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ABSTRACT Estimating software testability can crucially assist software managers to optimize test budgets
and software quality. In this paper, we propose a new approach that radically differs from the traditional
approach of pursuing testability measurements based on software metrics, e.g., the size of the code or the
complexity of the designs. Our approach exploits automatic test generation and mutation analysis to quantify
the evidence about the relative hardness of developing effective test cases. In the paper, we elaborate on the
intuitions and the methodological choices that underlie our proposal for estimating testability, introduce
a technique and a prototype that allows for concretely estimating testability accordingly, and discuss our
findings out of a set of experiments in which we compare the performance of our estimations both against
and in combination with traditional software metrics. The results show that our testability estimates capture
a complementary dimension of testability that can be synergistically combined with approaches based on
software metrics to improve the accuracy of predictions.

INDEX TERMS Software testability, software testing, automatic test generation, mutation analysis.

I. INTRODUCTION
Software testing is a key activity of the software life-cycle
that requires time and resources to be effective. In this paper
we focus on the testability of the software, which is defined as
the degree to which the design of software artifacts supports
or hardens their own testing [1], [2], and which can correlate
in many relevant ways with the cost of the testing activities
and ultimately with the effectiveness of those activities for
revealing the possible faults. For example, the availability
of estimates on the testability of the software under test
and the components therein can support test analysts in
anticipating the cost of testing, tuning the test plans, or pin-
pointing components that should undergo refactoring before
testing.

At the state of the art the problem of estimating software
testability has been addressed with two main classes of
approaches: fault-sensitivity approaches, which estimate
testability by focusing on the probability of executing and
revealing possible faults, and approaches based on software
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metrics, which conjecture the correlation between the testing
effort and the static structures of the code characterized with
software metrics as, for example, the cyclomatic complexity
or the lines of code.

The fault-sensitivity approach grounds on the seminal
work of Voas and colleagues on the execute-infect-propagate
(PIE) model of fault sensitivity [3], [4], [5], [6], [7]. The PIE
model defines fault sensitivity as the combined probability of
executing faulty locations, infecting the execution state and
propagating the effects of the infection to some observable
output. High fault sensitivity can be a proxy of high
testability, and vice-versa. However, doing actual estimates
requires to observe the frequency of execution of the program
locations with very thorough test suites, hardly available
before testing [8]. As a matter of fact, after the initial
momentum in the nineties, this approach has never made its
way to established testability estimation tools and has been
progressively abandoned.

The software metrics approach is the main focus of most
past and recent research on software testability [9], [10], [11],
[12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22],
[23], [24].
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Most research effort focuses on object-oriented programs,
by using metrics that capture information about the static
structure of the code at the class-level or method-level (as
for example the Chidamber and Kemerer’s metrics [25]).
The software metrics that have the potential of being
good testability predictors are derived by investigating
the correlation between the metrics and the amount, the
complexity and the thoroughness of the associated test
cases.

We observe that a potential threat to the way these software
metrics have been investigated is the fact that many of these
studies are performed only on a, oftentimes small, sample of
projects, and this could lead to generalization problems. For
instance, several studies report contrasting results: Bruntink
and Deursen [9], [11] do not identify WMC and LCOM
as good predictors differently to other studies [10], [12],
[16], [17], [19] and NOC is identified as a good predictor
only by Singh et al. [12], while others have not found such
correlation [9], [11], [17], [21].

In this paper we introduce and discuss the novel idea
of not relying on the possible correlation between static
metrics and testability, but to directly estimate the testability
degree of a software by sampling the test space and the
fault space of the software, and therein collect empirical
evidence of the easiness or hardness to accomplish effective
testing. According to our approach, the stronger the evidence
that we can collect about hard-to-test faults in a software
component, the higher the probability that its design is not
facilitating testing enough. Drawing on this idea, we rely on
a search-based test generation tool to automatically generate
test cases [26], and refer to mutation-based fault seeding to
sample possible faults [27]. We then refer to the generated
test cases and the seeded faults to extrapolate the testability
evidence.

We empirically studied the effectiveness of our testability
estimates with respect to 598 class methods of three large
software projects in Java. In particular we analyzed to
what extent our estimates correlate with the development
complexity of the test cases that were available in the
considered projects, and we compared the correlation yielded
by our estimates with the one yielded by a selection of
popular software metrics for object-oriented programs. Our
main findings were that our testability estimates contribute to
explain the variability in the development complexity of the
test cases by capturing a different phenomenon than the met-
rics on the size and the structure of the software. Furthermore,
motivated by such findings, we explored the combination of
our metric with the software metrics, revealing synergies to
improve the testability estimates. Thus, our findings support
the research hypothesis that it is viable and useful to estimate
testability based on empirical observations collected with
automatically generated test cases. We remark that we do
not claim that testability estimates based on software metrics
must be avoided and replaced with our testability estimates,
but rather the two approaches could be used synergically to
improve the accuracy of the estimates.

The paper is organized as follows. Section II presents our
novel approach to estimate testability. Section III presents our
experiments. Section IV surveys the relevant related work.
Section V summarizes the main contributions of this paper.

II. EVIDENCE-BASED TESTABILITY ESTIMATION
Providing testability measurements amounts to estimating the
degree to which a software component facilitates its own
testing [1], [2], [5], [28]. In this section we elaborate on both
the intuitions and the methodological choices that underlie
our novel proposal to make these estimates.

A. INTUITIONS AND APPROACH OVERVIEW
1) EXPLOITING AUTOMATED TEST GENERATION
The main intuition that inspires our approach is to experience
with the testability of a given piece of software by simulating
the activity of crafting test cases for that software. Namely,
we rely on automatically generating test cases with a
test generator (in this paper we used the test generator
Evosuite [26]). Looking into the results from the test
generator, we aim to judge the extent to which the current
design is making it hard (or easy) for the test generator to
accomplish test objectives against the considered software.

2) EXPLOITING MUTATION ANALYSIS
We sample possible test objectives in the form of synthetic
faults injected in the target software. We rely on mutation-
based fault seeding [29], [30].

Mutation-based fault seeding injects possible faults by
referring to so-called mutation operators, each describing a
class of code-level modifications that may simulate faults
in the program. For instance, the mutation operator replace-
arithmetic-operators creates faulty versions (called mutants)
of a program by exchanging an arithmetic operator used
in the code with a compatible arithmetic operator: it can
produce a faulty version for each possible legal replacement.
In the sample Java program in Figure 1 we indicated some
possible mutants in the comments included in the code: For
example, we can create a faulty version of the program by
replacing the statement at line 8 with the statement indicated
in the comment at the same line. This is a possible instance
of replace-arithmetic-operators; another one is the mutant
indicated in the comment at line 20. The mutants indicated
at lines 13 and 33 refer to another possible mutation operator,
replace-expressions-with-literals, which consists in replacing
a numeric expression with a compatible constant mentioned
somewhere else in the code. In this paper we used the
mutation analysis tool PIT [27].

To judge testability, we focus on each seeded fault
separately, and we evaluate whether the current program,
by virtue of its design, makes it hard (or easy) for the test
generator to reveal that fault: If the test generator succeeds
to reveal the fault, we infer a piece of testability evidence,
under the intuition that a human could succeed as well with
controlled effort; Otherwise, we might infer a non-testability
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FIGURE 1. A sample Java programs and some corresponding mutants.

evidence (though this requires the further analysis described
below, § II-A3).
For instance, our prototype based on Evosuite easily

reveals the mutant at line 8 of Figure 1, e.g., with a test case
like

SampleProg p = new SampleProg();
p.setScale(0);
assertEquals(0, p.getScale();

whose execution fails against the mutant, but not for the
original program.We thus infer a piece of testability evidence
after observing that Evosuite easily reveals this mutant.
Conversely, revealing the mutant at line 33 requires a test
case carefully tuned on several interdependent class methods,
which Evosuite consistently fails to generate. A test case that
could reveal this mutant would be resemblant to the following
one,

SampleProg p = new SampleProg();
p.setMode(10); // Hit mutant iff this.state = 10\

ldots
p.setScale(20000); // \ldotsand this.scale >

1000000\ldots
p.setSensor(-5); // \ldotsand this.sensor < 0
p.updtState(); // \ldotswhen executing updtState()

.
assertEquals(-1, p.currState();

which requires an arguably non-negligible amount of mental
and manual effort also for a human tester. We infer a piece of
non-testability evidence after observing that the test generator
is unable to reveal this latter mutant.

Eventually, we group the testability and non-testability
evidence that correspond to the seeded faults of the piece of
software of interest, to estimate the degree of testability of
that software: The larger the amount of testability (resp. non-
testability) evidence, i.e., many mutants are easy (resp. hard)
for the test generator to reveal, the higher (resp. lower) the
estimated degree of testability.

3) EXPLOITING TESTABILITY-FACILITATED APIS AS BASELINE
When inferring non-testability evidences as above, we must
pay attention that the quality of our estimations could be
jeopardized by intrinsic limitations of the approaches (and
ultimately the tools) to which we refer for generating the
test cases. In particular, we aim to avoid non-testability
judgements that can derive from intrinsic limitations of the
test generator, rather than testability issues.

For example, a test generator that is not able to construct
some types of data structures, or does not handle test data
from files or network streams, will systematically miss test
cases for any fault that depends on those types of test data,
regardless of actual testability issues of the software under
test. Evosuite consistently fails to hit the mutant at line 13 of
Figure 1, simply because manipulating the file system (to set
a proper file /config.conf) is not part of its functionality.

To acknowledge cases of this type, our approach construc-
tively discriminates the subset of seeded faults (out of the
ones provided by the mutation-analysis tool) for which we
can acquire a sufficient evidence (not necessarily a proof) that
they are not out of the scope of the considered test generator.
We refer to the resulting subset of mutants as the baseline
mutants, since they provide the actual baseline for us to judge
the testability evidences.

In our approach, the baseline mutants are those that the test
generator either can already reveal or could reveal if it has
the freedom to both directly assign any state variable in the
program, and directly inspect the infected execution states.
We enable this capability by (i) augmenting the program
under test with custom setters for all the state variables of
any module in the program, and (ii) recording the mutants
as revealed-mutants as soon as they get executed, even if
there is not a failing assertion in the test cases. We refer to
this simplified setting of the testing problem that we submit
to the test generator as testing the program with testability-
facilitated APIs.

For example, in the case of the program in Figure 1,
we equip the programwith the following set of custom setters:

public void _custom_1__(int i) {this.state = i;}
public void _custom_2__(int i) {this.scale = i;}
public void _custom_3__(int i) {this.mode = i;}
public void _custom_4__(int i) {this.sensor = i;}

In the simplified setting, Evosuite easily executes (i) the
mutant at line 8, e.g., with the test case that we already
discussed above, (ii) the mutant at line 33, e.g., with a test
case like

SampleProg p = new SampleProg();
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FIGURE 2. Workflow of our technique to estimate testability evidences.

p._custom_1__(-3); // Sets state with custom
setter

assertEquals(-1, p.currState();

that suitably exploits the custom setter custom_1__ to
workaround the hard-for-testing API of the original program
for controlling a negative value of this.state, and
(iii) the mutant at line 20, e.g., with a test case like

SampleProg p = new SampleProg();
p.getScale();

that makes the mutant generate an infected execution state at
line 20, even if Evosuite cannot generate a proper assertion
for it. However Evosuite cannot anyway hit the mutant at
line 13 that remains out of the scope of the test generator,
regardless of the availability of the custom setters. Thus,
we eventually consider as baseline mutants only the mutants
at lines 8, 20 and 33, but not the one at line 13.

In summary, our testability judgements are made by
generating test cases for both the original program and the
program augmented with the custom setters, and mutually
crosschecking both sets of test results. We infer testability
evidences upon observing that the test generator successfully
generates test cases that reveal mutants in the original
program, e.g., the mutant at Figure 1, line 8. We infer
non-testability evidences out of the inability of the test
generator to reveal baseline mutants, e.g., the mutants at lines
33 and 20. But our estimations dismiss the information about
the non-baseline mutants (as the one at line 13) conjecturing
that the test generator could not address those mutants
regardless of the testability of the program.

We are aware that, technically speaking, using the
testability-facilitatedAPIsmay lead us to generate some input
states that are illegal for the original program. Nonetheless,
we embrace this approach heuristically: observing faults that
the test generator can hit only with the testability-facilitated
APIs suggests restrictive designs of the program APIs, which
may pinpoint testability issues.

B. THE TECHNIQUE
Figure 2 illustrates the workflow by which our technique
exploits automated test generation (left part of the figure) and
mutation analysis (middle part of the figure) in order to judge
testability evidences (right part of the figure).

The input is a given program under test, which is indicated
at the top-left corner in the figure, and the result is a set
of testability evidences, classified as either controllability
evidences or observability evidences, as indicated at the right-
most side of the figure. Controllability evidences highlight
that the program under test facilitates the execution of seeded
faults. On the other hand, Observability evidences highlight
that the program under test facilitates the reveal of seeded
faults.

The blocks named Test Generation indicate test generation
activities. The blocks named Mutation Analysis indicate
mutation analysis activities. The block named Enrich APIs in
program augments the program under test with the testability-
facilitated APIs, as we introduced in the previous section.
The block Prune non original API from tests removes the
calls to the testability-facilitated APIs from the test cases
generated for the augmented program. This step is needed
for obtaining additional test cases (and thus further testability
evidence) for the original version of the program (that does
not include the testability-facilitated APIs), as detailed in the
next section. The circles that contain the + symbol indicate
post-processing for merging the generated test suites into
a single test suite. The circles that contain the × symbol
indicate post-processing of the data derived from mutation
analysis to derive controllability and observability evidences.
The arrows specify the inputs and the outputs of each
activity.

We have currently implemented the entire workflow
of Figure 2 for programs in Java as a fully automated
process scripted in Bash and Java. Below we explain
all details of our approach for the three phases of the
workflow.
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1) TEST GENERATION
Our current implementation generates test cases with the test
generator EvoSuite that exploits a search-based test gener-
ation algorithm to generate test cases for Java classes [26].
Given a Java class and a set of code coverage criteria,
EvoSuite starts with randomly sampling a first set of possible
test cases for the class, and then iterates through evolving
the test cases multiple times by applying random changes,
while searching for sets of test cases that optimize the given
code coverage criteria. Furthermore, it generates assertion-
style oracles on the observed outputs.

With reference to the Test Generation blocks in Figure 2,
our technique runs EvoSuite against both the program under
test and its augmented version P’. Our implementation of
the block Enrich APIs in program obtains the augmented
program P’ by enriching the interfaces of all classes with
custom setters for any class variable declared in the code.
In Figure 2 we denoted as TestsP and TestsP’ the test suites
generated as result of those EvoSuite runs, respectively. The
test suite TestsP’ generated against P’ indicates program
behaviors that EvoSuite could exercise, possibly with the
help of facilitated APIs. At the same time, the test suite
TestsP’ implicitly captures the program behaviors that the
test generation algorithm of EvoSuite is unlikely to exercise,
since it failed even when facilitated by the capability to set
the input state independently from the constraints encoded in
the program APIs. The comparison between the test suites
TestsP’ and TestsP indicates program behaviors that arguably
were hard to exercise due specifically to the constraints
encoded in the APIs, that is, behaviors that do not belong to
TestsP while being in TestsP’.
For each of the Test Generation blocks in Figure 2, our

technique runs EvoSuite for a maximum time budget that
depends on the size of the class, considering a minimum
time budget of two minutes for the smallest classes in the
considered project and a maximum time budget of 20minutes
for the largest classes, while linearly scaling the time budget
for the classes of intermediate size.

Furthermore, our technique acknowledges the dependency
of the search-based algorithm of EvoSuite from the different
code coverage criteria that the tool allows as possible
fitness functions, and from the intrinsic randomness that
can naturally make EvoSuite generate different sets of
test cases at different runs. Aiming to exercise as many
program behaviors as possible, we set EvoSuite to address
all available fitness functions, i.e, line coverage, branch
coverage, output coverage, exception coverage, and mutation
coverage.

To get rid of the confounding effect of the differences
between the test suites TestsP and TestsP’ that might be just
due to randomness, we constructively merge those test suites
as follows. We test the original program with both the test
cases from TestsP and the ones from TestsP’noapi, i.e., the test
cases that either were generated in TestsP’ but still did not
use any custom setter, or could be adapted from test cases
in TestsP’ by commenting the calls to the custom setters

(Figure 2, block Prune non original APIs from tests).1 For
similar reasons, all the available test cases must be accounted
among the ones that EvoSuite could generate for P’, that is,
TestsP, TestsP’ and TestsP’noapi.

2) MUTATION ANALYSIS
We use the mutation analysis tool PIT to both seed possible
faults of the program under test [27], and characterize the
generated test suites according to their ability to execute and
reveal those seeded faults. This is the information that we will
use in the next phase to judge the testability evidences that the
generated test suites provided for the program under test.

PIT seeds faults in the program under test according to
the mutation operators described in the documentation of
the tool.2 Table 1 indicates the list of mutation operators
that we used with PIT. We considered the set of mutation
operators that PIT advises as the ‘‘stronger’’ group, which
includes 13 mutation operators that address several types
of mutations at the level of the arithmetic operators, the
comparison operators, the logic operators, the return values
and the if and switch statements in the programs.

PIT monitors the execution of the test suites against the
mutants that it computes according to the selected mutation
operators, and classifies the mutants as either revealed,
executed or missed. PIT classifies a mutant as revealed,
if at least a test case produces a different result when
executed against the original program or the mutant program,
respectively. That is, (i) the test case executes with no
exception and raises an exception for either program, or (ii) it
raises different exceptions for either program, or (iii) it passes
all test oracles and fails for at least a test oracle for either
program, or (iv) it fails with respect to different test oracles
for either program. Our technique considers the assertion-
style oracles that EvoSuite generated in the test cases.3 PIT
classifies a mutant as executed, if it could not classify the
mutant as revealed, but there is at least a test case that executes
the code in which the corresponding fault was injected. PIT
classifies a mutant as missed if it could not classify it neither
as revealed nor as executed.

In Figure 2, the two blocksMA indicate that our technique
executes PIT for the test suites that we generated with
EvoSuite for both the program under test and its augmented
version.4 As result we collect:

• the baseline mutants, i.e., the mutants that are executed
with the test cases run against for P’.

1TestsP’noapi represents test cases that Evosuite could generate also for
the original program. Note that the custom setters can be safely commented
without breaking the syntactic validity of the test cases.

2https://pitest.org/quickstart/mutators/
3We instructed EvoSuite to generate assertions for all program

outputs encompassed in the test cases (that is with the option
assertion_strategy=ALL), since we aim to reveal as many mutants
as possible, even if the test cases could become large.

4When running PIT on P’, we do not inject mutations in the API methods
that we artificially added to obtain exactly the same set of mutants for both
programs P and P’.
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TABLE 1. Mutation operators.

• the executed mutants, i.e., the mutants that are executed
with the test suite generated for the original program.
These mutants were provably executed with EvoSuite
with the original program APIs.

• the revealed mutants, i.e., the mutants that are revealed
with the test suite generated for P’. These mutants were
provably revealed with actual assertions within at least a
test case in which they could be successfully executed.

3) TESTABILITY EVIDENCES
Based on the results of mutation analysis, we look for
indications of the testability of the program under test.
Specifically, we first judge the testability of the program
with respect to the testing goal that each mutant represents:
do the results provide evidence that the program under test
facilitates its own testingwith respect to the goal of revealing
the seeded fault that each mutant represents? By answering
yes or no to this question we infer a testability evidence or
an evidence of non-testability, respectively, for each specific
mutant that belongs to the set of baseline mutants computed
as above.

We further split the testability verdicts into controllability
verdicts and observability verdicts. Controllability refers to
whether or not the results of mutation analysis provide
evidence that the program under test facilitates the execution
of the seeded faults. We annotate a controllability evidence
for each mutant that mutation analysis marks as executed
for the original program under test, i.e., the set of executed
mutants computed as above. With respect to these mutants,
the test cases that we generated with EvoSuite provide
empirical evidence that the program under test, with its
original APIs, provides sufficient means of controlling the
assignment of the program inputs and the program states for
test cases to achieve the execution of those seeded faults.
On the other hand, we annotate a non-controllability evidence
for each baseline mutant not marked as executed for the
original program.

Observability refers to whether or not the results of
mutation analysis provide evidence that the program under

test facilitates to reveal the seeded faults. We annotate
an observability or non-observability evidence for each
baseline mutant that mutation analysis marks or does not
mark, respectively, as revealed. The observability evidences
correspond to empirical evidence that the program under test
provides sufficient means for the seeded faults to be observed
from the test cases.

We aggregate the testability evidences, i.e., both the
controllability and the observability evidences, for the
mutants that correspond to faults seeded at the same line
of code, to prevent the unbalanced skewing of our results
towards those instructions that were associated with higher
numbers of mutants than other instructions. For each line
of code associated with at least a baseline mutant, we infer
a unitary controllability (resp. observability) evidence if
more than half of the associated baseline mutants vote as
controllability (resp. observability) evidences; or we infer
unitary non-controllability (resp. non-observability) evidence
otherwise.

C. ESTIMATING TESTABILITY
We refer to the collected testability and non-testability
evidences to reason on the testability of given parts (e.g.,
software components) of the program under test. For instance,
in the experiments of this paper, we aimed to estimate
testability values that represent the testability of the methods
that belong to a Java program.

To this end, we first map each target piece of software
(e.g., each method) to the subset of testability evidences
that relate with that software, and then aggregate those
testability evidences into a testability value measured in the
interval [0, 1], where 0 and 1 correspond the minimum and
the maximum testability values that we can estimate for a
component, respectively.

LetC be a software component that belongs to the program
under test, and let contr+(C), contr−(C), obs+(C) and
obs−(C) be the subsets of positive and negative controllabil-
ity and observability evidences, respectively, that we mapped
to the component C , out of the unitary evidences collected
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with the technique that we described in the previous section.
Then, by referring to the size of those sets, we estimate the
controllability and the observability of the component C as:

Controllability(C) =
|contr+(C)|

|contr+(C)| + |contr−(C)|
,

Observability(C) =
|obs+(C)|

|obs+(C)| + |obs−(C)|
.

Finally we estimate the testability of the component C as
the combination of its controllability and its observability,
namely, as the arithmetic product of the two:

Testability(C) = Controllability(C) × Observability(C).

Furthermore, we acknowledge that the testability evi-
dences collected with our technique can be sometimes
insufficient to calculate reliable estimates for some program
components. In particular, we reckon this to be the case
if our technique was unable to significantly sample the
execution space of the component. When reasoning on the
testability of a piece of software, we mark our estimates
as inconclusive if the portion of lines of code for which
we successfully computed testability evidences was not
a representative sample out of the component’s lines of
code that were associated with some mutants. We ground
on the classic theory of small sample techniques [31].
As a consequence, the possibility of producing inconclusive
results for some components is a possible limitation of
our technique. Depending on the actual implementations of
the technique, the concrete manifestation of this limitation
boils down to the characteristics of the tools with which
we instantiate the test generation tool and mutation analysis
phases. Explicitly pinpointing the conclusiveness of the
estimates aims to alleviate the impact of such limitation.

III. EXPERIMENTS
We investigated to which extent our estimates of software
testability for the methods that belong to a Java program
can capture the actual complexity of developing test cases
for those methods, in a set of experiments with many class
methods and test cases out of three large Java projects.

We remark upfront the foundational nature of our current
experiments. In particular we do not make any strong claim
on the efficiency of either our current implementation,
or the test generator and the mutation analyzer that the
current implementation depends on. The main goal of the
experiments reported in this section is to explore if there
is merit in our idea of estimating testability by relying on
empirical observations made with automatically generated
test cases, and the possible complementarity between this
new approach and the traditional approach of relying on the
correlation with static software metrics.

A. RESEARCH QUESTIONS
Our experiments were driven by the following research
questions:

RQ1: How large is the portion of inconclusive estimates
with our current implementation of the technique?

RQ2: To what extent do our (conclusive) testability
estimates correlate with the development complexity of the
test cases that were designed for the considered methods, and
how do they compare with traditional software metrics in this
respect?

RQ3: Does combining our testability estimates with other
static metrics improve over using only the static metrics as
predictors of testability?

B. SUBJECTS
We selected fromGitHub three open-source Java projects that
(i) use Maven as build tool, as this is a requirement of our
current implementation of the technique, (ii) are representa-
tive of large projects (namely, in our experiments, projects
comprised of at least 500 classes), (iii) include many methods
that can be associated (with the procedure that we describe
in Section III-C) with test cases available in the projects
(namely, in our experiments, at least 300 methods), (iv) are
representative of different types of software developments,
namely (and with no aim of exhaustiveness), a programming
library, a software engineering tool and a business oriented
application. The three projects are:

• JFreeChart, a programming library that supports the
display of charts,

• Closure Compiler, a software engineering tool that
parses and optimizes programs in Javascript, and

• OpenMRS-Core, a business-oriented application for the
healthcare domain.

Table 2 summarizes descriptive statistics about the Java
methods that belong to each project, namely, the number of
methods (first row), their total and individual size (from the
second to the fifth row), and the number of mutants in the
methods (from the sixth to the eighth row). The columns All
refer to all methods in the projects, while the columns Tested
and Subjects refer, respectively, to the subset of methods that
we were able to successfully associate with some test cases,
and to the further subset that we selected as actual subjects for
our study. We describe the procedure by which we selected
these two latter subsets in the next section. The data in the
table indicate that we selected methods with increasing size
and increasing number of mutants at each selection step.

C. GROUND TRUTH
Out of the Java methods in the considered projects (Table 2,
columns All), we excluded all methods hashCode and equals
that are usually generated automatically, and further selected
only the methods that we could associate with a reference
ground-truth, that is, available test cases that the programmers
developed for those methods. This because we aimed at
investigating the correlation between our testability estimates
for the methods and the development complexity of the
corresponding test cases, for methods and test cases designed
by human programmers. We built on the methods2test

63910 VOLUME 12, 2024



L. Guglielmo et al.: Measuring Software Testability via Automatically Generated Test Cases

TABLE 2. Descriptive statistics of the subject methods in the three considered Java projects.

tool [32] to associate the methods with the test cases available
in the projects, and selected only the methods for which we
identified at least an associated test case (Table 2, columns
Tested).

Methods2test heuristically infers the associations between
the available test cases and the methods that are their
main testing target. It originally relies on two heuristics,
name matching and unique method call, but we extended
it with three additional heuristics, stemming-based name
matching, contains-based name matching and non-helper
unique method call, which generalize the two original ones
with the aim to increase the set of identified associations.

For each test case, which in the considered projects is a
test method within a test class, name matching searches for a
target method that both exactly matches with the name of the
test case and belongs to a class that exactly matches with the
name as the test class. Stemming-based name matching and
contains-based name matching address the name matching
with respect to either the stemmed names of methods and test
cases, or whether the test name contains the method name,
respectively. For example testCloning and testCloneSecond-
Case will match with method clone after name stemming
or by name containment, respectively. Unique method call
further exploits the name-based association between a test
class and a target class, by searching for test cases that call a
single method of the target class. Non-helper unique method
call re-evaluates the unique-method check after excluding
the calls to possible helper methods, such as setter methods,
getter methods and the method equals.

After the association with the test cases, we further refined
the set of subject methods by excluding the methods for
which PIT computed mutants for at most two lines of code.
For these methods our technique could distill the unitary
testability evidences out of a too squeezed population of
seeded faults, which results in yielding unbalanced estimates
in most cases. We see this as a drawback of the fault models
that we are currently able to consider by relying on PIT,
rather than as a limitation of our idea of estimating testability
based on automatically generated test cases, and we thus
dismissed these methods from the current experiments on this
basis. We ended with selecting the set of subject methods
summarized in the columns Subjects of Table 2.
We quantified the development complexity of the test cases

associated with each subject method as the number of unique
method invocations made within the ensemble of those test

cases (counted with the tool CK). We refer to this values as
RfcTest, i.e., the Rfc values of the test cases. Since the test
cases are often sheer sequences of method calls (no decisions,
no loops) other complexity metrics (like the cyclomatic
complexity) are scarcely representative, while size metrics
(like LOC, number of test cases or number of assertions) are
more sensitive than RfcTest to arbitrary choices of testers.
RfcTest represents more consistently than other metrics the
effort that testers spent for understanding methods of other
classes, as also considered in several testability studies [13],
[16], [24].

Furthermore, we assessed the reliability of our ground-
truth with respect to possible errors in the method-test
associations returned by Methods2test, by manually cross-
checking 10% of the methods (randomly sampled with
R’s function sample) for which our technique produced a
conclusive estimation (cfr. Section III-E1, Table 3). Out of
42 subject methods that we crosschecked, we detected need
for corrections for 7 methods, i.e., 5 methods for which
Methods2test reported a wrongly matched test case (false
positives), and 2 other methods for which Methods2test
missed 3 and 2 associations, respectively (false negatives).
For 3 of these 7 methods, correcting the errors of Meth-
ods2test did not affect the RfcTest value, thus the corrections
impacted only 4 out 42 methods. This datum suggests mild
impact of the possible errors of Methods2test.

D. EXPERIMENTAL SETTING
We instantiated our technique with EvoSuite, version 1.2.0,
and PIT, version 1.8.1. In Section II-B we have already
described the configuration of EvoSuite with respect to the
fitness functions, the time budget and the generation of
assertions, and the mutation operators used with PIT.

We discriminated inconclusive testability estimates by
determining, for each subject method, the threshold for the
minimal number of lines of code that we must sample
with testability evidences out of the lines for which PIT
identified at least a mutant. We computed the thresholds by
referring to the classic approximation to the hypergeometric
distribution [31], setting the confidence level set to 95%, the
population portions to 0.5 and the corresponding accuracy
to 15%.

To compare the performance of our testability estimates
with the performance of the estimates that can be done with
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TABLE 3. Conclusive testability estimations.

traditional software metrics we used the tool CK5 [33] to
collect the 7 metrics Loc, Rfc, Cbo, Fan-out, Fan-in, Cbo-
modified and Wmc, for each subject method. Loc is the
number of lines of code in the method. Rfc is the number of
unique method invocations done within the method. Cbo is
the number of non-primitive data types used in the method.
Fan-out is the number of unique classes on which the method
depends via method calls. Fan-in is the number of other
methods that call the method within the same class. Cbo-
modified is the sum ofFan-out andFan-in.Wmc is the number
of branch instructions within the method or 1 for no branch.

E. RESULTS
1) CONCLUSIVENESS (RQ1)
Table 3 reports, for each of the three Java projects (column
Project) and set of subject methods (column Subjects),
the number of methods for which we achieved conclusive
estimations (column Conclusive) and the corresponding
portion (column Portion).

The portion of inconclusive estimations is evidently
not negligible, ranging between 16% and 41% across the
three Java projects. The inspection of the methods with
inconclusive estimations revealed that, as we expected, many
subject methods were not hit with any test case fromEvoSuite
since they depended on inputs that EvoSuite cannot generate
due to limitations of its current implementation. For example,
we identified several methods that take files and streams
as inputs (e.g., parameters of type ObjectInputStream) that
EvoSuite does not currently handle.

We remark that EvoSuite is a research prototype, though
very popular in the community of researchers that work
on test generation, and we did not expect it to be perfect.
Tuning our technique with further test generators or even
ensembles of test generator (as well as experiencing with
further mutation analysis tools other than PIT) is an important
milestone for our technique to make its way to practice, and
definitely the most relevant next goal in our research agenda.
But we also underline the importance of studying the merit
of our novel proposal for the cases in which we could indeed
achieve conclusive results with the current implementation,
which admittedly is our main objective in this paper.

2) CORRELATION WITH TEST CASE COMPLEXITY (RQ2)
For the research questions RQ2 and RQ3 we focused on the
subject methods for which our technique yielded conclusive
results.

5The tool CK is available at https://github.com/mauricioaniche/ck.

Table 4 reports the correlation (as the Spearman rank
correlation coefficient6) between our testability estimations,
the 7 static software metrics that we measured with the
tool CK, and the development complexity of the test cases
(measured as the metric RfcTest) for the subjects methods in
each considered Java project. Each cell in the table represents
the correlation between the metrics indicated in the titles
of the corresponding column and row, respectively. For
example, the column T represents the correlations between
our testability estimates and all other metrics, and the row
RfcTest represents the correlation of all possible metrics
(including our testability estimates) with the development
complexity of the cases. All reported correlation values were
computed with R. The missing correlation values (indicated
as dash symbols in the table) refer to cases for which we did
not find support for statistical significance (p-values greater
than 0.05).

We observe that:
• our testability estimations have a moderate correlation
with RfcTest for the sets of subject methods of all
the considered projects (JFreeChart: 0.51, Closure
Compiler: 0.41 and OpenMRS: 0.45).

• Our testability estimates yielded the best correlation
with RfcTest for the methods of JFreeChart and Closure
Compiler, and the fourth best correlation for themethods
of OpenMRS.

• Our testability estimates have weak correlation with the
size of the methods measured as the lines of code (top-
left correlation value, row Loc, in the three value sets in
the table).

• The other static metrics resulted in significantly higher
correlations with Loc (columns L in the table) than
Testability, with the only exceptions of CboModified in
project Closure Compiler (where however CboModified
has only a weak correlation with RfcTest).

In summary the findings confirm that our testability
estimates may contribute to explain the variability in the
complexity of the test cases, while capturing a different
phenomenon than the size of the software. The other software
metrics also correlate with the test complexity, sometimes
with comparable strength as our testability estimates, but
their independence from Loc is questionable. Overall, these
findings motivate us to explore the possible synergies
between our testability estimates and the static metrics.

3) SYNERGY WITH STATIC SOFTWARE METRICS (RQ3)
We evaluated the performance of the 7 testability indicators
obtained by combining each static software metrics with our

6The Spearman rank correlation coefficient indicates the extent to which
the ranking of the subjects with respect to an indicator produces a good
approximation of the ranking with respect to the other indicator. The table
also reports the correlation between the testability estimations and the 7 static
software metrics that we measured with the tool CK, and the correlation
of those 7 metrics between them and with RfcTest. The correlation value
ranges between −1 and 1, being 1 an indication of perfect correlation (same
ranking),−1 and indication of perfect anti-correlation (same inverse ranking)
and 0 an indication of no correlation (completely different ranking).
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TABLE 4. Correlations between testability estimates, static metrics and test case complexity.

TABLE 5. Correlation with the combined testability indicators.

testability estimates. For each static metric, we obtained the
combined indicator as the average ranking of the two rankings
yielded by the static metric and our testability estimates,
respectively, for the subject methods. For the static metrics
that are anti-correlated with the testability estimates (all but
FanIn, see Table 4) we reversed the testability rankings before
computing the combined indicators.

In this study we considered also the methods for which
our technique resulted in inconclusive estimates. Since the
static metrics are generally available for all methods, and
we aim to evaluate if we can benefit from the static metrics
in combination with the testability estimates, it makes sense
to include those methods as well. For the methods with
inconclusive testability estimates, we obtained the combined
indicators as just the ranking value yielded by the static
metrics (that is, without any additional benefit from testability
estimates).

Table 5 reports the correlation between RfcTest and the
7 combined testability indicators (columns combined) in

comparison with the correlation obtained with respect to the
base static metrics alone (columns base) for the subjects
methods in each considered Java project. We report only
the correlation values supported with statistical significance
(p-value less than 0.05). The data in the table show that the
correlation yielded with the combined indicators consistently
outperformed the correlation yielded with the corresponding
static metrics alone, in most cases with relevant deltas. This
confirms our main research hypothesis that our testability
estimates capture a complementary dimension of testability
with respect to the traditional software metrics, and can be
synergistically combined with those metrics for the purpose
of predicting software testability.

F. THREATS TO VALIDITY
The main threats to the internal validity of our experiments
depend on our current choices about the test generation
and mutation analysis tools (EvoSuite and PIT) embraced
in our current prototype. On one hand, our results directly
depend on the effectiveness of those tools in sampling the
execution space and the fault space of the programs under
test, respectively, and thus we might have observed different
results if we had experienced with different tools. On the
other hand, our experiments suffered of several subjects for
which PIT failed to identify sufficient sets of mutants (the
subjects that belonged to the subsets Tests in Table 2, but
that we excluded from the considered subsets Subjects) and
EvoSuite failed to provide sufficient test cases (the subjects
that resulted in inconclusive estimates, see Table 3).
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We mitigated the possible threats by focusing our analysis
only on the methods that could be reasonably handled
with PIT, and by explicitly pinpointing the methods for
which EvoSuite allowed us to compute conclusive results.
We studied the performance of our technique both as the
extent of correlation of our conclusive estimates with the
development complexity of the test cases, and by looking
into how well our estimates can combine with traditional
software metrics also with consideration of our inconclusive
results. But we are aware that we cannot make any strong
claim on the efficiency of our current implementation of the
technique that we propose in the paper, and in particular on
its specific characteristics of being based on EvoSuite and
PIT. Our current claims are only on having provided initial
empirical evidence that (i) our approach captures a different
testability dimension than the size of the software, and (ii) it
can complement traditional software metrics to reason on
software testability in synergistic fashion.

As for the external validity, our findingsmay not generalize
to other software projects other than the ones that we
considered or to programming languages other than Java.
In the proposed experiments, we computed the testability at
the method level, and thus our results may not generalize
to measuring testability for software modules of different
granularity (e.g. classes or components). In the future,
we aim to replicate our experiments on further projects
and implement our technique for additional programming
languages.

IV. RELATED WORK
The notion of software testability has been first introduced
by Freedman [28] along with the related concepts of
observability and controllability. In turn, these two concepts
were inherited from the fields of dynamic systems [34]
and hardware testing [35]. Then over time the problem
of measuring software testability has been addressed with
two classes of approaches, based on either fault-sensitivity,
which addresses testability by estimating the probability
of revealing faults, or software metrics, which estimate
testability by conjecturing the correlations between software
metrics and the testing effort.
Fault-sensitivity approaches were popular in the 90s, with

the work about the PIE (or RIP) model [3], [4], [5], [6],
[7], [36]. PIE stands for propagate, inject and execute, which
are the three main stages of the fault-revealing executions
that must be considered to estimate testability. In practice,
sensitivity analysis injects simulated faults into the code and
evaluates their effect on the outputs. Bertolino and Strigini
exploited this notion of testability to study the relation
between testability and reliability [37]. Lin and Lin proposed
to use a modified version of the PIE technique, which
analyzes the structure of the code instead of executing test
cases [38]. Zhao proposed a metric that quantifies the portion
of a test suite that can detect specific faults under given test
criteria [39].

The strength of the fault-sensitivity approaches is to refer
to actual faults, the weakness is on the performance side,
since the number of input data that need to be provided for
sensitivity analysis is high even for small programs. For these
reasons, researchers progressivelymoved to softwaremetrics,
which are considered more cost-effective to compute. Our
work however shows that dynamic measures derived from
observability and controllability are important factors not
subsumed by static software metrics, which should be rather
considered in combination with them.
Software metrics derive testability indexes from metrics

that capture information about the static structure of the
code. These studies aim at finding a correlation between the
static metrics and the testability of the analyzed software,
to identify which metrics are best predictors of testability.
Different research efforts studied different combination of
metrics. Khalid et al. proposed static metrics that aim at
estimating the complexity of an object and evaluate their
performance for testability prediction [14]. Alshawan et al.
proposed a set of static metrics specific to web applica-
tions [22]. A large body of papers refer to the so called CK
metrics for object oriented software [25]. Gupta et al. propose
a fuzzy approach to integrate the CK metrics in a unique
metric that should represent the testability [10]. Singh et al.
and Zhou et al. used neural networks and linear regression,
respectively, to predict testability to combine several software
static metrics to predict testability [12], [18].

All research efforts share the challenge of deriving a
ground truth for evaluating the goodness of the proposed
techniques. Typically researchers referred their experiments
to metrics that quantify the testing effort as the size or the
complexity of test suites available in software repositories.
Possiblemetrics include: the number of test cases, the number
of lines of test code, the number of assertions, the number
of all or unique method calls in test cases, and the average
cyclomatic complexity of the test cases. For instance,
Bruntik and van Deursen studied the correlation between
object-oriented metrics and the testing effort estimated as
above [9], [11]. Other studies measured the test effort as
the time required for completing the testing tasks [10]. This
datum is however seldom available as historical data in
software repositories. Others referred to code coverage to
evaluate testability indicators with respect the quality of the
test suite. Terragni et al. referred to coverage data normalized
with respect to the size of the test cases [21]. In line with
previous studies, we consider the complexity of the test cases
(measured as RfcTest) as ground truth of testability.

V. CONCLUSION
In this paper we discuss a new approach for measuring
software testability. Our approach tackles the testability
measurement problem explicitly, by operationally estimating
the degree of controllability and observability of a software
component. In particular, our approach samples the test
space and the fault space of the target component, therein
collecting empirical evidence of the easiness or hardness
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to accomplish effective testing. Our approach provides a
novel and direct way of dealing with testability, compared to
previous work that attempts to measure testability based on
arguable relations with code size, code complexity and fault
sensitivity. We computed our metric for Java methods and
performed experiments with 598 subject methods from 3 Java
projects. The results show that our approach captures a
testability dimension that static metrics do not well represent,
and thus it can well complement traditional software metrics.

In future work we aim to address the drawbacks that
we discussed in the paper about the automatic testing and
mutation analysis tools, aiming to refine and expand the
empirical evidence on the effectiveness of the proposed
approach. In addition, we believe that the unexecuted and
unrevealed mutants that our technique pinpoints may provide
concrete examples of untestable software behaviors that can
be of interest for the engineers to understand the reasons of
low testability, and we thus aim to investigate this different
type of exploitation of our approach.
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