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ABSTRACT In a cloud computing environment, the container scheduling technique ensures reliability for
containerized applications by selecting nodes that satisfy various resource requirements and then deploying
containers. If the initial resources of a container are over-allocated, resources may be wasted, or other
containers that are waiting in a scheduling queue may not be allocated. However, if resources are under-
allocated, service disruptions may occur due to node overbooking, and service reliability cannot be ensured.
Therefore, in this study, a forecasted resource-evaluating scheduler (FoRES) is proposed as a container
scheduling technique that ensures resource efficiency and service reliability. FoRES predicts future CPU
and memory usage by using a time-series decomposition-based hybrid forecasting (DeHyFo) model that
combines multiple linear regressions with the LightTS model. FoRES then calculates the optimal scheduling
decisions that minimize idle resources and node overload by applying an efficient resource utilization
(SERU) scoring function to the predicted resource usage. Evaluating the performance of FoRES based
on various scenarios improved resource efficiency and service reliability by up to 2.07 and 2.32 times,
respectively, compared with existing scheduling techniques, even if the initial resources of the container
were inefficiently allocated.

INDEX TERMS Cloud computing, container scheduling, deep learning, resource efficiency, service relia-
bility, time-series forecasting.

I. INTRODUCTION
Many IT organizations have recently implemented container-
based cloud computing environments to improve the scal-
ability and flexibility of their cloud services. Containers
are lighter and have lower overheads than virtual machines
(VMs) because they share the host’s operating system (OS),
unlike VMs that require their own OS and a hypervisor [1],
[2]. To efficiently and automatically manage the rapidly
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growing number of containers, various container orchestra-
tion platforms (COP) have emerged [3], [4].

The COP container scheduling technique selects nodes by
considering the resource allocation of the container and the
requirements of the user [5], [6]. To ensure service reliability,
the COP then selects the node that best satisfies the schedul-
ing policy among the selected nodes, and it deploys the
container. However, existing container scheduling techniques
perform scheduling inefficiently owing to the inadequate
resource allocation of the initially set container [7]. If the
initial resources of a container are over-allocated, some
resources are left idle due to the allocation of unneeded
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resources, and some containers in the scheduling queue are
not deployed [8], [9]. However, if a container’s resources
are under-allocated, resource interference and overbooking
will occur because multiple containers are deployed on a
single node, which complicates the interdependencies of the
containers [10].

Various studies on container scheduling utilize artificial
intelligence (AI) to predict future workloads in order to max-
imize resource utilization by appropriately allocating initial
resources [11], [12]. Although these studies minimize idle
resources by utilizing predicted resource usage, they fail to
accurately predict certain workloads that include irregular
noise. Such prediction errors lead to improper resource allo-
cation, resulting in overload.

In this study, a forecasted resource-evaluating scheduler
(FoRES) is proposed to reduce resource waste and service
disruptions that are caused by inadequate resource allocation.
Using a time-series decomposition-based hybrid forecasting
(DeHyFo) model, FoRES predicts future CPU and memory
consumption by analyzing the historical data for contain-
ers gathered during service operations. Furthermore, FoRES
calculates future resource usage from the predicted resource
usage and selects nodes that ensure reliable service. Finally,
FoRES selects a node that ensures resource efficiency by
using the efficient utilization (SERU) function to score the
selected nodes, and then it deploys the containers. The main
contributions of FoRES can be summarized as follows:

• FoRES predicts workloads with high accuracy that con-
sist of various patterns using the DeHyFo model, which
specializes in time-series data prediction.

• FoRES reduces resource waste and overload by scoring
predicted resource usage through the SERU function and
making optimal scheduling decisions.

• FoRES improves resource efficiency and service reli-
ability compared to existing scheduling techniques,
despite inadequate resource allocation in containers.

The remaining sections of this paper are organized as
follows. Existing studies on container scheduling techniques
are described in Section II. Section III describes the scheme
of FoRES. Section IV describes the architecture and imple-
mentation of FoRES in a container-based cloud computing
environment. In Section V, we evaluate the performance of
FoRES on a variety of datasets. Section VI summarizes our
findings on FoRES and suggests future research directions.

II. RELATED WORKS
Several studies have been conducted on container scheduling
using heuristic and meta-heuristic approaches, as well as AI,
with the intent to deploy containers efficiently in a cloud com-
puting environment. Practical container scheduling can be
done using a heuristic algorithm with a multi-objective func-
tion. However, as they rely on certain rules, calculating the
optimal scheduling decision within a limited time is difficult.
Meta-heuristic-based container scheduling techniques per-
form container scheduling that achieves multiple objectives

by using metaheuristic algorithms that are intended for opti-
mization problems. However, the operational complexity
increases when parameters are continuously and manually
adjusted to calculate optimal scheduling decisions. However,
AI-based container scheduling techniques deploy contain-
ers more efficiently than do existing container scheduling
techniques by using AI models that are primarily special-
ized for predictive analysis and optimization problems. This
section describes the latest AI-based container scheduling
techniques.

Yang and Chen [11] proposed a container scheduling strat-
egy (hereafter referred to as GLP-S) based on a predictive
model that consisted of a gray model (GM) and a long
short-term memory (LSTM) model to reduce the resource
fragmentation that occurs when container scheduling is per-
formed. GLP-S predicted future resource usage by analyzing
the patterns of past usage with GM(1,1) and LSTM models
and then rescheduled to minimize idle resources. GLP-S
reduced resource fragmentation by up to 44% compared with
the kube-scheduler provided by Kubernetes.

Liu et al. [12] proposed the CNCUP, which reduces
power consumption while ensuring a service-level agreement
(SLA) for green cloud computing. The CNCUP predicted
the resource utilization of physical machines (PMs) using
a linear regression-based prediction model, and then it per-
formed container scheduling and migration. In comparison
with existing scheduling algorithms, CNCUP reduced power
consumption, SLA violations, and the number of container
migrations.

Mehta et al. [13] proposed WattsApp to minimize power
cap violations in servers. WattsApp predicted future power
consumption by analyzing historical CPU andmemory usage,
the number of network requests, and disk I/O using a linear
regression-based neural network (NN). WattsApp performed
migration and resource deallocation using the predicted
power consumption during each container scheduling cycle.
WattsApp improved power efficiency and cluster safety over
existing power capping techniques.

Tuli et al. [14] proposed a holistic resource manage-
ment technique for energy-efficient cloud computing using
AI (HUNTER) to mitigate energy waste in a hybrid
public-private cloud consisting of heterogeneous resources.
HUNTER predicted the quality of service (QoS) score
by analyzing the host temperature record and the correla-
tion between scheduling decisions and tasks using a gated
graph convolution network (GGCN)-based surrogate model.
HUNTER performed scheduling based on the predicted
QoS score, and incurs lower energy costs than do existing
schedulers.

Carvalho and Macedo [15] proposed a quality of experi-
ence (QoE)-aware container scheduler to solve the problem of
the reduced user QoE that results from the interdependencies
between multiple applications. The proposed scheduler ana-
lyzed the Spearman correlation between the QoE and various
metrics extracted by the application to extract metrics that had
a high impact on QoE. In addition, it predicted future QoE by
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analyzing the patterns of the selected metrics using LSTM
and gated recurrent unit (GRU) models. The proposed sched-
uler ensured the service-level objective (SLO) and improved
the QoE by calculating the scheduling decisions that account
for the predicted QoE.

Calheiros et al. [16] proposed proactive dynamic resource
provisioning approach to maintain the QoS and manage costs
effectively. The proposed model predicted future workload
using autoregressive integrated moving average (ARIMA),
and then it determined the number of VMs to allocate based
on the performance of running VMs and predicted workload.
It achieved a prediction accuracy of up to 91%, and improved
resource utilization efficiency while minimizing the impact
on QoS, which was reflected in user response time.

Bi et al. [17] proposed VAMBiG to predict large-
scale workload including noise with high accuracy. This
hybrid prediction model extracted low-frequency and high-
frequency feature from the nonlinear time-series data using
variational mode decomposition, and then it filtered the
noise by using adaptive Savitzky-Golay filter. VAMBiG ana-
lyzed long-term dependencies and features in the time-series
data using a hybrid deep learning model, which combined
bidirectional LSTM (Bi-LSTM), grid LSTM, and atten-
tion mechanism, predicting workload, CPU usage, RAM
usage. VAMBiG’s prediction results for workload, CPU, and
RAM showed an average R2 of 0.946, 0.9405, and 0.914,
respectively, demonstrating superior performance compared
to other RNN-based deep learning models.

Xie et al. [7] proposed a hybrid model to optimize the
scheduling of resource usage through container resource
load prediction. The proposed model accurately predicted
the linear and nonlinear relationship of container resource
load sequence by removing the random fluctuation of con-
tainer resource load sequence through ARIMA model and
smoothing the container resource load sequence through
triple exponential smoothing. It improved the prediction
accuracy by up to 203.72%with less time overhead compared
to existing prediction models.

The proposed FoRES predicts future resource usage by
analyzing the main patterns and bursts of workload sepa-
rately using a prediction model that specializes in the field
of time-series forecasting (TSF) to increase the accuracy of
predictions for future workloads. Based on the prediction
results, FoRES calculates the optimal scheduling decision by
considering the future load of each container. FoRES also
reduces idle resources relative to existing container schedul-
ing techniques, and it ensures container runtimes.

III. SCHEME OF FoRES
In this study, FoRES is proposed for determining the opti-
mal scheduling decision based on predicted resource usage
to improve resource efficiency and service reliability in
a container-based cloud computing environment. Figure 1
shows the overall scheme of FoRES.

FoRES consists of three steps for efficient container
scheduling. First, the metrics provider step extracts the

TABLE 1. Summary of symbols used in constructing FoRES.

resource usage metrics for the container, and then the future
resource forecaster step predicts the future resource usage.
Finally, the optimal decision scheduler step filters the nodes
based on the predicted resource usage and the node-specific
resource usage, and then it deploys a container to the optimal
node. Table 1 describes all the symbols used in this paper.

A. METRICS PROVIDER
Before we performed the metrics provider step, the con-
tainer’s system metrics were extracted using the container-
monitoring tool, and they were then stored in the historical
database. Subsequently, in themetric provider step of FoRES,
when a container enters the scheduling queue, the historical
resource consumption of that container is extracted from the
historical database. Here, FoRES extracts only the system
metrics CPU and memory, which are the basic requirements
for creating a container.

B. FUTURE RESOURCE FORECASTER
To accurately predict future resource usage based on past
resource usage data collected by containers, the future
resource forecaster step consists of a preprocessing step and
a DeHyFo model. First, the preprocessing step vectorizes
and normalizes the extracted resource usage metrics from
the metrics provider step. FoRES then inputs the generated
multivariate time-series data into the DeHyFo model, which
consists of a moving average smoothing technique, multiple
linear regression layers, and a LightTS layer [18] to ana-
lyze and learn the features of the time-series data. Figure 2
shows the overall architecture of the DeHyFomodel built into
FoRES.

The DeHyFo model first derives the Tr from the Cus using
a moving average smoothing technique, as shown in (1),
to identify unique patterns in diverse and complex resource
usage. In addition, to consider bursts in the workload, the
DeHyFo model uses the calculated Tr to derive the Re from
Cus, as shown in (2). Here, w denotes the window size of
moving average smoothing.

Trt =
1
w
×

(
w∑
i=1

C
t+i−⌈w2 ⌉
us

)
(1)

Ret = C t
us − Trt (2)

65168 VOLUME 12, 2024



J. Jeon et al.: Efficient Container Scheduling With Hybrid Deep Learning Model

FIGURE 1. Overall scheme of forecasted resource-evaluating scheduler (FoRES).

Tr has a monotonic structure because it consists of linear
features with non-linear noise, and the outliers are removed
using a moving-average smoothing technique. However, Re
has a complex structure that contains irregular noise and out-
liers. Therefore, to effectively analyze the patterns of resource
usage, FoRES learns the two decomposed components in
different layers. Tr first uses multiple linear regression layers
that are specialized in linear pattern analysis to learn the main
patterns in the time-series data. For Re, the LightTS layer,
which extracts temporal information from complex time-
series data that has irregular features, is used to effectively
analyze and learn workload bursts.

Existing deep learning models that are specialized in time-
series data analysis, such as recurrent neural networks (RNN),
graph neural networks (GNN), and transformers, have a com-
plex structure, and this reduces their efficiency because of
the high computational cost and loss of temporal informa-
tion [19]. In contrast, the LightTS model consists of a simple
multi-layer perceptron (MLP) structure, which predicts Re
with better efficiency than do existing deep learning models.

The LightTS layer of the DeHyFo model consists of fea-
ture extraction and prediction components, each of which
uses an information exchange block (IEBlock) to extract

temporal features for Re. At this point, the IEBlock sequen-
tially performs temporal projection, channel projection, and
output projection procedures, which consist of a linear trans-
formation structure. First, the temporal projection shares
Re temporal dimension weights to analyze the features at
sequential time points. The channel projection then shares
the channel dimensions of Re to analyze the features for
different temporal resolutions. Finally, the output projection
extracts the temporal features for Re bymapping the analyzed
temporal features to the final output length.

First, the feature extraction part of the LightTS layer
divides Re into two subsequences, short-term and long-
term, so that the long-term and short-term patterns of Re
can be considered separately. To analyze each subsequence
independently without considering its interdependency, the
short-term sequence extracts short-term patterns through con-
tinuous sampling, whereas the long-term sequence extracts
long-term patterns through interval sampling. In the predic-
tion phase, the temporal features for the long- and short-term
time points, which were extracted during each sampling pro-
cess, are concatenated and analyzed to predict the future Re.

Finally, the DeHyFo model of FoRES calculates the future
resource consumption by adding the predicted Tr and Re
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FIGURE 2. Architecture of time-series decomposition-based hybrid forecasting (DeHyFo) model.

values through the multiple linear regression layers and
LightTS layers.

C. OPTIMAL DECISION SCHEDULER
The optimal decision scheduler step is composed of a feasible
node selector, a forecasted resource evaluator, a conditional
availability provider, and a decision executor for calculat-
ing the optimal scheduling decision. First, the feasible node
selector filters the nodes that ensure service availability in the
cluster by selecting the nodes whose Nut is less than after
applying theCus to be deployed, as shown in (3). At this point,
FoRES records the containers that are related to the unfiltered
node in Lconst to execute the containers that are not deployed
due to the burst workload and prediction error caused by the
future resource forecaster step.

Lfilter =
{
N ∈ Lnode |

(
Cus
Ncap
× 100+ Nut

)
<

}
(3)

The forecasted resource evaluator selects the node that
ensures resource efficiency among the selected nodes by
calculating the score based on Rtut . For this purpose, FoRES
calculates the score of a node at each predicted time point
t from the SERU function based on the ℓ and , as shown
in (4).

SERU
(
Rtut
)

=


(1− )

Rtut
ℓ + − 1, if 0 < Rtut ≤ ℓ

−4

( − ℓ)2

(
Rtut − ℓ

) (
Rtut −

)
, if ℓ < Rtut ≤

(4)

In the case of 0 <Rtut≤ ℓ, where resource efficiency is
low, the SERU function uses an exponential function to make
negative scores as resource utilization decreases. Specifically,

the function is adjusted so that the minimum score is when
Rtut is 0, and the maximum score is 0 when Rtut reaches ℓ.
This condition applies when < 0. On the other hand, for
ℓ < Rtut ≤ , which falls within the target range of resource
utilization, the SERU function uses a quadratic function to
make positive scores based on resource efficiency. It ensures
the highest score, , when Rtut = ( + ℓ)/2, aligning with
the optimal resource utilization threshold. As Rtut approaches
ℓ, the resource efficiency decreases, whereas as it approaches
, the risk of overloading due to potential prediction errors

increases. Accordingly, FoRES configures the SERU func-
tion as a concave function, which decreases the score for the
node as it approaches the two thresholds.

FoRES calculates the scores for each node using the SERU
function, and then selects the node with the highest accu-
mulated score Sut as the scheduling target, as shown in
Algorithm 1. Subsequently, FoRES requests the creation of
a pod, which contains a container, on the selected node using
SendCom() Here, T denotes the target node of scheduling
decision.

In addition, FoRES acts as a conditional availability
provider to provide a minimum life cycle to the container
recorded in Lconst , as shown in Algorithm 2. First, to prevent
overload, FoRES calculates Rut at each time point and identi-
fiesMover , which is the time point before Rtut becomes higher
than . If Rtut is below u, FoRES calculates the resource
efficiency Sut for each container using the SERU function
and updates Mover to the current time point. If Rtut exceeds
, FoRES uses the natural logarithm to calculate the time

weight Wtime of Mover to give higher priority to containers
with longer life cycles. Subsequently, FoRES uses Wtime
and Sut to calculate the scheduling expectancy Vex for all
container-node pairs. Finally, FoRES selects the container-
node pair with the highest Vex and uses SendCom() to
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Algorithm 1 Forecasted Resource Evaluator
Input: Container C , Lfilter
Output: Scheduling decision command
Initialize: Dictionary of scores calculated by scoring func-
tion Dscore← {}
1: for N in Lfilter do
2: Sut ← 0
3: for t in range(0,Ctime) do
4: Rtut ← (C t

us/Ncap × 100+ N t
ut )

5: Sut ← Sut+ SERU(Rtut )
6: endfor
7: Dscore [N ]← Sut
8: endfor
9: T ← max(Dscore,key← Dscore.get)
10: SendCom([T ,C])

FIGURE 3. Overall architecture of the Kubernetes cluster with FoRES.

request the deployment of the container on the corresponding
node.

To deploy the container to the nodes selected by the
forecasted resource evaluator and the conditional availability
provider, the decision executor modifies the container config-
uration file before deploying the container inside the cluster
through the API daemon.

IV. FoRES IMPLEMENTATION
To ensure an optimized container deployment in a cloud
computing environment, FoRESwas added to the Kubernetes
cluster. The Kubernetes cluster consists of one master node
and six worker nodes, each with four CPU cores and 12 GB
of memory, and was built using Kubernetes v1.23.1. Figure 3
shows the overall architecture of Kubernetes with the FoRES
proposed in this study.

The Kubernetes cluster consists of one or more master
nodes and worker nodes to manage the containers. First, the
master node manages the pods in the cluster through a control
plane that includes the kube-apiserver, the kube-scheduler,

Algorithm 2 Conditional Availability Provider
Input: Lconst , Lnode
Output: Additional scheduling decision command
Initialize:Dictionary of expected values of container deploy-
ment Dvalue← {}
1: for C in Lconst do
2: for N in Lnode do
3: Sut ← 0
4: Mover ← 0
5: for t in range (0,Ctime) do
6: Rtut ← (C t

us/Ncap × 100+ N t
ut )

7: if Rtut < then
8: Sut ← Sut+SERU(Rtut )
9: Mover ← t
10: else
11: break
12: endif
13: endfor
14: if Mover > 0 then
15: Wtime← loge (Mover )
16: Vex ← Wtime × Sut
17: Dvalue [(N ,C)]← Vex
18: endif
19: endfor
20: endfor
21: T ,Cmax ← max(Dvalue, key← Dvalue.get)
22: SendCom([T ,Cmax])

the kube-controller-manager, and etcd. A pod is a group of
containers that includes one or more containers. The kube-
apiserver controls requests from clients and components that
use theKubernetes API. The kube-scheduler selects the nodes
where the pods are deployed according to various conditions
and policies, such as resources and anti-affinity. The kube-
controller-manager uses various controllers to manage the
state of a cluster. The etcd is a distributed key-value repository
that stores all the configuration data in the cluster.

A worker node deploys and runs pods, and it consists of
a kubelet, a kube-proxy, container runtime software, and a
container monitoring tool. The kubelet, which is the default
agent on the worker node, communicates with the kube-
apiserver on the master node to manage the pods in the node.
The kube-proxymanages pod traffic according to the network
policies. Container runtime software manages the life cycle
of a container. In this study, we used Docker as the container
runtime software. In addition, a container advisor (cAdvisor)
and Prometheus were used as container monitoring tools to
collect hourly system metrics for the containers and store
them in the historical database in FoRES.

The proposed FoRES is intended to efficiently deploy
containers, and it is located on themaster node. It consists of a
metrics provider, a future resource forecaster, and an optimal
decision scheduler. First, the metrics provider extracts the
CPU and memory metrics from the historical database that
contains the operational data for the container to be deployed.
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The future resource forecaster preprocesses the extracted
resource metrics and then predicts future resource usage
using the DeHyFo model. The optimal decision scheduler fil-
ters the deployable nodes based on the predicted results using
the feasible node selector, and then it selects the optimized
nodes using the forecasted resource evaluator. If a node is
not selected by the feasible node selector, it selects the node
that ensures the minimum life cycle of the container by the
conditional availability provider. Finally, FoRES transmits a
deployment command to the kube-apiserver of the master
node to deploy the container to the node selected by the
decision executor. The detailed implementation of FoRES is
as follows.

A. METRICS PROVIDER
First, FoRES accessed the historical database that held
the system metrics that were collected from cAdvisor and
Prometheus on each worker node to extract the CPU and
memory usage metrics for the containers in the scheduling
queue. The extracted resource usage metrics were recorded
at intervals of 15 s.

B. FUTURE RESOURCE FORECASTER
In the future resource forecaster step, FoRES converted the
resource usage metrics into vectors and then performed min-
max normalization to account for learning errors and to
reconstruct the values of the CPU and memory usage vectors
in the range of [0,1]. In addition, to train the prediction model
with supervised learning, FoRES used the sliding window
technique with a w of 1 to generate labels for each time point.
The DeHyFo model, which is a FoRES prediction model,

consists of an input layer, a multiple linear regression layer,
a LightTS layer, and an output layer. It is used to predict future
resource usage with high accuracy. The lengths of the input
and output sequences of the DeHyFo model were set to 20 to
analyze the pattern of node state change cycles in Kubernetes.
Themultilinear regression layer consisted of one hidden layer
with 40 cells to efficiently analyze the linear data trends. The
LightTS layer divided the input sequence into subsequences
with lengths of two and ten to accurately analyze the short-
and long-term patterns of Re. In addition, the LightTS layer
consisted of three IEBlocks, two of which were downsampled
to extract the features of Re, and one IEBlock that analyzed
long- and short-term patterns to predict future Re. At this
point, the IEBlock used Leaky ReLU in temporal projection
to prevent the vanishing gradient problem and to perform
residual connection in the channel projection to prevent the
loss of main feature information.

The DeHyFo model used the smooth-L1 technique as the
loss function, which has the advantages of mean absolute
error (MAE) and mean squared error (MSE). In addition, the
DeHyFo model was set to 100 epochs, a 32 batch size, and
a learning rate of 1e-4, and the weights were adjusted with
an Adam optimizer to analyze and learn the resource usage
patterns [20].

TABLE 2. Number of data for workload trace data in Alibaba2018,
Alibaba2021, and Google2019 datasets.

C. OPTIMAL DECISION SCHEDULER
In the optimal decision scheduler step, FoRES set the ℓ and
, to 80% and 90%, respectively, to select nodes that would

ensure resource efficiency and service availability [21], [22],
[23]. In addition, the and , were set to −1 and 1,
respectively. To modify the node information in the con-
tainer configuration file according to the scheduling results,
FoRES used yq, which is a command line interface (CLI)
tool [24]. Finally, to deploy themodified container in the clus-
ter, FoRES used kubectl to transmit the deployment command
to the kube-apiserver.

V. PERFERMANCE EVALUATION
To evaluate the effectiveness of the proposed FoRES,wemea-
sured the prediction performance of the DeHyFo model and
the scheduling performance of FoRES. To consider the differ-
ent life cycles of the containers, we used container resource
usage data that were recorded over 7 d, 12 h, and 30 d from
the Alibaba cluster-trace-v2018 (Alibaba2018) [25], Alibaba
cluster-trace-microservices-v2021 (Alibaba2021) [25], and
Google Cluster Workload Traces 2019 (Google2019) [26]
datasets, respectively. To evaluate the performance of FoRES
on various workload patterns, we randomly selected 15 work-
load trace data from each dataset. In addition, the timestamps
of all data were reconstructed to Prometheus’ default scrap-
ing period of 15 s, and the training, validation, and testing
datasets were configured as 80%, 10%, and 10%, respec-
tively, as shown in Table 2.

To verify the prediction performance of the DeHyFo
model, we compared its predictive accuracy with that of the
GRU [27], Informer [28], Autoformer [29], DLinear [19], and
LightTS models used in time-series data analysis. We also
used the MAE, root mean squared error (RMSE), mean
absolute percentage error (MAPE), and symmetric MAPE
(SMAPE) as prediction performance evaluation metrics.

Table 3 lists the prediction performance evaluation results
for each deep learning model. The GRU model did not con-
sider the temporal features of the time-series data, which
resulted in low prediction accuracy. However, the Informer
and Autoformer models, which are based on Transformer,
extracted and analyzed the temporal features of the time-
series data, but their prediction performance was poor owing
to their insufficient training data. The DLinear model con-
sidered temporal features through time-series decomposition
but was unable to accurately predict Re that contained irreg-
ular noise. The LightTS model efficiently analyzed different
temporal resolutions of the time series and predicted future
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TABLE 3. Forecasting performance results for DeHyFo model and five other deep learning models.

FIGURE 4. Cumulative resource usage for cluster resource capacity and workload trace data.

resource usage with higher accuracy than other deep learning
models. The DeHyFo model offered better prediction per-
formance of future resource usage than the existing LightTS
model because it analyzed Tr and Re separately using multi-
ple linear regression and the LightTS model, both of which
are time-series decomposition techniques.

To comprehensively measure the scheduling performance
of FoRES, we used several test cases that accounted for the
resource capacity of the cluster and the resource allocation of
the container. To establish a baseline for the cluster’s resource
capacity, we first calculated the cumulative value of the max-
imum resource usage in the workload trace data, as shown
in Figure 4. When more than 34 containers were deployed
in the workload trace data, the CPU capacity of the cluster
was insufficient. However, when 41 or more containers were
deployed, thememory capacity of the cluster was insufficient.
Therefore, the resource capacity scenario of the cluster was
configured to be resource-sufficient when 15 containers were
used for the workload trace data, and resource-insufficient
when 50 containers were used.

Figure 5 shows example of the resource allocation thresh-
olds for the over, adequate, and under cases that were defined

FIGURE 5. Resource request by resource allocation scenarios for CPU
usage of c_7844 in Alibaba cluster-trace-v2018.

in this study to represent different scenarios of container
resource allocation. For the over case, the container request
was set to 1.5 times the maximum Cus. In the adequate
case, the container request was set to the maximum Cus that
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TABLE 4. Test cases for the scheduling performance evaluation of FoRES.

TABLE 5. Average number of node overloads for each container
scheduling technique for the test cases.

ensured the container runtime. Finally, for the under case, the
container request was set to median of Cus.
Table 4 shows six test cases, combining two cluster

resource capacity scenarios with three container resource
allocation scenarios, to evaluate the scheduling performance
of FoRES under various resource environments and alloca-
tion conditions.

To verify the scheduling performance of FoRES, we com-
pared its resource efficiency, service reliability, and schedul-
ing decision time with three container scheduling techniques
that used heuristic algorithms and deep-learning models. The
heuristic algorithm-based container scheduling techniques
were Kubernetes’ kube-scheduler and IBM’s Trimaran [30].
Kube-scheduler evaluates all nodes within the Kubernetes
cluster and deploys containers on the node with the high-
est score. Trimaran, extending kube-scheduler, aims for
resource balancing. It scores nodes based on resource usage
and then selects nodes with resource utilization below a
certain threshold to deploy containers. For the deep learning-
based container scheduling technique, we selected GLP-
S [11]. In addition, this study used the resource consumer
image of Kubernetes to create workloads for three types
of datasets [31]. Because Kubernetes generally uses pods
that consist of one container, we used singleton pods in this
study [10], [31].

Figure 6 and Table 5 show the measurements for the
average resource utilization of the cluster and the average
number of node overloads for the four container scheduling
techniques for each test case.

To calculate the average resource utilization (ARU) of a
cluster, we used the average resource utilization of the CPU
and memory, as shown in (5). Here, Cltime and Ruresource
denote the operation time and resource utilization of the

FIGURE 6. Average resource utilization of a cluster using a container
scheduling technique based on the cluster’s resource capacity scenario.

cluster, respectively.

ARU =
1

Cl time

Cltime∑
i=1

RuiCPU + Ru
i
Memory

2
(5)

In the scenario in which the resource capacity of the cluster
was sufficient, as shown in Figure 6(a), the maximum aver-
age resource usage of the cluster was measured as 16.5%
when 15 containers having different life cycles were deployed
using each container scheduling technique. In case 3, because
kube-scheduler and Trimaran performed scheduling based
on resource requests, low resource usage resulted in the
creation of idle resources. GLP-S achieved higher resource
utilization than the other heuristic-based container schedul-
ing techniques in cases 1 and 2 because it considered the
predicted resource usage and resource requests. However,
as shown in Table 5, GLP-S experienced a significantly
higher number of overloads than did the other techniques,
owing to prediction errors. GLP-S had the lowest resource
usage in case 3 because it did not consider scenarios in which
resources were under-allocated. In contrast, FoRES achieved
resource utilization that was up to 8.5% better than that of
the other container scheduling techniques, with a maximum
resource utilization of 16.5% for cases 1, 2, and 3, because
it calculated scheduling decisions using a SERU function
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TABLE 6. Comprehensive scheduling performance evaluation results for each container scheduling technique.

that used predicted resource usage. In addition, unlike other
container scheduling techniques, FoRES did not cause node
overload.

Scenarios with insufficient cluster resource capacity
deployed more containers than did scenarios with sufficient
resource capacity, which resulted in a higher average resource
utilization for each container scheduling technique, as shown
in Figure 6(b). In contrast to the kube-scheduler, Trimaran
performed scheduling by considering resource balancing.
Therefore, its average resource utilization was the lowest in
cases 4 and 5. However, in case 6, Trimaran showed a higher
average resource utilization than did the kube-scheduler
because the kube-scheduler was an under-allocated resource,
which resulted in a rapid increase in the number of node over-
loads. The average resource utilization of GLP-S was higher
than that of the heuristic-based container scheduling tech-
niques for cases 4 and 5, which were the same as the scenario
having sufficient resource capacity. However, when resources
were under-allocated, as in case 6, GLP-S showed the low-
est average resource utilization. FoRES efficiently managed
resources by improving the average resource utilization by up
to 23% comparedwith other container scheduling techniques,
even though some containers experienced overload, to ensure
the minimum life cycle of the container.

Table 6 lists the resource cost (RC), resource efficiency,
container success rate (CSR), service reliability, and schedul-
ing decision time for the test cases using the container
scheduling techniques. The scheduling decision time denotes

the average amount of time required to calculate the schedul-
ing decision per container.

In this study, we measured resource efficiency using (7),
which takes as input the RC calculated in (6) and the ARU.
The resource price uses the cost policy from Amazon Web
Services (AWS), and the value of RC is normalized to the
range of [1], [2], and [32]. Here, Csche denotes the list of
scheduled containers, whereas tresource and ψresource denote
the resource utilization time and the amount of allocated
resource, respectively.

RC =
1

Csche

Csche∑
i=1

CPU ×
i
cpu × ψ

i
CPU

+ memory ×
i
memory × ψ

i
memory (6)

Resource efficiency =
ARU

Norm(RC)
(7)

Furthermore, in this study, the CSR, which is the rate at
which a container operates without downtime, was calcu-
lated using (8), and service reliability was determined from
the CSR and the number of node overloads Onum as shown
in (9). Here, Ctotal denotes the total number of containers
that requested scheduling and Cfull denotes the number of
containers that run a full life cycle without overload.

CSR =
Cfull
Ctotal

(8)

Service reliability = e−Onum + CSR (9)
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By using the predicted resource usage to select nodes that
provide high resource utilization, FoRES achieved the highest
resource efficiency of all the container scheduling techniques
for all cases. However, FoRES experienced a greater number
of overloads than did the kube-scheduler or Trimaran in cases
4 and 5, which resulted in lower service reliability, but FoRES
achieved the highest SR and provided a better container
runtime than did the other container scheduling techniques.
The scheduling decision time of FoRES was longer than that
of the heuristic-based container scheduler because FoRES
predicted resource usage and then calculated the scheduling
decision. However, the scheduling decision time of FoRES
was generally shorter than that of GLP-S because theDeHyFo
model that was built into FoRESwas composed of an efficient
MLP structure, unlike the AI-based TSF model.

VI. CONCLUSION
In this study we proposed FoRES, which ensures optimized
container deployment to run services efficiently and reli-
ably in a cloud computing environment. FoRES effectively
analyzed the time-specific patterns of workload using the
DeHyFo model, which consisted of time-series decomposi-
tion, multiple linear regression, and LightTS, and it predicted
future resource usage with higher accuracy than did the
existing TSF models. In addition, FoRES selected nodes to
ensure service availability and resource efficiency using an
optimal decision scheduler, and then it deployed the contain-
ers. When we evaluated the performance of FoRES against
actual microservice benchmark datasets, we observed that it
improved resource utilization by up to 23% compared with
existing scheduling techniques, even when resources were
under- or over-allocated, and it ensured service reliability by
reducing the number of node overloads by up to 14,123 times.

However, FoRES cannot be applied to clusters in a cold
start state because it requires the use of historical container
data to predict future resource usage. Therefore, we intend to
add an optimization algorithm-based scheduling technique to
FoRES that uses the basic information of the containers.
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