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ABSTRACT In this paper, we undertake an examination of the complicated challenges associated with
bandwidth allocation and power control in multi- unmanned aerial vehicles (UAVs) network. The focal point
of our investigation is the formulation and subsequent proposition of a novel algorithm aimed at optimizing
bandwidth utilization and energy efficiency across multiple UAVs. The intricate joint optimization problem
is cast as a nontrivial nonlinear programming (NLP) challenge; thus, to efficiently address it, we split it into
two subproblems. In the first sub-problem, UAVs bandwidth resources are being optimizedwhile considering
that they are operating at their maximum transmit powers. In the second sub-problem and after optimizing
bandwidth allocations, UAVs transmit powers are optimized based on their inter-links speed. Sequential
quadratic programing (SQP) based on coloring graph representation is proposed to address the first sub-
problem, whileM- matrix theory is employed to address the second one. Rigorous numerical simulations
are conducted to prove the effectiveness of the proposed scheme against other benchmarks in maximizing
both data rate and energy efficiency of the proposed multi-UAV network.

INDEX TERMS 6G, multi-UAVs, spectrum efficiency, energy efficiency, SQP,M-matrix.

I. INTRODUCTION
Unmanned aerial vehicles (UAVs) are expected to play
a significant role in the beyond fifth generation (B5G)
and six generation (6G) wireless networks in the next
decade [1]. The deployment of UAVs is ever-increasing,
and the number of commercial UAV fleets can reach up
to 1.6 million by 2024 [2]. UAVs can be dispatched as
high-mobility aerial communication platforms to provide
opportunistic line-of-sight (LoS) links and further assist
terrestrial communications in 6G [3]. The integration of
UAVs into 6G networks has numerous use cases, including
base station (BS) offloading, swift service recovery after
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natural disasters, emergency response, rescue and search,
information dissemination, and data collection from the inter-
net of things (IoTs) devices, and mounting reconfigurable
intelligent surface (RISs) boards [4], [5]. However, the incor-
poration of UAVs into 6G networks calls for a paradigm
shift in the design of both cellular and UAV communi-
cation systems due to the high altitude and mobility of
UAVs, the unique channel characteristics of UAV-ground
links, the asymmetric quality of downlink and uplink data
transmission, the stringent constraints imposed by the size,
weight, power limitations of UAVs, and the intra-system
and inter-system interference of the integrated networks [6].
Key challenges associated with the widespread commercial
use of UAVs towards 6G include safety, traffic control, and
security aspects [2]. Moreover, researchers are interested in
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developing green UAV communication with low power con-
sumption to prolong UAVs’ lifetime [4], [7].

Multi-UAV is a promising solution for coverage area
problems, especially for 6G networks. The scalability of
multi-UAV systems aligns seamlessly with the expansive
nature of 6G applications, making them well-suited for
urban environments, remote areas, and critical infrastruc-
ture inspection. Through coordinated multi-UAVs, these
UAVs contribute to optimizing coverage, resource utiliza-
tion, and network reliability, thereby positioning themselves
as integral components in the realization of resilient and
high-performing communication networks in the era of 6G.
In this context, researchers have proposed various frame-
works for persistent multi-UAV coverage with global decon-
fliction such as UAV gateway selection given in [8].
In this paper, we will tackle the problem of optimal

bandwidth and power allocations in multi-UAV enabled 6G
network. In this regard, we will make use of graph theory [9]
for bandwidth optimization. Besides bandwidth allocation,
efficient power control inmulti-UAV scenarios is essential for
overall system performance, interference management, and
resource utilization, considering the limited battery capacities
of UAVs [7]. Thus, in this paper, M-matrix theory will be
utilized as an efficient tool for UAVs power control. Thus,
the main contributions of this paper can be summarized as
follows:
• A two-step algorithmic approach will be proposed to
address the problem of bandwidth allocation and power
control in multi-UAV networks. In the first step, band-
width allocations are optimized while assuming UAVs
are transmitting at their maximum power. In the second
step, UAVs transmit powers are optimized based on their
inter-link speeds result from their optimized bandwidth
allocations done in the first step.

• Graph theory in the form of coloring graph will be
proposed for UAVs bandwidth allocation optimization.
In this regard, graph theory will be utilized as an effi-
cient tool for modeling and analyzing connectivity and
spectrum allocation patterns of the multi-UAV network
within a given area.

• For addressing the optimization intricacies inherent in
the proposed graph coloring, sequential quadratic pro-
gramming (SQP) [10] will be proposed to find the
sub-optimal solution iteratively. SQP is chosen for its
iterative optimization approach, which is well-suited for
nonlinear programming problems (NLP), accuracy, and
stability [11], [12], [13]. SQP has been applied in various
research in wireless communication systems for small-
cell networks [11], cognitive radio systems [12], V2V
communication [13], etc. The algorithm’s convergence
and efficiency make it a good choice for optimizing
spectrum resources among the interconnected UAVs,
contributing to improved spectrum efficiency.

• For UAVs power control,M-matrix theory, known for
its optimality and computational efficiency, will be uti-
lized as a powerful method for effective UAVs power

control [14]. Its flexibility allows modeling of diverse
system configurations, optimizing transmit powers of
multi-UAVs while maintaining minimum link qualities.

• Numerical analyses are conducted to substantiate the
efficiency of the proposed approach, revealing substan-
tial improvements in both data rate and energy efficien-
cies when compared to other benchmark schemes.

The subsequent sections of this paper are organized as
follows: Section II provides an overview of related works,
Section III introduces the system model and formulates the
problem, Section IV outlines the proposed approach for band-
width allocation and power control optimization, Section V
discusses the results and offers a detailed analysis, and,
finally, conclusions in the last section, summarizes the key
findings and implications of the proposed approach.

II. RELATED WORKS
Recently, there was a significant development in multi-UAVs
research in wireless communication networks, focusing on
various applications and key contributions. The highlighted
studies include topics such as multi-UAV enabled mobile-
edge computing for IoT networks [15], cooperative control
strategies for multi-UAV formation keeping [16], federated
learning-assistedmulti-UAV networks in image classification
scenarios [17], multi-agent deep reinforcement learning for
trajectory optimization [18], joint communication and trajec-
tory optimization for mobile internet of vehicles (IoVs) [19],
efficient and secure multi-UAV communication via a secured
UAV (S-UAV) model [20], and a clustering strategy to
enhance security in multi-UAV flight formations [21]. These
works collectively showcase advancements in optimizing
communication, coordination, security, and computational
efficiency in the evolving field of multi-UAV systems.

For multi-UAV spectrum allocation and power control
optimization, which is the main focus of this paper, there
are some research works studied them in [17], [18], [19],
and [20]. The authors in [17] studied multi-UAVs and cellu-
lar base stations (BSs) within IoT framework, emphasizing
uplink channel modeling. Introducing a binary exponen-
tial power control algorithm tailored for 5G networked
UAV transmitters, the research considered 3D distance and
multi-UAV reflections in the channel model. Simulations
assessed the algorithm’s impact on coverage probability,
spectrum efficiency, and energy efficiency under various 3D
distances. While this work prioritized power control ini-
tially and subsequently improved related parameters, our
approach focuses on maximizing spectrum allocation first,
followed by power control for multi-UAV networks. This
strategy ensures UAVs receive the necessary data rate
without unnecessary losses, subsequently contributing to
spectrum utilization improvement. This step strategy not
only ensures efficient data transmission but also mini-
mizes the required power of UAVs, a facet not explored
in the referenced work. The authors in [18] conducted a
study aimed at enhancing resource allocation and addressing
power control challenges within multi-UAV formation flight

67406 VOLUME 12, 2024



M. A. Alnakhli et al.: Bandwidth Allocation and Power Control Optimization for Multi-UAVs Enabled 6G Network

FIGURE 1. Provide an overview of a versatile multi-UAV network system, illustrating its capability to simultaneously engage in
diverse applications. The network is adeptly controlled by ground control systems, showcasing the flexibility and adaptability of
the multi-UAV setup. This integrated system has the potential to serve various purposes concurrently, demonstrating its efficiency
in managing different tasks. The network’s responsiveness to ground control systems ensures seamless coordination, making it a
dynamic and multifunctional solution for a wide range of applications, all within a unified and controllable framework.

system engaged in radar sensing. It formulates a complex
optimization problem to maximize the minimum signal-to-
interference-plus-noise ratio (SINR) of radar echo signals,
demonstrating its NP-hardness nature. The proposed iterative
channel allocation and power control algorithm (ICAPCA),
coupled with a reduced-complexity greedy channel alloca-
tion algorithm (GCAA), effectively addressed this problem,
significantly enhancing minimum SINR and radar sensing
performance compared to conventional methods. In con-
trast, our proposed approach aims at maximizing bandwidth
allocations for all multi-UAVs, contributing to the com-
prehensive optimization of spectrum utilization. Notably,
our work operates in 3D space, providing more accurate
distance considerations, and differs in UAV distribution,
influencing SINR values. The authors in [19] proposed a
hierarchical multi-agent Q-learning framework for optimal
frequency reuse and transmit power control in multi-UAV
wireless networks, aiming to improve spectrum efficiency
and equipment utilization. However, our work distinction
lies in its comprehensive approach to jointly optimizing
channel allocation and transmit power for enhanced net-
work efficiency. The authors in [20] worked on meeting
the requirements of high average spectral efficiency and
maximizing the minimum average energy in multi-UAV for-
mation communication, focusing on resource optimization
using Deep Q-network. The paper emphasized the intelligent
choice of power and frequency by UAVs based on remaining
time and the number of UAVs in the formation. However,
it does not explicitly highlight specific details or optimization
techniques related to power control. In [22], using cell-free
massive multiple-input multiple-output (mMIMO) for UAV
communications, wireless power transfer (WPT) was incor-
porated to support both uplink data and pilot transmission.
The research explores novel closed-form expressions consid-
ering UAVhardware impairments, showing significant uplink

spectral efficiency (SE) improvements compared to current
small cell (SC) and cellular massive MIMO systems. How-
ever, this work neither considered bandwidth allocation nor
power control in multi-UAV networks. In [23], the utilization
of cell-free mMIMO systems in mobile communications was
examined, addressing deployment architectures, challenges,
and innovative solutions such as predictor antennas, hier-
archical cancellation, rate-splitting, and dynamic clustering.
It also outlines future research directions to advance mobile
cell-free massive MIMO communication technologies. Also,
the problem of multi-UAV networking was not considered.

Consequently, the existing literature on multi-UAV net-
work exhibit strengths, whereas faces limitations that the
proposed method aims to overcome. The fact is that most of
these studies considered a sequential optimization approach,
addressing energy consumption first and then enhancing its
related parameters, which leads to suboptimal outcomes.
On the other hand, our proposed approach prioritizes max-
imizing spectrum allocations before refining power control.
Thus, our proposal addresses these gaps by providing a
detailed and comprehensive strategy for joint spectrum
allocation and power control optimization in the multi-UAV
networks.

III. PROPOSED SYSTEM MODEL
Figure 1 shows the proposed multi-UAV network archi-
tecture, where multiple UAVs are deployed to provide
communication services to users in remote and hard-to reach
areas. The system model consists of several UAVs hovering
at an altitude of h, with a maximum number of M UAVs
represented as (v1, v2, v3, . . . , vM ). In this scenario, UAV
channel allocation and power control are highly needed to
maximize both spectrum and energy efficiencies of the over-
all network based onmulti-UAV connection and data traffic in
the UAV-to-UAV links. In this section, UAV-to-UAV channel
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FIGURE 2. Provides a succinct visualization of a fully connected multi-UAV
network system represented as a graph G(V, E). Each UAV V is depicted
as a vertex in the graph, and edges E signify direct communication links
among UAVs, forming a comprehensive and interconnected network
structure. This illustration offers a quick and clear overview of the
extensive communication possibilities within the multi-UAV system.

model and the optimization problem formulation will be
given.

A. UAV TO UAV CHANNEL MODEL
In the proposed model, the locations of UAVs are denoted by
xi, yi and zi ∈ R+, where each UAV i, 1 ≤ i ≤ M is spatially
defined by its coordinates within the 3D space, represented
by Fig. 2. The separation distance dij between UAV i and
UAV j is determined based on their 3D inter-distances as
follows [15]:

dij =

√(
dHrij

)2
+

(
dVtij

)2
(1)

where dHrij is the horizontal distance between the projected
locations of UAV i and UAV j. Also, dVtij is defined as
the vertical distance between their projected locations. For
UAV-to-UAV channel modeling, the Air–to–Air (A2A) chan-
nel modeling given in [16] will be utilized in this paper.
In this modeling, only line-of-sight (LoS) links, characterized
by an unobstructed path between the transmitter (Tx) and
receiver (Rx), are a notable type [16], while non-LoS (NLoS)
links rarely occurred and were not considered. Thus, the path
loss of the LoS in the link Lij between UAV i and UAV j is
modeled as follows:

PLLoSij [dB] = PL (d0)+ 10αlog10

(
dij
d0

)
, (2)

where PLLoSij depends on the separation distance dij, its value
at a reference distance d0, i.e., PL (d0), and the path loss
exponent α. The parameter d0 is crucial in characterizing
how the signal strength attenuates with increasing distance
between the Tx and Rx in the communication link. The Tx
power of a UAV, denoted as Pti, signifies the intensity of the
signal it emits during communication. The Rx signal power,
denoted as Prj in dB, is determined by adding Pti in dB with
the path loss PLLoSij as follows.

Pr ij[dB] = Pti[dB]− PLLoSij [dB], (3)

SINR between Rx UAV j and Tx UAV i is crucial for
evaluating the communication quality in the context of

multi-UAV networks. This SINR, denoted as SINRij, is writ-
ten as:

SINRij =
Pr ij∑M

v=1,v̸=i Prvj + ρ0
(4)

where Prvj, is Rx power at UAV j from Tx UAV v where

v ̸= i. In (4), the term
(∑M

v=1,v̸=i Prvj
)
represents the sum

of interference powers, while ρ0 represents the additive white
gaussian noise (AWGN) power. Subsequently, the spectrum
efficiency Rij in bps/Hz is calculated as follows:

Rij = log2
(
1+ SINRij

)
(5)

B. OPTIMIZATION PROBLEM FORMULATION
In this section, we will formulate the optimization problem of
spectrum and power allocation for multi-UAV networks. The
aim of the optimization problem is to maximize the overall
data rate of the pre-connected multi-UAV network subject
to the limited total bandwidth available for the network and
UAVs maximum Tx powers, as follows:

max
BijPti

∑M

i=1

∑M

j=1
ηijBijRij (6)

s.t. ηij ∈ (0, 1) (6.a)∑M

i=1

∑M

j=1
ηijBij = Btot (6.b)

Pti ∈ (0,Ptmax) (6.c)

where ηij is the connection index which is equal to one if UAV
i is connected to UAV j and zero otherwise. In this paper,
ηij is assumed to be pre-assigned based on the multi-UAV net-
work architecture. The optimization of ηij based on a certain
objective function is out of the scope of this paper. Bij, is the
bandwidth allocated for UAV i and UAV j communication
link, and Btot is the total available bandwidth for the multi-
UAV network. The second constraint given in (6.b) means
that the sum of all bandwidths for all UAV-UAV links in the
network should be equal to Btot . The third constraint given
in (6.c) indicates that the Tx power of UAV i should be
bounded by its maximum Tx power Ptmax .

IV. PROPOSED APPROACH FOR BANDWIDTH
ALLOCATION AND POWER CONTROL
The optimization problem given in (6) is an NLP due to
its non-linear objective function. In this paper, to efficiently
address it within its constraints, we will split it into two
sub-problems. In the first sub-problem, Bij optimization is
conducted while considering all UAVs transmit at their max-
imum Tx power, i.e., Pti = Ptmax , while in the second
sub-problem, Ptis are adjusted based on the pre-adjusted Bij.

A. GRAPH BASED BANDWIDTH OPTIMIZATION
Herein, graph theory using coloring graph is used to opti-
mize the bandwidth allocations of the multi-UAV network
while considering fixed maximum power allocation. In the
context of a multi-UAV network shown in Fig. 2, it can be
formally represented as a graph G(V ,E) where V denotes
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FIGURE 3. Provides an overview of a multi-UAV network system as
corresponding link graph theory Ĝ(V̂ , Ê). The number of nodes in graph
Ĝ(V̂ , Ê) corresponds to the number of links in the original graph G(V, E).

the set of UAVs, and E represents the set of links among
them. Correspondingly, the link graph Ĝ(V̂ , Ê) is derived
based on the UAV entities and their connections as shown
in Fig. 3. In this link graph, the edges in G(V ,E) given
in Fig. 2, i.e., the channel links among UAVs, become the
vertices in Ĝ(V̂ , Ê), and the vertices in G(V ,E), i.e., UAVs
nodes, become the edges in Ĝ(V̂ , Ê). Thus, the number of
nodes in the link graph Ĝ(V̂ , Ê) in Fig. 3, matches to the
number of links in the original graph G(V ,E) in Fig. 2.
This relationship between the number of nodes and links
underscores the significance of the link graph representa-
tion in providing a condensed yet comprehensive view of
the network connectivity. By leveraging link graph theory,
we can simplify the visualization and analysis of network
properties and optimization algorithms, ultimately facilitat-
ing a deeper understanding of themulti-UAVnetwork system.
In the overall link graph representation Ĝ(V̂ , Ê) of the multi-
UAV network, let ηk(ij) ∈ (0, 1) indicates the connection
index of vertex k in Ĝ between UAVs i and j in graphG. Also,
let Rk(ij) represents its associated spectrum efficiency when
UAV i transmits to UAV j in graphG. For example, vertex one
in Ĝ, i.e., k = 1, is used to connect UAV1 andUAV2 inG, see
Figs. 2 and 3. Thus, the total spectrum efficiency of vertex k
will be:

Rk = Rk(ij) + Rk(ji) (7)

Also, let gk be the percentage of the system’s traffic
injected by vertex k assuming UAVs have full buffer traffic
loads. Thus, gk is only influenced by the spectrum efficiency
of link k , and can be evaluated as follows:

gk =
Rk∑K
l=1 Rl

(8)

In this scenario, Btot needs to be collectively shared among all
vertices in graph Ĝ. InG, edges that do not interfere with each
other have the capability to reuse the same bandwidth [21].
Consequently, the corresponding vertices in Ĝ can efficiently
share and reuse the same bandwidth. Based on graph repre-
sentation, achieving optimal spectrum efficiency necessitates
the formulation of a suitable optimization problem, encom-
passing an appropriate objective function and constraints.

The initial step involves defining constraints, particularly
those related to frequency reuse, with quantitative preci-
sion. To do that, we refer to a crucial definition from graph
theory:
Definition 1: An independent set in a graph Ĝ(V̂ , Ê) con-

stitutes a subset of the vertex set V̂ such that no two vertices
in V share an edge between them. A maximal independent
set (MIS) of Ĝ is an independent set that is not a proper subset
of another independent set in Ĝ [24].

The MIS, in the context of Ĝ, identifies sets of vertices
that can effectively reuse the same bandwidth. Suppose that
graph Ĝ contains Q such MIS. Let an MIS represents a
matrix of size (Q× K ) that systematically conveys infor-
mation about each vertex’s membership in various MISs
as follows:

MIS =


s11
s21

s12 · · ·
s22 · · ·

s1K
s2K

...
...

. . .
...

sQ1 sQ2 · · · sQK

 (9)

where, the elements of the MIS matrix, sqk , indicates whether
vertex k belong to MIS q or not, as follows:

sqk =

{
1 Vertix k belongs to MIS q
0 otherwise

(10)

Let the variable Xq denotes the bandwidth assigned to all ver-
tices within the MIS q. This representation significant is that
all vertices belonging to a specific MIS can collectively uti-
lize the same allocated bandwidth. By considering MISs and
constant power allocation, the optimization problem given
in (6) can be re-written as follows:

max
Xq

∑K

k=1

∑Q

q=1
Xqsqk (11)

s.t. ηk ∈ (0, 1) ∀i, j ∈ k (11.a)[
skq

]
∈ (0, 1) (11.b)

gk ≤ 1,∀k (11.c)∑K

k=1
gk = 1 (11.d)∑Q

q=1
Xq = Btot (11.e)∑Q

q=1
Xqskq ≥ Btotgk , ∀ηk = 1 (11.f)

This optimization problem aims to maximize the weighted
sum of MISs bandwidth allocations Xq subject to various
constraints. The first constraint given in (11.a) is the same
as that given in (6.a), which indicates the connection sta-
tus of vertex k connecting UAV i and UAV j. The second
constraint given in (11.b) indicates that the element skq can
be either 0 or 1 based on the MIS structure. The third and
the fourth constraints given in (11.c) and (11.d) respectively,
bound the value of gk to be less than or equal to 1, and
their summation ∀k should be equal 1. The fifth constraint
given in (11.e) indicates that the total bandwidths assigned
to all MISs should be equal to Btot . The sixth constraint
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given in (11.f) indicates that the bandwidth assigned to an
established vertex k from all its designated MISs should be
greater than or equal to its percentage of the total injected
system traffic.

To solve the NLP problem given in (11), nonlinear opti-
mization techniques such as SQP method can be utilized.
SQP is an iterative algorithm that aims to find the optimal
solution by iteratively updating the decision variable using a
sequence of quadratic subproblems. Each of these subprob-
lems serves as an approximation to the original nonlinear
optimization problem. The objective is to find an optimal
solution by refining the approximation in each iteration. The
algorithm begins with an initialization step, by randomly
selecting a feasible starting solution of the vector Xω

q =

[Xω
1 ,Xω

2 , . . . .Xω
Q ], i.e., X

0
q at ω = 0, where ω indicates

the iteration number. Then, the objective function f
(
Xω
q

)
will be written as given in (12) to iteratively solve (11). The
constraints of f

(
Xω
q

)
, i.e., c

(
Xω
q

)
and h

(
Xω
q

)
, which are

defined in (13) and (14), respectively, ensure the satisfaction
of the main constraints given in (11.e) and (11.f) at each
iteration ω.

f
(
Xω
q

)
=

∑K

k=1

∑Q

q=1
Xω
q sqk (12)

c
(
Xω
q

)
=

∑Q

q=1
Xω
q − Btot = 0 (13)

h
(
Xω
q

)
=

∑Q

q=1
Xω
q skq − Btotgk ≥ 0 (14)

Then, at each iteration ω, the aim is to solve the following
quadratic equation iteratively:

minβw

[
∇f

(
Xω
q

)T
βω +

1
2
βT

ω∇
2L(Xω

q , λω, µω)βω

]
(15)

s.t. c
(
Xω
q

)
+∇c

(
Xω
q

)T
βω = 0 (15.a)

h
(
Xω
q

)
+∇h

(
Xω
q

)T
βω≥ 0 (15.b)

whereL(Xω
q , λω, µω) indicates the Lagrangian function at an

iteration ω, which is defined as follows:

L
(
Xω
q , λω, µω

)
= f

(
Xω
q

)
+ λωc

(
Xω
q

)
+ µωh

(
Xω
q

)
(16)

Thus, βω denotes the increment vector of the decision
variable Xω

q and the Lagrangian multiplies λω and µω,
as follows:

βω = [(Xω+1
q − Xω

q ), (λω+1 − λω), (µω+1 − µω)]
T
, (17)

where T indicates the transpose operation. In (15)

∇f
(
Xω
q

)T
, ∇c

(
Xω
q

)T
, and ∇h

(
Xω
q

)T
are the trans-

poses of the vectors containing the first derivative
of the objective function and the constraints stated
in (12), (13), and (14), respectively, with respect to Xω

q .
Also, ∇2L(Xω

q , λω, µω) is the hessian of the Lagrangian

Algorithm 1 Proposed SQP for X∗q Optimization

Output:X∗q
Input: sqk ,Btot , ηk , gk ,Nit , and δ

Initialize: X0
q← initialguessatω = 0

While ω ≤ Nit
1. Evaluate: f

(
Xω
q

)
, c

(
Xω
q

)
, and h

(
Xω
q

)
using (12),

(13) and (14)
Formulate: L

(
Xω
q , λω, µω

)
using (16)

2. Calculate: ∇2L
(
Xω
q , λω, µω

)
using (18)

3. Solve:The quadratic subproblem given in (15) and
then obtain βω

4. Calculate:Xω+1
q , λω+1, and µω+1 using (17)

5. Set X∗q = Xω+1
q

6. If 1
Q

∑Q
q=1

(
Xω+1
q − Xω+1

q

)2
≤ δ

BreakWhile
End If

7. ω = ω + 1
End While

function with respect to Xω
q , which can be expressed as

follows:

∇
2L

(
Xω
q , λω, µω

)

=



∂2L
∂(Xω

1 )
2

∂2L
∂Xω

1 ∂Xω
2
· · ·

∂2L
∂Xω

1 ∂Xω
Q

∂2L
∂Xω

2 ∂Xω
1

∂2L
∂(Xω

2 )
2 · · ·

∂2L
∂Xω

2 ∂Xω
Q

...
...

. . .
...

∂2L
∂Xω

Q∂Xω
1

∂2L
∂Xω

Q∂Xω
1
· · ·

∂2L
∂
(
Xω
Q

)2


, (18)

Solving this optimization problem yields the optimal values
of βω, which is used to find the values of Xω+1

q , λω+1 and
µω+1 using (17).

Algorithm 1 outlines the proposed SQP approach to
sequentially optimize the Xq. The inputs to the algorithm are
the MIS structure sqk , the total available bandwidth Btot , the
network topology including ηk and gk , the total number of
iterations Nit and the convergence threshold δ. For initializa-
tion, an initial guess for X0

q at iteration ω = 0 is randomly
initialized. Then during the algorithm and while ω ≤ Nit ,
the values of f

(
Xω
q

)
, c

(
Xω
q

)
, and h

(
Xω
q

)
are evaluated

using (12), (13) and (14), respectively. Lagrangian function
given in (16) is formulated and the ∇2L

(
Xω
q , λω, µω

)
is

calculated using (18). Then, the quadratic optimization given
in (15) is solved and βω is obtained. Afterwards, the values
of Xω+1

q , λω+1, and µω+1 are evaluated using (17). Then
the optimal values of X∗q are set equal to Xω+1

q . The con-
vergence threshold is tested to decide whether to terminate
the algorithm or continue till ω = Nit , where the minimum
square error (MSE) between Xω+1

q and Xω
q is calculated and

compared with δ as given in Algorithm 1. Then, the value of
ω is incremented by one.
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B. MULTI-UAVS POWER CONTROL USING M-MATRIX
After optimizing B∗k of each vertex k based on the optimized
bandwidths of its relatedMISs, power allocations of its corre-
sponding UAVs i and j are adjusted. The goal is to minimize
the total UAVs Tx powers while satisfying the optimized
data rates of their associated links.This maximizes the sys-
tems’ energy efficiency in consequence. Additionally, power
control leads to reduced interference among UAVs. In this
context, we will utilize theM-matrix theory to optimize the
UAVs’ Tx powers [26]. To do that, we transfer back from the
link graph Ĝ given in Fig. 3 to the original node graphG given
in Fig. 2. This shift is necessitated by the fact that bandwidth
is assigned to links, while power is transmitted by devices.
Thus, the power optimization sub-problem can be formulated
as follows:

min
pti

∑M

i=1
Pti, (19)

s.t. Pti ∈ (0,Ptmax) ,∀i ∈ M , (19.a)

Pti
∣∣hij∣∣2∑M

v=1.v̸=i Ptv
∣∣hvj∣∣2 + ρ0

≥ ϕ∗k ∀i, j ∈ k (19.b)

where ϕ∗k =
(
2ck/B

∗
k − 1

)
is the adjusted SINR of the link

k connecting UAV i and UAV j. Herein, ck is the minimum
data rate requirement in bps of link k using its adjusted B∗k
coming from the SQP algorithm.

∣∣hij∣∣2 is the channel gain
between UAV i and UAV j, while

∣∣hvj∣∣2 is the channel gain
between UAV v, v ̸= i, and UAV j. Both can be calculated
using the path loss equation given in (2). The first constraint
given in (19.a) is the same as that given in constraint (6.c) of
the original problem. The second constraint given in (19.b)
indicates that the minimum SINRij of the link k connecting
UAVs i and j is bounded by its ϕ∗k value. This ensures that the
power control algorithm should satisfy the minimum chan-
nel quality level among UAVs. Using convex optimization,

constraint (19.b) can be relaxed as Pti|hij|
2∑M

v=1.v̸=i Ptv|hvj|
2
+ρ0
= ϕ∗k

and then the energy efficiency is maximized. Thus, the power
control can be solved as a set of linear equations.

Pti
∣∣hij∣∣2
ϕ∗k

−

M∑
v=1.v̸=i

Ptv
∣∣hvj∣∣2 = ρ0, (20)

which can be expressed using matrix-vector notation as
follows:

AiPti = w⇒ Pti = A−1i w, (21)

where

Ai =



∣∣h1j∣∣2 /
ϕ∗k −

∣∣h2j∣∣2 · · · −
∣∣hMj∣∣2

−
∣∣h1j∣∣2 ∣∣h2j∣∣2 /

ϕ∗k · · · −
∣∣hMj∣∣2

...
...

. . .
...

−
∣∣h1j∣∣2 −

∣∣h2j∣∣2 · · ·
∣∣hMj∣∣2 /

ϕ∗k

 (22)

Pti =


Pt1
Pt2
Pt3
...

PtM

 and w = ρ0


1
1
1
...

1

 (23)

It is important to mention that the matrix Ai, which has a
dimension of M × M , is considered a Z-matrix, following
the description given in [23] and [24]. In other words, it is a
matrix where all off-diagonal elements are less than or equal
to zero. In order to find the solution for Pti, it is necessary for
Ai to be also anM -matrix. AnM -matrix is a special type of
Z-matrix whose inverse consists of all nonnegative elements.
Thus, to solve equation (21) and obtainA−1i , wewill apply the
Sherman-Morrison formula given in [26]. To facilitate this,
we will re-express Ai as follows:

Ai = Fi − 1M1T
i (24)

where

Fi = diag
(
hij

[
1
ϕ∗k
+ 1

])
, 1 ≤ j ≤ M

1M =


1
1
1
...

1

 , and 1T
i =


h1j
h2j
h3j
...

hMj


T

(25)

The Sherman-Morrison theorem [26] provides a method
to compute the inverse of any off-diagonal singular square
matrix in the form of equation (24). This inverse is given by:

A−1i = F−1i +
F−1i 1M1T

i F
−1
i

1−1T
i F
−1
i 1M

(26)

However, there is a crucial condition for finding a feasible
non-negative solution for Pti using equation (26), which is as
follows:

M∑
i=1

(
1+

1
ϕ∗k

)−1
< 1 (27)

The proof of this condition directly follows from equa-
tion (26), where Fi, 1M , and 1T

i are all positive diagonal
matrices and vectors as depicted in equation (25). Therefore,
from equation (26), Ai becomes anM-matrix, meaning that
A−1i contains only non-negative elements, if and only if the
denominator if 1 − 1T

i F
−1
i 1M> 0 or 1T

i F
−1
i 1M< 1. This

leads to the condition in (27) using (25). However, it is impor-
tant to note that the condition in (27) solely ensures the lower
bound condition of Pti, which is Pti ≥ 0, without addressing
the upper bound condition, i.e., Pti ≤ Ptmax . Therefore, the
solution for Pti obtained through (26) should be constrained
by its maximum value, Ptmax . It is important to note that by
reducing the UAVs Tx powers, we enable the neighboring
links in the multi-UAV network to reuse the same bandwidth.
This set influences the enhancement of spectrum efficiency
as discussed in section A.
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TABLE 1. Simulation parameters.

V. NUMERICAL RESULTS AND DISCUSSION
In this section, the performance of the proposed algo-
rithms including coloring-graph based SQP and M-matrix
theory-based power control is assessed through extensive
Monte-Carlo numerical simulations. The simulation area
encompasses a post disaster area, where random number of
UAVs are deployed in this area with arbitrarily horizontal
distances in the range of [1,100] m, and the UAVs’ vertical
distance is adjusted to 50 m. The reference distance d0 is
set to 1 m, and the maximum UAVs’ Tx powers are set
to 1 watt. The total available bandwidth for the multi-UAV
communication system is set to 10 MHz. Additional simula-
tion parameters are listed in Table 1; unless otherwise stated.
The performance of the proposed approach is evaluated by
comparing it with three different benchmarks, which are
the scheme given in [14], the maximum spectrum packing
(MASPECT) algorithm given in [29], and the random selec-
tion (RS). In the scheme given in [14], a linear optimization
problem using graph theory was formulated for bandwidth
allocation in device to devices (D2D) network, accounting for
link heterogeneity in demands and traffic injection patterns.
The objective was to maximize the spectrum efficiency while
efficiently utilizing the available bandwidth. In MASPECT
algorithm given in [29], a distributed opportunistic channel
acquisition mechanism for improving spectrum utilization
was proposed using graph theoretic approach. In RS both
bandwidth and power resources are set randomly in the ranges
of [0,Ptmax] and [0,Btot ], respectively. In the simulation sce-
narios, we generate random geometric graphs with graph
densities of 0.5, 0.8 and 1, where a graph density of 1 means
that the network is fully connected, where all UAVs are mutu-
ally connected and ηij = 1∀i, j. For graph density of 0.8 (0.5),
the number of UAVsmutual connections is 80% (50%) of that
of the fully connected network using random ηij.

Figures 4, 5 and 6 represent the data rate performances in
Mbps of the schemes involved in the comparisons at fixed
UAVs’ Tx power of Ptmax and network densities of 1, 0.8, and
0.5, respectively. Generally, as the number of UAVs increases,
the data rates of all compared schemes are decreasing in
consequence. This is due to the increased interference level
among the deployed UAVs, where the limited availability of
bandwidth resources and fixed power allocation exacerbate

FIGURE 4. Data rate against the number of UAVs with network
density = 1 and fixed power allocation.

FIGURE 5. Data rate against the number of UAVs with network density =

0.8 and fixed power allocation.

FIGURE 6. Data rate against the number of UAVs with network density =

0.5 and fixed power allocation.

the issue. That is, as the number of UAVs escalates, the
bandwidth resources allocated per UAV diminish, resulting
in reduced data rates for each individual UAV. Moreover,
by comparing the results presented in Figs 4, 5 and 6,
we can conclude that network density plays a crucial role
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in influencing data rate outcomes. When network density is
low, the data rate tends to be high due to the less interference
among the limited number of connected UAVs. This can be
observed when comparing the data rates of graph density
of 1 presented in Fig. 4, with those results from low density
of 0.5 presented in Fig. 6, where a higher density results in
lower data rate performance, and vice versa. This discrepancy
can be attributed to the increased number of links, leading
to elevated interference levels with a fixed power allocation.
Thus, the juxtaposition of these scenarios underscores the
intricate interplay between network density, interference, and
link dynamics, ultimately influencing the overall data rate
performance of the compared schemes.

Looking closer, the figures highlight that the proposed
coloring-graph based SQP approach outperforms other meth-
ods in maximizing data rates. Notably, in Figs 4, 5 and 6,
the proposed coloring-graph based SQP algorithm emerges as
the standout performer, demonstrating a remarkable improve-
ment of over 70% in data rate when the number of UAVs
is set to 3 in all tested network densities. This substantial
enhancement, however, exhibited diminishing returns as the
number of UAVs increased, eventually converging to a dif-
ference of less than 10% compared to alternative methods
due to excessive mutual interference. Also, UAVs’ fixed Tx
power allocation may lead to congestion and heightened
interference, counteracting the potential benefits gained from
the addition of more UAVs.

From Fig. 4 and when using 3 fully connected UAVs,
i.e., network density of 1, RS yields the lowest data rate of
approximately 1.72 Mbps. In contrast, MASPECT improves
performance, achieving nearly 2.46 Mbps, while the scheme
proposed in [14] excels further with a data rate of 4.21 Mbps.
Notably, the proposed SQP algorithm stands out, surpassing
all alternatives with an impressive data rate of approximately
25.6 Mbps. Shifting to scenarios with network density of 0.8,
in Fig. 5 and using 3 UAVs, MASPECT becomes less favor-
able, yielding a data rate of 2.12 Mbps, while RS achieves
a relatively higher data rate of 2.94 Mbps. The scheme
proposed in [14] maintains commendable performance of
approximately 5 Mbps, and the proposed SQP with color-
ing graph excels with a remarkable data rate of 36 Mbps,
showcasing adaptability to varying network densities. Sim-
ilarly, at a network density of 0.5 given in Fig. 6 and
using 3 UAVs, MASPECT remains less favorable with a data
rate of 1.5 Mbps, while RS achieves 2.96 Mbps. The schemes
proposed in [14] reaches around 6.2 Mbps, and the proposed
SQP with coloring graph excels with a data rate of 41 Mbps.
The observed lower data rate of RS in a high-density network
of 1 can be attributed to its random allocation mechanism,
leading to increased interference in the densely connected
UAVs. This unstructured allocation results in contention for
bandwidth among UAVs, thereby diminishing the data rate.
On the contrary, MASPECT by leveraging graph-based algo-
rithms excels in a fully connected network by considering
node degrees and probabilities, mitigating interference, and
achieving a higher data rate compared to RS. The outstanding

FIGURE 7. Energy efficacy against the number of UAVs with network
density = 1 and with power control (WPC) and without power
control (WoPC).

FIGURE 8. Energy efficacy against the number of UAVs with network
density = 0.8 and with power control (WPC) and without power
control (WoPC).

performance of the scheme given in [14] is owed to its linear
optimization formulation, strategically allocating resources,
and optimizing bandwidth in response to varying network
conditions. It is interesting to note that at a network den-
sity of 0.5, the Rand scheme outperforms MASPET. This is
because in less densely connected networks, RS’s efficient
random allocation allows for more effective bandwidth uti-
lization. In contrast, MASPECT faces challenges as network
density decreases as it impacts its ability to leverage the
network topology for optimal bandwidth utilization.

Figures 7, 8, and 9 provide a comprehensive analysis of
energy efficiency (EE) in (bits/Joule) in multi-UAV networks
under different power control scenarios, i.e., with power
control - WPC and without power control – WoPC, across
varying network densities of 1, 0.8, and 0.5, respectively.
The integration of power allocation, particularly employ-
ing M-matrix theory, emerges as a standout performer in
terms of EE, showcasing its superiority over fixed power
allocation when integrated with the schemes involved in
the comparison. Examining the results in Fig. 7 for a network
density of 1 and fully connected 3 UAV, it becomes evident
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FIGURE 9. Energy efficacy against the number of UAVs with network
density = 0.5 and with power control (WPC) and without power
control (WoPC).

that the proposed SQP, particularly when complemented with
the proposed power control strategy, achieves remarkable EE
of approximately 9 Gbit/Joule. This stands in stark contrast
to the significant 50% reduction observed without employing
power control. The underlying reason behind this substantial
improvement lies in the ability of power control to dynam-
ically adapt power levels in response to evolving network
conditions, minimizing total UAV transmission powers, and
subsequently maximizing EE. Comparing EE across differ-
ent methods, we observe that the EE of the proposed SQP
WPC is notably higher at 9G bit/Joule, surpassing the EE
of the method given in [14]-WPC at 1.13G bit/Joule. The
EEs of MASPECT- WPC and RS-WPC are lower than that
of [14]-WPC, achieving 0.637 Gbit/Joule and 0.5 Gbit/Joule,
respectively. However, the worst-case scenario is observed in
RS-WoPC, where EE is significantly low at 0.167 Gbit/Joule.
Moreover, EEs of all schemes involved in the comparisons are
decreasing with the increasing of the number of UAVs. This is
owed to the decrease in their achievable data rates presented
in Fig. 4 due to excessive interference. For example, EE of
the proposed SQP-WPC falls from 9 Gbit/joule when using
3 fully connected UAVs to 0.42 Gbit/Joule when using 8 fully
connected UAVs as shown in Fig .4.

In Fig. 8, the evaluation of EE across the compared
schemes, each involving 3 UAVs and a graph density of 0.8,
reveals distinct performances. The proposed SQP algorithm,
when paired with power control, demonstrates exceptional
EE, achieving around 9.3 Gbit/Joule. This underscores the
SQP’s efficiency in optimizing data rates while consider-
ing power consumption in the specified network scenario.
SQP-WoPC maintains commendable EE at approximately
4.19 Gbit/Joule, where it is less than half the performance
of QSP-WPC. The scheme [14]-WPC, achieves compet-
itive EE at about 2.37 Gbit/Joule, while its non-power-
controlled counterpart [14]-WoPC shows a notable reduction
in EE at around 1.02 Gbit/Joule. RS-WPC and RS-WoPC,
achieve EE values of approximately 0.619 Gbit/Joule
and 0.268 Gbit/Joule, respectively, highlighting the impact

of power control on EE improvement. MASPECT-WPC
reaches an EE of approximately 0.528 Gbit/Joule, while
MASPECT-WoPC exhibits the lowest EE among the meth-
ods, at around 0.182 Gbit/joule.

In Fig. 9 and using 3 UAVs, SQP-WPC stands out
with a remarkable EE of nearly 11.4 Gbit/Joule, while
SQP-WoPC maintains a low EE of 2.61 Gbit/Joule, further
highlighting the significance of power control in enhanc-
ing performance. However, other methods exhibit lower EE
values than the proposed SQP scheme, with [14]-WPC at
1.65 Gbit/Joule, RS-WPC at 0.93 Gbit/Joule, MASPECT-
WPC at 0.355 Gbit/Joule. For WoPC, [14]-WoPC achieves
0.692 Gbit/Joule, RS-WoPC achieves 0.535 Gbit/Joule, and
MASPECT-WoPC achieves 0.293 Gbit/Joule. These results
underscore the pivotal role of power control, particularly in
scenarios with lower graph density, in optimizing the EE of
multi-UAV communication networks.

VI. CONCLUSION
This paper delves into the intricate challenges of bandwidth
allocation and power control in multi- UAV networks. In this
context, two stage optimization were proposed. In the first
stage, bandwidth allocations were optimized by the means of
coloring graph based SQP algorithm while considering fixed
power allocations. In the second stage,M-matrix theory was
utilized to adjust the Tx powers of the UAVs based on their
minimum data rate requirements using its adjusted band-
width allocations done in the first stage. Through rigorous
numerical simulations, our proposed approach demonstrated
superior performance compared to other benchmarks for data
rates maximization. Also, the proposed power control scheme
demonstrated superior performances over fixed power alloca-
tion counterpart. This research contributes valuable insights
into the realm of multi-UAV network optimization, paving
the way for enhanced information transmission rates and
resource utilization in dynamic and challenging environ-
ments. As the current study primarily focused on bandwidth
allocation and power control, we only considered static sce-
narios, where UAVs are hovering at a fixed altitude above the
earth’s surface. Detailed exploration of network dynamics,
including factors such as nodes mobility, traffic patterns,
and topology changes, falls slightly outside the scope of the
current paper, and it will be the subject of our future inves-
tigations. Also, optimizing communication delays against
interference will be explored during our future studies.
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