
Received 29 March 2024, accepted 26 April 2024, date of publication 6 May 2024, date of current version 18 June 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3397053

Assessing Performance of Cloud-Based
Heterogeneous Chatbot Systems
and A Case Study
GANESH REDDY GUNNAM , DEVASENA INUPAKUTIKA , RAHUL MUNDLAMURI ,
SAHAK KAGHYAN , AND DAVID AKOPIAN , (Senior Member, IEEE)
Electrical and Computer Engineering Department, The University of Texas at San Antonio, San Antonio, TX 78249, USA

Corresponding author: Ganesh Reddy Gunnam (gunnamganeshreddy@gmail.com)

ABSTRACT Recently, human-machine digital assistants gained popularity and are commonly used in
question-and-answer applications and similar consumer-supporting domains. A class of more sophisticated
digital assistants (chatbots) employing more extended dialogs follows the trend. Chatbots have become
increasingly popular in recent years. Nowadays, chatbot deployments in the cloud have become a common
practice because of their benefits, including flexibility, scalability, reliability, security, remote working,
cost, and power outages. However, measuring the cloud-based chatbot systems’ performance is challenging
as human-machine information exchanges are performed in heterogeneous environments such as cloud
hosting platforms, information processing units, and several machine-to-machine and human-machine
communication channels. This paper investigates different methodologies for assessing the performance
of such heterogeneous deployments and identifies performance metrics for evaluating the performance of
cloud-based chatbot deployment. The study employs chatbot performancemeasurements with both real users
(human) and automated (simulated) users. The experimental results discuss communication metrics such
as response time, throughput, and load testing (connection loss) through the performance assessment of a
case study deployment that utilizes an automated protocol chatbot development framework. The findings
presented in this paper can further help practitioners to better understand the performance characteristics
of a cloud-based chatbot and assist in making informed decisions related to the chatbot development and
deployment options.

INDEX TERMS Chatbot, cloud computing, performance assessment methodology.

I. INTRODUCTION
A chatbot is an artificial intelligence (AI) software that
can simulate a conversation with a user in natural lan-
guage through messaging applications, websites, and mobile
apps [1]. Chatbots can be classified into various categories,
such as Rule-based chatbots and Intent-based chatbots [2].
The rule-based approach defines the chatbot’s response based
on specified conditions or rules, typically used for narrowly
defined conversation protocols. However, rule-based chatbots

The associate editor coordinating the review of this manuscript and

approving it for publication was Vlad Diaconita .

could not adequately respond beyond the protocol conditions
and rules.

In contrast, the Intent-based approach relies on the chat-
bot’s ability to learn and gather information. To achieve this,
the chatbot must be trained in natural language process-
ing (NLP) using datasets containing conversation dialogs to
extract the combination of conversation elements, including
intent, context, and entity [3]. This approach enables more
human-like conversations between the user and the chatbot.
Many modern tools, such as IBM Watson [4], Api.ai or
Dialogflow [5], and Wit.ai [6], follow this approach.

Chatbots are typically deployed on dedicated servers or
cloud platforms, depending on cost, control, security, and

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 81631

https://orcid.org/0000-0002-0052-7027
https://orcid.org/0000-0002-9121-2775
https://orcid.org/0000-0003-3548-5813
https://orcid.org/0000-0002-9028-4291
https://orcid.org/0000-0001-5977-9969
https://orcid.org/0000-0002-5169-9232

G. R. Gunnam et al.: Assessing Performance of Cloud-Based Heterogeneous Chatbot Systems

customization requirements. In recent years, many companies
have been migrating their on-premises-server applications
to the cloud due to the increasing availability of cogni-
tive services offered by cloud providers. These services
include machine learning, translation, and analytics, which
serve as building blocks for developing AI applications [7].
Maintaining applications on-premises can lead to significant
challenges, including the cost of physical servers, susceptibil-
ity to power outages, and limited accessibility from external
locations. Cloud computing offers customers the flexibility
to scale their IT infrastructure and applications dynamically
based on current demand in a shared and scalable envi-
ronment, using a pay-as-you-go billing model [8]. Cloud
infrastructure eliminates the need for upfront capital invest-
ments in hardware, data centers, and maintenance. Instead,
pay-as-you-go models are becoming increasingly popular
and can be more cost-effective, particularly for small or
medium-sized businesses. Additionally, businesses can save
on ongoing expenses related to power, cooling, physical secu-
rity, and equipment upgrades.

In cloud environments, intent-based chatbots can utilize
cloud-supported machine-learning tools to train with diverse
datasets and scale up applications to serve more users. Most
cloud providers offer scalable options in their databases, com-
plete with regular backup features to maintain data integrity
even in the event of application crashes. Recently, there
has been significant growth among cloud providers such
as Amazon Web Services (AWS), Microsoft Azure, and
Google. Chatbots must leverage the strengths of different
cloud platforms through heterogeneous cloud architecture to
meet the increasing demands of businesses and users, ensur-
ing efficiency and a wide range of features. This architecture
integrates public and private components frommultiple cloud
vendors. This paper presents an empirical study of the per-
formance of cloud-based heterogeneous chatbot systems,
leveraging the benefits of cloud infrastructure in terms of
overall cost, scalability, and availability.

Measuring the performance of cloud-based heterogeneous
chatbot systems presents a multifaceted challenge, prompt-
ing an in-depth exploration of varied methodologies in this
paper. Performance is assessed through real-time testing
with both real users (humans) and automated simulations
(simulated users). Including real users ensures a holistic per-
formance assessment, capturing the fine distinction of natural
interactions and offering valuable insights into the system’s
responsiveness and user satisfaction. Simultaneously, using
automated simulated users allows for controlled testing sce-
narios, enabling the systematic exploration of the chatbot’s
capabilities under predefined conditions.

In addition to practical testing, this paper reviews exist-
ing performance measurement methodologies. This review
aims to clarify essential insights into the cloud-based chat-
bot deployment performance landscape, finding key metrics
crucial for a thorough assessment. By combining practical
experimentation and a critical analysis of existing method-
ologies, this research contributes to a fine understanding of

the challenges and opportunities inherent in assessing the
performance of cloud-based heterogeneous chatbot systems.

The major contributions of this paper are as follows:
1. First, a performance measurement methodology is pro-

posed for cloud-based chatbot systems in heterogeneous
environments for measuring response time, and through-
put and performing load testing.

2. Second, an extensive assessment and statistical analysis
of the response times and throughput under stress with
different real-time (human) testing and automated (simu-
lated users) cloud-chatbot communication configurations
are conducted.

The remainder of this paper is organized as follows. Section II
covers a background and literature survey of chatbots, cloud,
and microservice-based chatbot applications, followed by
a review of performance metrics. Section III provides the
experimental settings covering the on-premises server, AWS
cloud server, and RDS database and their detailed specifica-
tions. Section IV covered all the performancemetrics used for
assessments in this paper. Section V presents the performance
results and provides concluding remarks in the following
section.

II. BACKGROUND
Integrating chatbot applications within a microservices archi-
tecture on cloud platforms like AWS impacts operation
performance in heterogeneous environments. Virtualization,
a foundational technology in modern computing, plays a
crucial role in enabling the creation of virtual environments
across hardware, storage, operating systems, and networks.
Within cloud platforms, virtualization allows for the effi-
cient allocation and management of resources, providing the
underlying infrastructure needed to support microservices-
based applications. By leveraging virtualization technologies,
microservices can be deployed and scaled dynamically, opti-
mizing resource utilization, and enhancing flexibility in cloud
environments. Thus, virtualization serves as the backbone
for hosting microservices, enabling the development and
deployment of scalable and resilient chatbot applications in
cloud-based architectures.

In cloud computing, virtualization serves to centralize
memory, storage, and bandwidth, facilitating efficient com-
puting [9]. This technology enables users to maintain their
applications in the cloud, accessible from any internet-
connected computer. According to NIST (National Institute
of Standards and Technologies), cloud computing is typically
categorized into three models: SaaS (Software as a Service),
PaaS (Platform as a Service), and IaaS (Infrastructure as
a Service) [18]. Virtualization manifests in various forms,
including hardware virtualization, desktop virtualization,
nested virtualization, and containerization [10], [11], [12],
[13], [14], [15]. Hardware virtualization involves creating
virtual machines (VMs) with their operating systems, while
desktop virtualization, such as virtual desktop infrastructure
(VDI), enhances data security for companies by separat-
ing logical desktops from physical servers [14]. Nested

81632 VOLUME 12, 2024

G. R. Gunnam et al.: Assessing Performance of Cloud-Based Heterogeneous Chatbot Systems

virtualization enables the implementation of virtualization
within a VM, allowing for diverse application compatibility.

Containerization, exemplified by platforms like Docker,
facilitates the packaging of applications and their depen-
dencies into standardized, self-contained units known as
containers [15], [16], [17]. Containerization, particularly with
Docker, has emerged as a lightweight and scalable solution
for deploying microservice-based applications. Microser-
vices, characterized by their small, autonomous nature, offer
flexibility and scalability in system design. These services
can be deployed independently, supported by deployment
and orchestration frameworks, thus enabling the integra-
tion of heterogeneous services with minimal communication
overhead [1].

This study uses Docker containers to implement a
microservice-based chatbot application on the AWS Cloud.
This architecture integrates external communication channels
like Facebook Messenger, Twilio, andWhatsApp to facilitate
seamless data transfer essential for the chatbot’s function-
ality. In the next section, we will delve into the specific
performance metrics used to evaluate the effectiveness of
our chatbot application in this cloud-based microservices
environment.

III. RELATED WORK: PERFORMANCE ASSESSMENT OF
CLOUD-BASED HETEROGENEOUS SYSTEMS
In human-machine dialogue systems, particularly with the
cloud-based chatbot deployment, there has been a notable
surge in research driven by such benefits as flexibility,
scalability, reliability, etc. State-of-the-art chatbot systems
commonly adopt heterogeneous deployment environments,
integrating services from various cloud-based platforms with
end-user mobile devices. These services include natural
language processing (NLP), hosting conversation proto-
cols, infrastructure for messaging channels, complementary
technologies like serverless architectures and cloud APIs
to enhance efficiency and extend functionalities, etc. Het-
erogeneous environments enable multi-modal interactions,
ensuring cross-platform compatibility and establishing con-
nectivity with diverse devices, thereby requiring adaptability
to various data types and user preferences. Assessing sys-
tem performance metrics in these diverse deployments faces
numerous challenges.

The performance of conventional cloud deployments has
been thoroughly addressed in the literature as shown in
Table 1. Ataş and Güngör [20] explore statistical methods
to measure response time, average total operation time, and
memory bandwidth. Khanghahi and Ravanmehr [21] delve
into metrics like average response time, average time per
data center, total cost, and cost per VM of the Data Center,
providing an overall perspective on cloud evaluation criteria
and highlighting it with the help of simulation. Rak et al.
[22] present a technique to evaluate the trade-off between
costs and performance of cloud applications by employ-
ing benchmarks and simulation, where they gauge overall
response time, throughput histograms, and resource usage

histograms. Stantchev [23] assess response time, transaction
rate, and availability, and introduce an approach for per-
formance evaluation of advanced computing infrastructures.
Papadopoulos et al. [19] establish principles for reproducible
performance evaluation in cloud computing, emphasizing
throughput and response time. Lastly, Bahga and Madis-
etti [24] scrutinize average throughput and response time,
describing a generic performance evaluationmethodology for
complex multi-tier applications deployed in cloud computing
environments. Mohammad et al. [25] review over twenty
papers and benchmarks, considering metrics such as through-
put, response time, and the number of application instances.
These studies significantly contribute valuable insights into
intra-cloud performance issues, focusing on the dynamics
within a single cloud environment and enhancing the under-
standing and assessment of cloud systems’ performance at
the system level. However, as cloud computing evolves and
becomes more intricate, these studies do not address the
more complicated challenges presented by inter-cloud and
heterogeneous environments.

TABLE 1. Key performance metrics of cloud application.

Recent state-of-the-art research explored the performance
aspects of heterogeneous cloud systems as shown in Table 2.
The recent study [26] focused on the execution time, request
processing time, CPU usage, and Memory usage. In another
study [27], data transfer times between different cloud

VOLUME 12, 2024 81633

G. R. Gunnam et al.: Assessing Performance of Cloud-Based Heterogeneous Chatbot Systems

functions were measured in a heterogeneous cloud system.
The performance metrics chosen for the comparison are the
schedule length (Make span), total cost, and task rejection
rate [28]. Joel Scheuner and Philipp Leitner [29] reviewed
eighty-two relevant studies on cloud performance studies
which include heterogeneous systems and listed the most
often used metrics, such as latency, CPU, throughput, and
network. Li et al. [30] investigate execution time, startup
delay, deadline miss rate, and incurred cost in video transcod-
ing. Lastly, Singh et al. [31] assess make span and resource
utilization cost, contributing to the evolving discourse on
scheduling efficiency in heterogeneous cloud environments.
Mahmoud et al. [41] evaluated the performance of large-scale
heterogeneous IoT data, and the main metrics in their exper-
iments were the response time and the database size. These
studies primarily focus on metrics at the general system level.
However, the crucial nuances and intricacies involved in the
communication aspects of chatbots, especially in heteroge-
neous cloud environments, remain unexplored in the existing
literature. Therefore, there is a notable gap in addressing the
unique challenges of chatbot systems operating in diverse and
interconnected cloud environments.

TABLE 2. Key performance metrics of heterogeneous cloud services.

The performance metrics related to chatbot systems focus
on Machine-Learning (ML) aspects, exploring metrics such
as response time, average total operation time, memory band-
width, average time per data center, total cost, cost per VM,

throughput histograms, resource usage histograms, fallback
rate, accuracy, precision, recall, F1-score, and conversation
interruption as shown in Table 3.

Forkan et al. [43] propose a tool for empirical eval-
uation, introducing metrics like Average Response time,
Fallback Rate, Comprehensive Rate, Accuracy, Precision,
Recall, and F1-score. Zubani et al. [44] compare perfor-
mance using metrics like F1-score, error rate, response time,
and robustness. Carolyn F. Salazar [45] evaluates a Peda-
gogical Conversational Agent using a Cloud-Based Chatbot
Builder, employing a black-box method and a checklist
to assess adherence to international standards. Jaing et al.
[46] and [47], [48] use metrics based on communication
principles, including specificity, relevance, response clar-
ity, informativeness, response length, expansiveness, user
engagement, and conversational interruption. However, the
identified gap lies in the fact that these assessments pre-
dominantly revolve around the algorithmic aspects and ML
capabilities of chatbots. They often fall short in providing a
holistic assessment that integrates both the system-level and
algorithmic-level performances of chatbot systems. The need
for a more thorough assessment that considers the synergies
between the underlying systems and the implemented algo-
rithms becomes clear in the existing literature.

TABLE 3. Key performance metrics of cloud chatbot applications.

These papers collectively contribute to our understanding
of performance metrics, offering valuable insights for practi-
tioners in cloud-based chatbot development and deployment.
Having analyzed studies assessing cloud chatbot systems,
observed a reliance on machine learning or artificial intel-
ligence in performance assessment methods. Conversely,
heterogeneous cloud systems evaluated performance at the
system level, not specifically applied to chatbot systems. This
paper bridges this gap, proposing a performance measure-
ment methodology tailored for cloud-based chatbot systems

81634 VOLUME 12, 2024

G. R. Gunnam et al.: Assessing Performance of Cloud-Based Heterogeneous Chatbot Systems

in heterogeneous environments, addressing the performance
assessment of chatbots with and without integrated machine
learning.

We emphasize communication performance metrics like
response time, connection loss, and throughput with a case
study that excludes machine learning aspects. Response time
is crucial in chatbot-based applications since users will expect
a chatbot response quickly, and it is understandable that
nobody wants to wait longer to get a reply. Throughput
measures how many user requests or interactions a chatbot
can handle in a given time. Additionally, the connection
loss metric is important in chatbot performance assessment.
Connection loss refers to the interruption or breakdown
in communication between the user and the chatbot. Both
throughput and connection loss metrics directly affect the
user experience and the effectiveness of the conversation as
well as overall chatbot performance.

The contributions include proposing a novel performance
measurement methodology and conducting an extensive
assessment and statistical analysis of response times and
throughput under stress conditions with both real (human)
and automated (simulated users) testing configurations.

IV. PERFORMANCE ASSESSMENT METHODOLOGY
Case Study Platform (Dash-Messaging)

A case-study messaging system referred to as Dashmes-
saging [32] in the following, is developed and deployed
on the AWS cloud to explore the performance assessment
aspects. Figure 1 shows the architecture of the performance
assessment methodology used in this work. The AWS RDS
database is attached to the system. This chatbot is a represen-
tative implementation that can be accessed from third-party
messaging applications such as Facebook,WhatsApp, Twilio,
etc. These messaging applications can be connected to the
test system through the webhook [33]. In this work, two
evaluation approaches are used to address Human testing and
Automated testing.

Dash-Messaging hosts interactive automated messaging
protocols [32] and is designed for long-spread conversa-
tions. In this system, the conversation will be triggered by
keywords from the participants. From there, the conversa-
tion follows the respective branch based on the participant’s
responses [34]. While the presented performance evaluation
methodology was applied and tested using the abovemen-
tioned test system Dashmessaging, it can apply to any type
of chatbot hosted in cloud environments.

A. TESTING METHODOLOGIES
1) HUMAN TESTING
The round-trip response time between the User and the Chat-
bot was calculated for this testing. The communication was
enabled by actual messaging channels such as WhatsApp
and Messenger. The response time was received by sending
a message request to the case study chatbot through these
messaging channels. The split-window method was used to

calculate this response time. On the computer, two windows
opened side by side: one for WhatsApp/ Messenger and
another for the current time with milliseconds website [35].
Both windows were recorded on one screen with multiple
numbers of requests by the user. Once the experiment fin-
ished, data was extracted manually by pausing the video
frame by frame (with milliseconds).

2) AUTOMATED TESTING
To test deployments on a large scale, requests need to be
sent from Facebook/WhatsApp users, but this will be possible
for only 5-10 users in real time because it is challenging to
create more than 5000 Facebook accounts and send requests
concurrently. If Twilio/WhatsApp is used to test our platform,
more than 5000 phone numbers need to be bought, each
number priced at $1.15 per month and each message priced at
$0.0079 [36]. These requests need to be performed multiple
times for multi-threading. To overcome the above issues,
the chatbot was tested with simulated users. Next, random
10-digit numbers with US country codes were generated,
as shown in Algorithm 1. The chatbot webhook is designed
to respond to any phone number with a US country code,
irrespective of whether it is a valid number. With this, incom-
ing and outgoing messages can be seen in the database and
connection logs. To stress the chatbot, multiple requests were
sent simultaneously with different threads (max workers in
the algorithm). An external webhook was used to measure
performance assessment in this approach. Randomusers were
simulated using scripting, and requests were sent to the case
study platform.

3) SEMI-AUTOMATED TESTING
The DM cloud chatbot experimented with semi-automated
testing, where real user messages were used alongside auto-
mated scripts to calculate response time one way at a
time. Initially, messages were sent to the Cloud chatbot
with the script from the real user’s cellphone number, and
their one-way response time was recorded. Subsequently,
another automated script was employed to send messages
from the chatbot to the real users, and their response
time was recorded. Finally, these two response times were
combined.

B. PERFORMANCE METRICS
Reviewing cloud applications and heterogeneous cloud sys-
tems, we consider response time, connection loss, and
throughput performance metrics in this work. The assess-
ment methodology involved two deployments discussed in
the experimental section: on-premises servers and cloud
servers, which were used to obtain these metrics. To assess
the performance, a required number of random users was
simulated using a script, and requests were sent to the chatbot
via the webhook endpoint. Given that chatbots often need
to respond to multiple users simultaneously, we employed
multi-threading to evaluate this aspect.

VOLUME 12, 2024 81635

G. R. Gunnam et al.: Assessing Performance of Cloud-Based Heterogeneous Chatbot Systems

FIGURE 1. Assessment methodology architecture.

The case study chatbot responds through different plat-
forms such as Facebook, WhatsApp, SMS, etc. The case
study platform chatbot does have webhooks for these plat-
forms and hosted medical applications on these platforms.
On Facebook, users can communicate through Messenger,
and for SMS andWhatsApp, Twilio, a consumer engagement
party was used.

FIGURE 2. Response time.

Response Time is the time taken to receive a response
to a given request. Several combinations of requests were
sent to both the on-premises server and the cloud server,
and the below equation was used to calculate the average
response time. Most often, response time is affected by net-
work bandwidth, the volume of users and requests submitted,
and average think time.

1) RESPONSE TIMES
Response time [37] refers to the time the Enterprise Server
takes to return the results of a request to the user as shown
in Figure 2. The response time is affected by network band-
width, the number of users, the number and type of requests
submitted, and the average response time. The faster the
response time, the more requests per minute are being pro-
cessed. However, as the number of users on the system
increases, the response time also increases, even though the
number of requests per minute declines, as shown in the
below equation where n is the total number of users and r
is the number of concurrent users.

In this work, multiple simulated user requests were sent to
the chatbot, and their response time was recorded to get back
to the users with a reply. The different sizes of multi-threads

were used while sending requests. Response time is crucial in
chatbot-based applications since users will expect a chatbot
response quickly, and it is understandable that nobody wants
to wait longer to get a reply.

Average Response Time =
Sum of All Response Times

Number of Iterations

2) THROUGHPUT
Throughput measures howmany user requests or interactions
a chatbot can handle in a given time. It is an important
performance metric for chatbots, as it can impact the user
experience and overall effectiveness of the chatbot. It is an
important performance metric for chatbots, as it can affect
the user experience and overall effectiveness of the chatbot.
Several factors can impact the throughput of a chatbot, includ-
ing the complexity of user requests, the responsiveness of the
chatbot, and the available computing resources. Generally,
a higher throughput is desirable, as the chatbot can handle
more user requests and provide more timely responses.

Throughput is calculated as requests/units of time. The
time is calculated from the first sample’s start to the last
sample’s end. This includes any intervals between samples,
as it is supposed to represent the load on the server [38].

In this chatbot model, total time refers to serving all the
requested simulated users. Also, we have used multi threads,
which are concurrent simulated users. This paper considers
throughput per 1000 requests in calculations. Throughput
in this assessment will provide a rate at which a chatbot
completes its task. The seconds per 1000 requests are the
metrics for throughput used in this work.

Throughput =
Total time taken for job

Total requests

3) CONNECTION LOSS
The percent of simulated users who define connection loss
in this work did not receive a response from the chatbot,
as shown in Figure 3. Also, many concurrent users will expect
an answer from the chatbot without any loss. So, Connection
loss will provide a proper estimation of a chatbot with a huge
number of concurrent users.

FIGURE 3. Connection loss.

V. EXPERIMENTAL SETUP
To assess chatbot performance across cloud and on-premises
environments, we utilized the case study platform Dash Mes-
saging Chatbot application developed at The University of

81636 VOLUME 12, 2024

G. R. Gunnam et al.: Assessing Performance of Cloud-Based Heterogeneous Chatbot Systems

Algorithm 1 Algorithm to Send User Requests to Chatbot
1 FUNCTION random_number ():
2 GENERATE RANDOM USERS
3 FUNCTION webhook_request(number):
4 SET response TO requests.post(‘https://example.com/twilio’, headers=headers, data=data)
5 SET output TO response.elapsed.total_seconds()
6 OPEN (f’output.csv’, ‘a’).write(str(output) + ‘\n’).close()
7 RETURN response.status_code
8 SET number_list TO []
9 FOR i IN range(1000):
10 number_list.append(random_number())
11 FUNCTION main ():
12 SET threads TO []
13 WITH ThreadPoolExecutor(max_workers=100) as executor:
14 FOR number IN number_list:
15 threads.append(executor.submit(webhook_request, number))
16 Main()

Texas at San Antonio [38] to aid users in quitting smoking
by delivering inspirational messages over 5 to 6 months.
Thus, the Dash Messaging platform serves as a representa-
tive heterogeneous cloud environment for assessing chatbot
performance in this study. The on-premises server is housed
at The University of Texas at San Antonio, whereas Amazon
Web Services (AWS) serves as the chosen platform for cloud
deployments. This section explains experimental setups for
both on-premises server and cloud implementation, including
all the hardware and software specifications, as shown in
Table 4.
In experimental setup, including both on-premises-server

and cloud environments was deliberate and aimed at cap-
turing a complete view of chatbot performance under dif-
ferent infrastructural paradigms. While it may seem that
on-premises and cloud environments share similarities, the
distinction arises from the underlying microservice architec-
ture employed in the cloud setting. Microservices offer a
modular and scalable approach to software design, enabling
the deployment of individual, independently scalable com-
ponents in the cloud. This architecture inherently affects
communication patterns, load distribution, and resource uti-
lization, influencing the performance characteristics of the
chatbot system.

Moreover, the differences in database connections between
the on-premises and cloud environments contribute to
the experimental diversity. The cloud environment often
involves database services that are inherently scalable
and managed by the cloud provider, influencing the way
data is stored, retrieved, and processed compared to a
traditional on-premises database setup. These variations
introduce unique challenges and opportunities regarding
communication efficiency, response times, and overall sys-
tem adaptability.

In essence, by including both on-premises server and
cloud environments, the target was to capture the impact of
distinct architectural and infrastructure choices on chatbot

communication performance. This allows for a better under-
standing of how these environments handle user requests,
process data, and interact with various components, con-
tributing to a more realistic performance assessment of the
chatbot system in heterogeneous settings.

FIGURE 4. Chatbot on-premises server deployment setup.

The On-premises server has the following setup, as shown
in Figure 4. The chatbot application is deployed on the
Windows server using Tomcat with an MSSQL database
connected to it. With the help of Nginx [39], the connection
was exposed to the outside world. We connected our chatbot
to Facebook Messenger and SMS/WhatsApp (Twilio) using
webhooks.

Webhooks are widely used to connect chatbots to messag-
ing platforms such as Facebook Messenger and WhatsApp.
Webhooks provide a way for chatbots to receive real-time
updates and messages from these platforms. When a user
sends a message or performs an action, the platform sends an
HTTP request to a webhook URL provided by the chatbot,
triggering the chatbot to process the request and respond
accordingly.

VOLUME 12, 2024 81637

G. R. Gunnam et al.: Assessing Performance of Cloud-Based Heterogeneous Chatbot Systems

Webhooks advantages for chatbot integration as listed
below:

• Real-time Communication: Webhooks enable real-time
communication between the chatbot and the platform so
that the chatbot receives updates and messages instantly,
allowing for timely responses.

• Event-Driven Architecture: With webhooks, the chatbot
is notified only when an event occurs, such as a new
message or a user action which reduces the need for con-
tinuous polling, making the integration more efficient.

• Asynchronous Processing: Webhooks allow the chat-
bot to handle requests asynchronously which receive
multiple requests simultaneously and process them inde-
pendently, enabling scalability and efficient resource
utilization.

• Flexibility: Webhooks provide flexibility in handling
incoming requests and defining custom logic for pro-
cessing them.

FIGURE 5. Chatbot cloud deployment setup.

Cloud is a dense framework of virtualized servers with soft-
ware installed to serve the client’s needs. The servers may
be placed in massive data centers or clusters separated across
geographies and connected with high-speed Internet. Cloud
computing delivers services installed on the cloud infras-
tructure and resources to the end client in a scalable and
pay-per-use manner. It is a distributed system employing util-
ity computing to provide services [8]. Cloud setup is in AWS
EC2 instance and has the following specifications, shown in
Table 4 and followed by features.
AWS EC2 T2 medium instance features include Burstable

CPU, governed by CPU Credits, consistent baseline perfor-
mance, Low-cost general purpose instance type, Balance of
computing, memory, and network resources. This instance is
with the Linux operating system (Ubuntu) and deployed our
chatbot application using Tomcat microservices (Docker) and
connected to AWS RDS MSSQL database and attached elas-
tic IP (Don’t want to change IP in case of start/stop). We have
usedNgrok to expose the connection to the outsideworld, like

TABLE 4. Server specifications.

on-premises. Like on-premises servers, webhooks were used
to connect messaging platforms, as shown in Figure 5.

The AWS RDS T2 tier database was used for this
experiment, and the specifications are shown in Table 4.
T2 instances are burstable general-purpose performance
instances that provide a baseline level of CPU performance
with the ability to burst above the baseline. T2 instances
are a good choice for various database workloads, including
micro-services and test and staging databases. CPU Credits
govern the baseline performance and ability to burst. T2
instances receive CPU Credits continuously at a set rate
depending on the instance size, accumulating CPU Credits
when idle and consuming CPU credits when active. Features
and specifications of the T2 medium model include:

• High-frequency Intel Xeon processors
• Burstable CPU, governed by CPU Credits, and consis-
tent baseline performance.

• Balance of compute, memory, and network resources
• Two vCPU, 24 CPU Credits/hour, and 4 GiB Memory
• Low to Moderate Network performance

VI. RESULTS
This section evaluated the performance of both On-premises
server and Cloud Chatbot deployments with two testing
methodologies, as mentioned in the previous sections.

A. HUMAN TESTING
The average response times for the On-Premises server and
Cloud Chatbot over three communication channels such as
Messenger, WhatsApp, and SMS are shown in Figure 6.
Firstly, 100 user messages were sent one at a time to the

On-Premises server Chatbot over WhatsApp, resulting in an
average response time of 1.61 seconds, with a minimum of
0.89 seconds and a maximum of 2.78 seconds. Subsequently,
testing with Messenger yielded an average response time of
approximately 2.2 seconds, with a minimum of 1.53 seconds
and a maximum of 2.87 seconds. Similarly, the cloud chatbot
over the WhatsApp channel was tested, achieving an average
response time of 1.75 seconds, with a minimum of 1.42 sec-
onds and amaximum of 2.78 seconds. Next, the cloud chatbot
over Messenger was tested, resulting in an average response
time of 2.14 seconds, with a minimum of 1.92 seconds and a
maximum of 2.49 seconds.

Finally, the cloud chatbot over SMS was tested, receiving
an average response time of 1.8 seconds, with a minimum

81638 VOLUME 12, 2024

G. R. Gunnam et al.: Assessing Performance of Cloud-Based Heterogeneous Chatbot Systems

FIGURE 6. Average response time.

of 1.14 seconds and a maximum of 3.22 seconds, as shown
in Table 5. The average response of these five scenarios
is depicted in Figure 6, while the minimum and maximum
values are listed in Table 5. The average response times of
Messenger with both On-Premises server and Cloud chatbots
are almost identical, at 2.2 and 2.14 seconds, respectively.
Similarly, the average response times of WhatsApp with
the On-Premises server and Cloud Chatbot and SMS with
Cloud Chatbot response times were similar, at 1.6, 1.7, and
1.8 seconds, respectively. In these three scenarios, Twilio is
the common channel.

TABLE 5. Response time (in seconds) for 100 messages.

Figure 7 illustrates the distribution of response times for the
respective chatbots over WhatsApp, Messenger, and SMS.
Most response times in these five scenarios fell within the
range of approximately 1.5 to 2.5 seconds. Additionally, the
average response times across the above five scenarios were
also closely aligned.

Figure 8 presents histogram plots, a commonly utilized tool
for visualizing the distribution of response times in a chatbot
system. Histograms depict the frequency of response times
within different bins or ranges, with each bar’s height repre-
senting the probability of response times falling within that
range. Additionally, a probability distribution plot (smooth
line atop histogram bars) is employed to illustrate the distribu-
tion of chatbot response times. The X-axis denotes response
time in seconds, while the Y-axis indicates the frequency or
probability of those values, reflecting the analysis of the five

FIGURE 7. Response times of 100 user messages.

scenarios with 100 usermessages. In Figure 8(a), about Cloud
WhatsApp, most messages exhibit response times between
1.6 and 1.9 seconds, with over half of them approach-
ing around 1.8 seconds. In Figure 8(b), concerning Cloud
Messenger, most messages display response times ranging
from 2 to 2.3 seconds. Figure 8(c) depicts On-Premises
server WhatsApp, revealing that over 90% of messages
exhibit response times varying between 1 and 2 seconds.
In Figure 8(d), corresponding to the On-Premises serverMes-
senger, total message response times span between 1.6 and
2.8 seconds, with over 25% of messages clocking in at
2.3 seconds. Lastly, in Figure 8(e) depicting Cloud SMS,
over half of the message response times fall within the 1.4 to
1.6 seconds range.

B. AUTOMATED TESTING
This section covers communication performance assessment
of on-premises servers and cloud chatbots with automated
and stress testing. Figure A shows the response time of
the on-premises server versus the cloud comparison. First
sent, 1000 simulated users separately, resulting in an aver-
age response time of 390 milliseconds with the on-premises
server and 136 milliseconds with the cloud server. Thus, the
cloud is three times faster than the on-premises server. The
cloud took 136 seconds to process all 1000 users and one user
at a time, and at the same time, the on-premises server took
390 seconds to process all 1000 users and one user at a time.

Next, with 100 threads (each sending 100 users at a time),
we observed that the on-premises server took an average of
1578 milliseconds to process 100 requests and 15780 mil-
liseconds to process all 1000 requests with 100 threads.
Similarly, the cloud server took an average of 997 mil-
liseconds to process each request and 9974 milliseconds to
process all 1000 requests with 100 threads. Subsequently,
with 200 threads, the on-premises server took an average of
2869 milliseconds to process each request and 14345 mil-
liseconds to process all 1000 requests. Conversely, the cloud

VOLUME 12, 2024 81639

G. R. Gunnam et al.: Assessing Performance of Cloud-Based Heterogeneous Chatbot Systems

FIGURE 8. Histogram and probability distribution function of 100 user messages response times.

81640 VOLUME 12, 2024

G. R. Gunnam et al.: Assessing Performance of Cloud-Based Heterogeneous Chatbot Systems

FIGURE 9. Response time of different threads.

FIGURE 10. Throughput rate of cloud and on-premises chatbot for
1000 requests.

server took an average of 1566 milliseconds to process each
request and 7830 milliseconds to process all 1000 requests
with 100 threads, as illustrated in Figure 9.

We then calculated the throughput for cloud and
on-premises server deployments, measured as the time to
complete 1000 requests. Initially, we conducted experiments
with one thread and gradually increased it to 100 threads
and then to 200 threads for both server types. With only
one thread, the on-premises server took 390 seconds to serve
1000 requests, while the cloud server completed the same
setup in 136 seconds. When we repeated the experiment
with 100 threads, the on-premises server took approximately
33 seconds, whereas the cloud server only required 14 sec-
onds. Finally, with 200 threads, both servers completed the
task in roughly the same time, approximately 26 seconds for
the on-premises server and 25 seconds for the cloud chatbot
deployments, as illustrated in Figure 10.

The above experiment repeated for 250 threads,
500 threads, and 1000 threads on cloud deployments.
Figure 11 shows these results, and the throughput rate grad-
ually decreases with the increase of threads.

FIGURE 11. Throughput rate of cloud chatbot deployment for
1000 requests.

FIGURE 12. The scatter of response times for On-Prem.

This study utilized scatter plots to examine the response
times of both on-premises server and cloud chatbot deploy-
ments, considering one simulated user at a time and a total of
1000 users. Figure 12 illustrates the scatter of response times
for all 1000 users on the on-premises server, and Figure 13
displays the distribution of response times for all 1000 users
on the cloud server, both processed individually.

FIGURE 13. The scatter of response times for cloud.

In our analysis, Figure 12 provides a visualization of
the response times exhibited by the on-premises server,

VOLUME 12, 2024 81641

G. R. Gunnam et al.: Assessing Performance of Cloud-Based Heterogeneous Chatbot Systems

illustrating four distinct and concentrated lines. These lines
correspond to the four Virtual Central Processing Units
(vCPUs) deployed in the on-premises server environment.
Each vCPU independently handles user requests, contribut-
ing to the observed pattern of four concentrated response
timelines. This insight sheds light on the parallel processing
capability of the on-premises server, highlighting its ability
to efficiently distribute workloads across multiple vCPUs.
Similarly, Figure 13 shows a comparable pattern for the AWS
cloud server, which has two virtual CPUs. The two lines of
concentrated response times in this figure align with the dual
vCPU configuration of the AWS cloud server, highlighting
the parallel processing nature of the cloud-based infrastruc-
ture. These observations provide a nuanced understanding of
the impact of server architecture on response times, under-
scoring the role of virtual CPU configurations in shaping
the performance characteristics of chatbot systems in diverse
computing environments.

FIGURE 14. Connection loss percentage comparison.

Lastly, we stressed on-prem and cloud servers with many
simulated users and loads (threads). The on-premises server
successfully processed all 1000 users with 200 threads.
However, with 1000 users tested with 250 threads, it pro-
cessed 989 users but lost 11 user requests. As simulated
users and threads increased, the on-premises server expe-
rienced a linear decrease in successful user requests. For
instance, it only processed seven user requests out of
5000 users with 5000 threads, resulting in a 99.86% loss.
Conversely, the cloud server processed 2000 simulated users
with 2000 threads with a 100% success rate and main-
tained an 87% connection rate for 5000 simulated users with
5000 threads. Figure 14 depicts the connection loss per-
centage of both on-premises and cloud servers with various
requests. These successful connections for on-premises and
cloud are shown in Table 6.

C. AUTOMATED TESTING SMS WITHOUT CHANNEL DELAY
In this section, the DM cloud chatbot underwent test-
ing with SMS, this time utilizing real user messages.

TABLE 6. Successful user connections for multi-threading.

Initially, 100 messages were sent to the Cloud chatbot from
actual users’ cellphone numbers. Their one-way response
times were recorded upon message delivery to the chatbot,
averaging approximately 585 milliseconds. Subsequently,
100 messages were sent from the chatbot to the actual
users via another automated script, yielding an average
response time of about 345 milliseconds. Consequently, the
average total response time for the roundtrip amounted to
1660 milliseconds. The Histogram and Probability Distri-
bution Function of 100 User Messages Response Times are
shown in Figure 15.

FIGURE 15. Histogram and probability distribution function of 100 user
messages response times.

VII. DISCUSSION
This section discusses the three sets of results from the pre-
vious section. In human testing, around 1.6 to 2.2 seconds
of total response time was observed, including channel and
chatbot delays. All these experiments were conducted with
real users. Analyzing the probability distribution plot lets us
identify the typical response times for the chatbot and any
outliers or patterns in the data. This can help to optimize
the chatbot’s performance and improve the user experience
by identifying areas for improvement, such as optimizing the

81642 VOLUME 12, 2024

G. R. Gunnam et al.: Assessing Performance of Cloud-Based Heterogeneous Chatbot Systems

chatbot’s natural language processing algorithms or increas-
ing computing resources to reduce response times.

In the PDF plots of the five scenarios discussed in
section VI, we observe a single peak, indicating a narrow
range of response times in the chatbot system. This sug-
gests efficiency and effectiveness in processing user input
and generating responses. In the automated testing, simulated
users without any channels were used. We observed 390ms
of average response time for the on-premises server chatbot
and 136ms of average response time for the cloud chatbot.
Both chatbots underwent testing with different thread com-
binations to calculate throughput, revealing a decrease in
throughput with the increasing number of threads. And exper-
imented with stress tests; an observed chatbot can handle
around 4300 parallel connections, and an on-premises server
chatbot can handle 250 parallel connections.

In the semi-automated testing, we used script instead of
real users by eliminating channel delay. The analysis con-
ducted in this paper unveiled an average roundtrip response
time of 1.6 seconds. It is imperative to underscore those chat-
bots tailored for specific tasks, such as information retrieval
or customer support, that must meet a designated response
time benchmark to ensure effectiveness. As suggested by
Nursetyo et al. [40], an ideal response time for such chatbots
falls in the range of 2-5 seconds. This timeframe holds signif-
icance as it not only aligns with user expectations for prompt
interactions but also guarantees the chatbot’s efficient pro-
cessing of user requests and delivery of accurate responses.
Maintaining response times within this optimal range serves
as a key performance indicator, directly impacting user satis-
faction and the overall usability of the chatbot in fulfilling its
designated tasks.

Our analysis revealed significant metrics such as response
time, where we observed an average roundtrip time of
1.6 seconds, aligning with the recommended 2-5 seconds
for effective task-specific chatbots [40]. Additionally, metrics
like connection loss and throughput were assessed, offer-
ing quantifiable insights into the system’s reliability and
scalability.

Responses from real users highlighted aspects of the chat-
bot’s interaction such as clarity, relevance, and overall user
satisfaction. This qualitative feedback gathered through real-
time testing, provided fine insights into the user experience,
shedding light on subjective aspects that metrics alone might
not capture. This thorough understanding enables us to iden-
tify strengths and areas for improvement, ensuring that the
chatbot meets quantitative benchmarks and delivers a positive
and engaging user experience.

Scatter plots, bar charts, and histogram representations
were employed to visually represent the findings. Scat-
ter plots illustrate the relationship between various com-
munication metrics, offering insights into patterns and
trends. Bar charts were employed to compare performance
across several aspects of the chatbot system, highlighting
strengths and areas for improvement. Additionally, histogram

representations allowed for exploring the distribution of key
performance indicators, offering a granular perspective on
the system’s behavior. Ranci et al. [42] listed descriptive
statistics as representation methods that visually integrate
multiple datasets to contextualize the data and improve reader
understanding. The approach aimed to quantify the system’s
communication proficiency and present a visually informa-
tive analysis, enhancing the interpretability and applicability
of this study.

We used DashMessaging [38] as a representative environ-
ment for a heterogeneous cloud-based chatbot platform, but
any chatbot can be assessed through the performance assess-
ment methodology presented in this paper. This chatbot uses
AWS cloud, but one can use any cloud provider. Identifying
potential biases and limitations is crucial for understanding
the scope and generalizability of research findings. In the con-
text of a study evaluating the performance of cloud chatbot
systems in a heterogeneous environment, we have observed
some biases during this assessment.

The study deliberately avoids reliance on a specific dataset
or exclusive user group to handle sample bias. Also, this
study deliberately incorporates diversity in operating sys-
tems, encompassing both Windows and Linux. Additionally,
the performance assessment extends to different deployment
environments, covering both on-premises and cloud settings.
This multifaceted approach ensures assessing the chatbot’s
performance, reducing the risk of biases associated with
specific operating systems or deployment platforms. This
assessment methodology applies to Rule-based and Intent-
based chatbots. It ensures insights that transcend specific
functionalities and contributes to a universal understanding of
cloud chatbot performance in heterogeneous environments to
observe task-specific bias.

This study also incorporates real-user testing alongside
simulated users. Real users offer authentic insights into
natural interactions, while simulated users offer controlled
scenarios. This ensures a balanced and thorough assessment
of the chatbot’s performance in a heterogeneous environment
that observes simulation bias.

VIII. CONCLUSION
Navigating the intricacies of heterogeneous environments is
paramount in assessing chatbot performance across diverse
methodologies. This study scrutinizes chatbots deployed on
both on-premises and cloud server platforms, shedding light
on their effectiveness through various assessment techniques.
The performance assessment methodology involved statis-
tical analysis, allowing for a thorough examination of the
system’s effectiveness and limitations.

Since webhooks are a widely used integration method to
connect chatbots to messaging platforms such as Facebook
Messenger and WhatsApp, we have tested our chatbot with
this webhook integration, and our assessment encompasses
human and automated testing methodologies, providing the
understanding of chatbot performance.

VOLUME 12, 2024 81643

G. R. Gunnam et al.: Assessing Performance of Cloud-Based Heterogeneous Chatbot Systems

During human testing, the response times of messaging
platforms like Messenger and WhatsApp were analyzed,
revealing insights into both on-premises and cloud-based
chatbot systems. Messenger demonstrated average response
times of 2.2 and 2.1 seconds for on-premises servers and
cloud deployments, respectively, while WhatsApp exhibited
1.6 and 1.7 seconds for the same configurations. These met-
rics, inclusive of channel delays and human reading errors,
offer a fine perspective on chatbot performance in real-world
scenarios.

Automated testing further delved into the efficiency of
chatbots, distinguishing between scenarios with and with-
out channel delays. The cloud server outperforms the
on-premises server by processing each user request in an
average response time of 139ms. The on-premises server took
almost three times more than the cloud server. Stress-testing
revealed the robustness of cloud-based deployments, han-
dling approximately 4300 parallel connections compared to
the on-premises server’s capacity of 250 users. Additionally,
the absence of channel delays in automated testing yielded
insights into the cloud server’s average response time of
1.66 seconds, with scatter plot analysis indicating a correla-
tion between hardware specifications and response times.

REFERENCES
[1] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi,

R. Mustafin, and L. Safina, ‘‘Microservices: Yesterday, today, and tomor-
row,’’ in Present and Ulterior Software Engineering. Berlin, Germany:
Springer, 2017, pp. 195–216, doi: 10.1007/978-3-319-67425-4_12.

[2] N. Rosruen and T. Samanchuen, ‘‘Chatbot utilization for medical
consultant system,’’ in Proc. 3rd Technol. Innov. Manag. Eng. Sci.
Int. Conf. (TIMES-iCON), Dec. 2018, pp. 1–5, doi: 10.1109/TIMES-
iCON.2018.8621678.

[3] D. Inupakutika, M. Nadim, G. R. Gunnam, S. Kaghyan, D. Akopian,
P. Chalela, and A. G. Ramirez, ‘‘Integration of NLP and speech-to-text
applications with chatbots,’’ in Proc. IST Int. Symp. Electron. Imag. Sci.
Technol., Jun. 2021, vol. 33, no. 3, pp. 6–35, doi: 10.2352/issn.2470-
1173.2021.3.mobmu-035.

[4] (2024). IBM Watson. Accessed: Feb. 4, 2024. [Online]. Available:
https://www.ibm.com/

[5] DialogFlow | Google Cloud. Accessed: Feb. 4, 2024. [Online]. Available:
https://cloud.google.com/dialogflow

[6] Facebook. Accessed: Feb. 4, 2024. [Online]. Available: https://wit.ai/
[7] M. Yan, P. Castro, P. Cheng, and V. Ishakian, ‘‘Building a chatbot with

serverless computing,’’ in Proc. 1st Int. Workshop Mashups Things APIs,
Dec. 2016, pp. 1–4, doi: 10.1145/3007203.3007217.

[8] A. Gajbhiye and K. M. P. Shrivastva, ‘‘Cloud computing: Need, enabling
technology, architecture, advantages and challenges,’’ in Proc. 5th Int.
Conf. Confluence Next Gener. Inf. Technol. Summit, Sep. 2014, pp. 1–7,
doi: 10.1109/CONFLUENCE.2014.6949224.

[9] L. Malhotra, D. Agarwal, and A. Jaiswal, ‘‘Virtualization in cloud com-
puting,’’ J. Inf. Technol. Softw. Eng., vol. 4, no. 2, pp. 1–3, Jan. 2014, doi:
10.4172/2165-7866.1000136.

[10] S. M. Jang, W. H. Choi, and W. Y. Kim, ‘‘Client rendering method for
desktop virtualization services,’’ ETRI J., vol. 35, no. 2, pp. 348–351,
Apr. 2013, doi: 10.4218/etrij.13.0212.0213.

[11] M. Ben-Yehuda, M. D. Day, Z. Dubitzky, M. Factor, N. Har’El, A. Gordon,
A. Liguori, O. Wasserman, and B. A. Yassour, ‘‘The turtles project: Design
and implementation of nested virtualization,’’ in Proc. 9th USENIX Symp.
Operating Syst. Design Implement., 2010, pp. 1–14.

[12] C. Pahl, ‘‘Containerization and the PaaS cloud,’’ IEEE Cloud Comput.,
vol. 2, no. 3, pp. 24–31, May 2015, doi: 10.1109/MCC.2015.51.

[13] G. Pék, L. Buttyán, and B. Bencsáth, ‘‘A survey of security issues in
hardware virtualization,’’ ACM Comput. Surv., vol. 45, no. 3, pp. 1–34,
Jun. 2013, doi: 10.1145/2480741.2480757.

[14] A. R. Shabaitah. (Jan. 2014). Server-Based Desktop Virtualization.
[Online]. Available: https://scholarworks.rit.edu/cgi/viewcontent.cgi?
article=8844&context=theses

[15] J. Cito, G. Schermann, J. E. Wittern, P. Leitner, S. Zumberi, and H. C. Gall,
‘‘An empirical analysis of the Docker container ecosystem on GitHub,’’
in Proc. IEEE/ACM 14th Int. Conf. Mining Software Repositories (MSR),
May 2017, pp. 323–333, doi: 10.1109/MSR.2017.67.

[16] (2024). Overview of the Get Started Guide. Accessed: Feb. 6, 2024.
[Online]. Available: https://docs.docker.com/get-started/

[17] D. Jaramillo, D. V. Nguyen, and R. Smart, ‘‘Leveraging microser-
vices architecture by using Docker technology,’’ in Proc. SoutheastCon,
Mar. 2016, pp. 1–5, doi: 10.1109/secon.2016.7506647.

[18] P. Mell and T. Grance, ‘‘The NIST definition of cloud computing,’’
U.S. Dept. Commerce, Nat. Inst. Standards Technol., Gaithersburg,
MD, USA, Tech. Rep. Special Publication 800-145, Jan. 2011, doi:
10.6028/nist.sp.800-145.

[19] A. V. Papadopoulos, L. Versluis, A. Bauer, N. Herbst, J. V. Kistowski,
A. Ali-Eldin, C. L. Abad, J. N. Amaral, P. Tuma, and A. Iosup, ‘‘Method-
ological principles for reproducible performance evaluation in cloud
computing,’’ IEEE Trans. Softw. Eng., vol. 47, no. 8, pp. 1528–1543,
Aug. 2021, doi: 10.1109/TSE.2019.2927908.

[20] G. Atas and V. C. Gungor, ‘‘Performance evaluation of cloud computing
platforms using statistical methods,’’ Comput. Electr. Eng., vol. 40, no. 5,
pp. 1636–1649, Jul. 2014, doi: 10.1016/j.compeleceng.2014.03.017.

[21] N. Khanghahi and R. Ravanmehr, ‘‘Cloud computing performance evalua-
tion: Issues and challenges,’’ Int. J. Cloud Comput., Services Archit., vol. 3,
no. 5, pp. 29–41, Oct. 2013, doi: 10.5121/ijccsa.2013.3503.

[22] M. Rak, A. Cuomo, and U. Villano, ‘‘Cost/performance evaluation for
cloud applications using simulation,’’ in Proc. Workshops Enabling Tech-
nol., Infrastructure Collaborative Enterprises, Jun. 2013, pp. 152–157,
doi: 10.1109/WETICE.2013.36.

[23] V. Stantchev, ‘‘Performance evaluation of cloud computing offerings,’’ in
Proc. 3rd Int. Conf. Adv. Eng. Comput. Appl. Sci., Oct. 2009, pp. 187–192,
doi: 10.1109/ADVCOMP.2009.36.

[24] A. Bahga and V. K. Madisetti, ‘‘Performance evaluation approach for
multi-tier cloud applications,’’ J. Softw. Eng. Appl., vol. 6, no. 2, pp. 74–83,
Jan. 2013, doi: 10.4236/jsea.2013.62012.

[25] M. S. Aslanpour, S. S. Gill, and A. N. Toosi, ‘‘Performance evaluation met-
rics for cloud, fog and edge computing: A review, taxonomy, benchmarks
and standards for future research,’’ Internet Things, vol. 12, Dec. 2020,
Art. no. 100273, doi: 10.1016/j.iot.2020.100273.

[26] M. Malawski, K. Figiela, A. Gajek, and A. Zima, ‘‘Benchmarking hetero-
geneous cloud functions,’’ in Proc. Eur. Conf. Parallel Process. (Lecture
Notes in Computer Science), 2018, pp. 415–426, doi: 10.1007/978-3-319-
75178-8_34.

[27] K. Figiela, A. Gajek, A. Zima, B. Obrok, and M. Malawski, ‘‘Performance
evaluation of heterogeneous cloud functions,’’ Concurrency Comput.,
Pract. Exper., vol. 30, no. 23, p. e4792, Aug. 2018, doi: 10.1002/cpe.4792.

[28] X. Tang, X. Li, and Z. Fu, ‘‘Budget-constraint stochastic task scheduling
on heterogeneous cloud systems,’’ Concurrency Comput., Pract. Exper.,
vol. 29, no. 19, p. e4210, Jun. 2017, doi: 10.1002/cpe.4210.

[29] J. Scheuner and P. Leitner, ‘‘Function-as-a-service performance evalua-
tion: A multivocal literature review,’’ J. Syst. Softw., vol. 170, Dec. 2020,
Art. no. 110708, doi: 10.1016/j.jss.2020.110708.

[30] X. Li, M. A. Salehi, M. Bayoumi, N.-F. Tzeng, and R. Buyya, ‘‘Cost-
efficient and robust on-demand video transcoding using heterogeneous
cloud services,’’ IEEE Trans. Parallel Distrib. Syst., vol. 29, no. 3,
pp. 556–571, Mar. 2018, doi: 10.1109/TPDS.2017.2766069.

[31] H. Singh, S. Tyagi, P. Kumar, S. S. Gill, and R. Buyya, ‘‘Meta-
heuristics for scheduling of heterogeneous tasks in cloud computing
environments: Analysis, performance evaluation, and future directions,’’
Simul. Model. Pract. Theory, vol. 111, Sep. 2021, Art. no. 102353, doi:
10.1016/j.simpat.2021.102353.

[32] D. Akopian, R. D. E. Palacios, and S. Kaghyan, ‘‘Interactivemobile service
for deploying automated protocols,’’ U.S. Patent 10 819 663, Jun. 13, 2010,
doi: 10.1145/1837274.1837461.

[33] Webhook. Accessed: Feb. 6, 2024. [Online]. Available: https://en.
wikipedia.org-/wiki/Webhook

[34] R. Mundlamuri, D. Inupakutika, G. R. Gunnam, S. Kaghyan, and
D. Akopian, ‘‘Chatbot integration with Google Dialogflow environ-
ment for conversational intervention,’’ in Proc. IST Int. Symp. Elec-
tron. Imag. Sci. Technol., Jan. 2022, vol. 34, no. 3, pp. 5–206, doi:
10.2352/ei.2022.34.3.mobmu-206.

81644 VOLUME 12, 2024

http://dx.doi.org/10.1007/978-3-319-67425-4_12
http://dx.doi.org/10.1109/TIMES-iCON.2018.8621678
http://dx.doi.org/10.1109/TIMES-iCON.2018.8621678
http://dx.doi.org/10.2352/issn.2470-1173.2021.3.mobmu-035
http://dx.doi.org/10.2352/issn.2470-1173.2021.3.mobmu-035
http://dx.doi.org/10.1145/3007203.3007217
http://dx.doi.org/10.1109/CONFLUENCE.2014.6949224
http://dx.doi.org/10.4172/2165-7866.1000136
http://dx.doi.org/10.4218/etrij.13.0212.0213
http://dx.doi.org/10.1109/MCC.2015.51
http://dx.doi.org/10.1145/2480741.2480757
http://dx.doi.org/10.1109/MSR.2017.67
http://dx.doi.org/10.1109/secon.2016.7506647
http://dx.doi.org/10.6028/nist.sp.800-145
http://dx.doi.org/10.1109/TSE.2019.2927908
http://dx.doi.org/10.1016/j.compeleceng.2014.03.017
http://dx.doi.org/10.5121/ijccsa.2013.3503
http://dx.doi.org/10.1109/WETICE.2013.36
http://dx.doi.org/10.1109/ADVCOMP.2009.36
http://dx.doi.org/10.4236/jsea.2013.62012
http://dx.doi.org/10.1016/j.iot.2020.100273
http://dx.doi.org/10.1007/978-3-319-75178-8_34
http://dx.doi.org/10.1007/978-3-319-75178-8_34
http://dx.doi.org/10.1002/cpe.4792
http://dx.doi.org/10.1002/cpe.4210
http://dx.doi.org/10.1016/j.jss.2020.110708
http://dx.doi.org/10.1109/TPDS.2017.2766069
http://dx.doi.org/10.1016/j.simpat.2021.102353
http://dx.doi.org/10.1145/1837274.1837461
http://dx.doi.org/10.2352/ei.2022.34.3.mobmu-206

G. R. Gunnam et al.: Assessing Performance of Cloud-Based Heterogeneous Chatbot Systems

[35] (2024). Exact Time Clock Now (With Seconds, Milliseconds). Accessed:
Feb. 6, 2024. [Online]. Available: https://clock.zone/

[36] SMSPricing in United States for TextMessaging | Twilio. Accessed: Feb. 6,
2024. [Online]. Available: https://www.twilio.com/sms/pricing/us

[37] R. B. Miller, ‘‘Response time in man-computer conversational transac-
tions,’’ in Proc. Manag. Requirements Knowl., Int. Workshop, vol. 1,
Dec. 1899, p. 267, doi: 10.1109/afips.1968.149.

[38] H. Koziolek, S. Grüner, and J. Rückert, ‘‘A comparison of MQTT brokers
for distributed IoT edge computing,’’ in Proc. Eur. Conf. Softw. Archi-
tecture (Lecture Notes in Computer Science), 2020, pp. 352–368, doi:
10.1007/978-3-030-58923-3_23.

[39] W. Reese, ‘‘NGINX: The high-performance web server and reverse
proxy,’’ Linux J., vol. 2008, p. 2, Sep. 2008. [Online]. Available:
https://dl.acm.org/citation.cfm?id=1412204

[40] A. Nursetyo, D. R. I. M. Setiadi, and E. R. Subhiyakto, ‘‘Smart chatbot
system for e-commerce assitance based on AIML,’’ in Proc. Int. Seminar
Res. Inf. Technol. Intell. Syst. (ISRITI), Nov. 2018, pp. 641–645, doi:
10.1109/ISRITI.2018.8864349.

[41] M. M. Eyada, W. Saber, M. M. El Genidy, and F. Amer, ‘‘Perfor-
mance evaluation of IoT data management using MongoDB versus
MySQL databases in different cloud environments,’’ IEEE Access, vol. 8,
pp. 110656–110668, 2020, doi: 10.1109/ACCESS.2020.3002164.

[42] R. Ren, M. Zapata, J. W. Castro, O. Dieste, and S. T. Acuña, ‘‘Experimen-
tation for chatbot usability evaluation: A secondary study,’’ IEEE Access,
vol. 10, pp. 12430–12464, 2022, doi: 10.1109/ACCESS.2022.3145323.

[43] A. R. Mohammad Forkan, P. Prakash Jayaraman, Y.-B. Kang, and
A. Morshed, ‘‘ECHO: A tool for empirical evaluation cloud chatbots,’’
in Proc. 20th IEEE/ACM Int. Symp. Cluster, Cloud Internet Comput.
(CCGRID), May 2020, pp. 669–672, doi: 10.1109/CCGrid49817.2020.00-
26.

[44] M. Zubani, L. Sigalini, I. Serina, L. Putelli, A. E. Gerevini, and M. Chiari,
‘‘A performance comparison of different cloud-based natural language
understanding services for an Italian e-learning platform,’’ Future Internet,
vol. 14, no. 2, p. 62, Feb. 2022, doi: 10.3390/fi14020062.

[45] C. F. Salazar, ‘‘Using cloud-based chatbot builder in developing pedagog-
ical conversational agent,’’ Int. J. Eng. Trends Technol., vol. 71, no. 7,
pp. 301–314, Jul. 2023, doi: 10.14445/22315381/ijett-v71i7p229.

[46] Z. Jiang, M. Rashik, K. Panchal, M. Jasim, A. Sarvghad, P. Riahi,
E. DeWitt, F. Thurber, and N. Mahyar, ‘‘CommunityBots: Creating and
evaluating a multi-agent chatbot platform for public input elicitation,’’
Proc. ACM Hum.-Comput. Interact., vol. 7, pp. 1–32, Apr. 2023, doi:
10.1145/3579469.

[47] H. P. Grice, Logic and Conversation. Leiden, The Netherlands: BRILL,
1975, pp. 41–58, doi: 10.1163/9789004368811_003.

[48] Z. Xiao, M. X. Zhou, Q. V. Liao, G. Mark, C. Chi, W. Chen, and H. Yang,
‘‘Tell me about yourself: Using an AI-powered chatbot to conduct conver-
sational surveys with open-ended questions,’’ ACM Trans. Comput.-Hum.
Interact., vol. 27, no. 3, pp. 1–37, Jun. 2020.

GANESH REDDY GUNNAM received the M.Sc.
degree in electrical engineering from The Uni-
versity of Texas Rio Grande Valley (UTRGV),
in 2017, and the Ph.D. degree from the Depart-
ment of Electrical Engineering, The University
of Texas at San Antonio (UTSA). His research
interests include smart deep-logic chatbot design,
development, performance assessment methodol-
ogy, chatbot cloud deployment, virtualization, and
cloud computing.

DEVASENA INUPAKUTIKA received the Ph.D.
degree from the Department of Electrical Engi-
neering, The University of Texas at San Antonio
(UTSA). She is currently with Samsung Semicon-
ductor Inc. Her research is in the development and
performance analysis of systems and methods for
enhancing mobility. Her research interests include
web and mobile application development, cloud-
IoT integration, and deep learning-based wireless
LAN indoor positioning systems.

RAHUL MUNDLAMURI received the bachelor’s
degree in electronics and communications engi-
neering from JNT University, India, in 2014, the
master’s degree from the University of Houston,
Houston, TX, USA, in 2016, and the Ph.D. degree
in electrical engineering from The University of
Texas at San Antonio, San Antonio, TX, USA.
He is currently a Data Engineer at Autodesk, while
actively pursuing research in ML-aided customer
data platform development. His research interests

include neural network-based localization services and data processing.

SAHAK KAGHYAN received the Ph.D. degree
in computer science from Russian-Armenian Uni-
versity, in 2014. He is currently a Postdoctoral
Research Scientist with The University of Texas
at San Antonio (UTSA). His research interests
include full-stack web development, mobile appli-
cation development, conversational AI design
and development, machine learning, and software
engineering.

DAVID AKOPIAN (Senior Member, IEEE)
received the Ph.D. degree from Tampere Univer-
sity of Technology, Finland. He is currently a
Professor with The University of Texas at San
Antonio (UTSA). Before joining UTSA, he was
a Senior Research Engineer and a Specialist with
Nokia Corporation. His current research interests
include digital signal processing algorithms for
communication and navigation receivers, posi-
tioning, dedicated hardware architectures, and

platforms for software-defined radio and communication technologies for
healthcare applications. He is a fellow of U.S. National Academy of
Inventors.

VOLUME 12, 2024 81645

http://dx.doi.org/10.1109/afips.1968.149
http://dx.doi.org/10.1007/978-3-030-58923-3_23
http://dx.doi.org/10.1109/ISRITI.2018.8864349
http://dx.doi.org/10.1109/ACCESS.2020.3002164
http://dx.doi.org/10.1109/ACCESS.2022.3145323
http://dx.doi.org/10.1109/CCGrid49817.2020.00-26
http://dx.doi.org/10.1109/CCGrid49817.2020.00-26
http://dx.doi.org/10.3390/fi14020062
http://dx.doi.org/10.14445/22315381/ijett-v71i7p229
http://dx.doi.org/10.1145/3579469
http://dx.doi.org/10.1163/9789004368811_003

