOPs. Table 7 shows the
processing times for training and testing in the Table 3
environment. The table shows that Comp. 1 has the shortest
training time, and the proposed method has the longest
training time. However, the training cost must be high enough
to obtain sufficient age assessment performance. Comp. 8 has
the shortest test time, and Comp. 1 has the longest. Comp. 1,
in particular, had the longest test time because it is image
processing based and requires much writing and reading
of image files. Comp. 7 and Comp. 8 are classification
models and generally require shorter test processing times.
The processing time for age assessment of one scale in
the proposed method is about 12 seconds. The proposed
method’s processing time is short enough because at the
Fisheries Research Institute, staff perform the age assessment
operations on approximately 20,000 salmon over a period of
several months. If the proposed system is implemented in
Fisheries Research Institutes, it would be possible to assess
the age of all scales in about three days (20,000 salmon ×

12 seconds ≓ 67 hours ). The above results showed that the
proposed method is sufficiently valuable, considering both
accuracy and processing time.

Next, we qualitatively evaluated the results of resting zone
detection. Fig. 10 shows some of the results of each method’s
resting zone detection performance. The white lines indicate
the regions of the resting zones detected by each method.
Fig. 10 (h) shows the region of the correct resting zones. First,
Comp. 1, which is based on simple image processing based
on the shading of the scale pattern, resulting in the loss of
curves and in an excessive number of lines. Next, it is clear
from the figure that Comps. 2, 3, and 4, which are based
on semantic segmentation other than PSPNet, have more
missing lines than the proposed method. In particular, they
fail to detect the lower left line. Through a comparison of the
proposed method with Comp. 5 (which involves restoring the
image from a corrected polar transformed image), it has been
verified that the correction process in the proposed method
effectively restores the missing lines within the resting zone.
Consequently, these findings collectively demonstrate the
superior stability of the proposed method in detecting resting
zones.

The confusion matrix of age assessment by the proposed
method is shown in Fig. 11. It can be confirmed that many
samples mistakenly assess a 4-year-old salmon as 3 or 5 years
old. However, this problem can be solved by improving
the training data of PSPNet in the future. The MAE of the

proposed model is approximately 0.5, which means that the
age of the scales can be assessed with an error of less than
one year. This indicates that the proposed method is highly
effective for practical applications.

VI. CONCLUSION
In this paper, we propose a method of salmon age assessment
based on neural network and image processing for data
mining scale replicas and resting zones in Fisheries Research
Institutes in order to improve the efficiency of salmon age
assessment work. The proposed method first utilized a high-
resolution scanner, the object detection method YOLOv5,
and a clustering method to automatically extract scale region
images from scale replica samples. Then, to detect resting
zones and perform age assessment, we employed PSPNet,
conducted line correction, and eliminated lines based on the
region of fake annual rings as well as the maximum radius
of a scale. In counting age based on resting zones, the age
assessment process was applied, including the identification
of resting zones by the staff and the method of counting age
from the circular structure. Our experimental results showed
that our method assessed age more accurately than conven-
tional and deep learning-based methods, and that it improved
age assessment performance significantly. In addition, the
proposed method enabled faster age assessment than the
age assessment work done by Fisheries Research Institute
staff.

Although we used deep learning to detect resting zones
in this study, the amount of label data used was limited
because the sample was created with the cooperation of the
staff of the Fisheries Research Institute. However, if the
proposed system is tested at actual test sites, and a system
for generating and sharing label data among multiple test
sites is established, then the system’s ability to detect resting
zones will inevitably improve and the method will be able
to be put into practical use. Many other fish species are not
being fished, and the process of assessing the age of fish
with scales is almost the same as that for salmon. Therefore,
we expect the proposed method to be useful in improving
the efficiency of age assessment in these other species as
well. Moreover, it is known that the width between resting
zones represents the growth of a salmon. Therefore, we plan
to use the proposedmethod to analyze poor fishing conditions
by aggregating age data and analyzing scale shapes, and
will collaboratively analyze the data taking meteorological
conditions and bathymetry data into account, as in [53], [54],
[55], [56], and [57].

Finally, because the fisheries industry is operated based
on the knowledge and long years of experience of Fisheries
Research Institutes and fishers, few studies have yet applied
information technology and information science to this
industry [58]. However, it is a meaningful research direction
to use information technology to model all tasks related
to the fisheries industry and to streamline the sustainable
management of marine resources.
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VII. DATA AVAILABILITY
The proposed method implementation, trained networks, and
supplementary material are available at https://github.com/
Choke222/AgeAssessmentOfScales.
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