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ABSTRACT This paper discusses the benefits of employing surface electromyography (sEMG) signals
for power-assisted control to recognize human motion intention swiftly and efficiently from an agility
perspective. A majority of power-assisted control systems use interaction force and torque (F/T) sensors
to recognize human motion intention. However, these sensors have limitations regarding agility as they are
fundamentally indirect and delayed measurement sensors. As a direct sensor to recognize human motion
intention prior to actual human body movements, this study focuses on elucidating the benefits of sEMG-
based power-assisted control, which can serve as a complementary and synergetic method alongside the
widely used F/T-based power-assisted control. Our experimental (n = 11) results suggest that sEMG-
based power-assisted control can increase the agility of inherent body movement through correct and rapid
recognition of intention. We evaluated agility with respect to muscle usage and elapsed time for task
completion, considering the meaning of agility. The results are as follows: the sEMG-based method reduced
1) muscle usage by 29.45% for the trajectory following task, 2) muscle usage by 25.92% and elapsed time
by 5.61% for the step response task, and 3) muscle usage by 16.68% and elapsed time by 7.14% for the
maximum speed of repetitive movement task, all compared to those of inherent body movement.

INDEX TERMS Agility, exoskeleton, sEMG, motion intention recognition, physical human-robot
interaction, power-assisted control, wearable robotics.

I. INTRODUCTION
Power-assisted robots provide physical assistance to indi-
viduals with insufficient muscle abilities and have been
successfully used to enhance mobility and amplify power
in various fields, including military [1], industry [2], and
rehabilitation [3]. Physical assistance is also necessary for
activities of daily living (ADLs). For example, elderly
individuals or patients with limited inherent restrictions in
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body movement require more effortless or faster movements
in ADLs. In such cases, the ability to move the body quickly
with low muscle effort is called agility [4], which can be
described as a light movement. Hence, to provide assistance
from the agility perspective, power-assisted robots should
facilitate more rapidmovements with reducedmuscular effort
compared to the inherent body movement.
Several control strategies have been developed to operate

power-assisted robots for various tasks and applications.
When a task has a clear purpose or involves repetitive
motion, predefined trajectories have been effectively used
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FIGURE 1. Using F/T signals can lead to the incorrect recognition of
human intention, as the same signal can be measured for different
intentions, such as providing assistance or resistance. Increasing agility
requires a robot to push the human body toward the intended movement,
causing the human body to lean on the robot. Consequently, interaction
forces act in opposite directions on the robot and human body due to the
action-reaction principle. This characteristic causes the interaction to be
measured in the same direction, even for different intentions. Hence, it is
difficult to distinguish motion intention, especially intended direction,
between assistance and resistance conditions.

with promising results such as gait assistance [3]. However,
predefined trajectories may lack flexibility and be unsuitable
for adapting to unexpected situations arising from variations
in human intention. In response, intention-based methods
have been investigated in various situations. A straightfor-
ward approach is using external devices such as buttons [5]
or joysticks [6]. Although the external device can clearly
detect the intention, it can cause a cognitive burden because
manipulating an external device is not intuitive for human
motion. Additionally, it restricts the use of hands, resulting
in missed opportunities to perform intricate tasks. Inertial
measurement unit (IMU) is an alternative to detect motion
intention by capturing movement effectively. However, they
are applicable to only observable movements [7]. Alterna-
tively, an interaction F/T sensor can detect intention during
the physical interaction between the human and robot without
cognitive burden. Furthermore, it can measure the interaction
force with reliability and clear causality even in the absence
of observable motion.

Based on these advantages, F/T-based power-assisted con-
trols have been used successfully to reduce robot impedance
and carry payloads [8], [9], [10]. However, using F/T signals
to recognize human intention for agile movement has two
major drawbacks: 1) the possibility of recognizing human
intention incorrectly with the interaction F/T signal because
the signal has the same direction for different intentions, such
as assistance and resistance, as shown in Fig. 1; and 2) time-
delayed recognition of intention since it is a posterior result
for the human force as shown in Fig. 2. These limitations arise
because the F/T sensor measures human intention indirectly.
Furthermore, these limitations lead to slow and misguided
assistance for agile movement. It will be discussed in Fig. 1
and 2, and Section II, in detail.

A solution to these drawbacks is achievable by employing
the bio-signal as a direct signal of motion intention.
Electroencephalography (EEG) is often used to detect human

FIGURE 2. The time-delay issue of F/T signals arises because the
interaction force is measured after human movement. Thus, when the F/T
signal is used to recognize the human intention, the robot follows the
intention belatedly, resulting in delayed assistance. Additionally, when
the intention changes rapidly, it may lead to the incorrect recognition of
the intention.

intention by measuring brain activity signals, but it remains
still challenging [11]. Among the bio-signals, sEMG signals
have been widely used to recognize motion intention as
they are directly related to movement and can be measured
easily from the skin surface [12], [13]. Additionally, it can
be measured before human force generation, and this
characteristic is referred to as the electromechanical delay
(EMD) [14]. Therefore, the sEMG signal can be expected
to provide a correct and rapid measurement to recognize the
intention.

In a previous study [15], the limitations of the F/T-based
method were explained and addressed using the sEMG
signal under unknown external perturbations. In [16], a com-
parative study of the intention-detection strategy between
F/T-based and sEMG-based controllers was conducted.
Several researchers have used the sEMG-based control in
power-assisted robots [12], [13], [17], [18], which focused
on the sEMG signals as one of the sensor signals to decode
motion intention. However, there is a lack of experimental
evidence and discussion of the benefits of sEMG signals and
the limitations of F/T signal, i.e., the discrepancy between F/T
signal and motion intention and time-delay issues, from an
agility perspective.

This study quantitatively discusses the benefits of
using sEMG signals to recognize motion intention for
power-assisted control from an agility perspective, mainly
based on experimental results. Additionally, this study
illustrates that sEMG-based control can enhance the
limitations of F/T signal by enabling correct and rapid power
assistance.

The remainder of this paper is structured as follows.
In Section II, we review the conventional F/T-based power-
assisted control method and analyze the limitations of
F/T-based control for agile movements. Then, in Section III,
we set up three comparison experiments to verify the benefits
of employing sEMG signals in power-assisted control. The
experimental results, in terms of agility, are presented in
Section IV. Section V discusses the benefits of employing
sEMG signals to enhance agility based on the experimental
results. Finally, the conclusions are presented in Section VI.

II. PROBLEM DEFINITION
In this section, we review the power-assisted control methods
that use F/T signals to recognize human intention. Addition-
ally, we describe the limitations of F/T-based power-assisted
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FIGURE 3. The possible interaction statuses of coupled-system between
the forearm and robot for the motion intention from an agility
perspective. The blue and red arrows represent the interaction forces
work on the forearm and F/T sensor, respectively. (a) Human pushes the
robot while feeling the robot’s impedance. (b) The forearm is assisted by
the robot. (c) Human resists the motion of the robot. (a), (b), and
(c) correspond to areas A, B, and C in Fig. 5, respectively.

control for human intention recognition from an agility
perspective.

A. PROBLEM STATEMENT
This study aims to verify the benefits of employing sEMG
signals for power-assisted control to enhance the agility of
body movement. The robot should recognize human motion
intentions correctly and rapidly to enhance agility. This
is because incorrect recognition can result in the opposite
direction of the motor input, which could disturb human
motion. Additionally, delayed intention recognition can cause
delayed control input, and as a result, the robot may follow
the human movement belatedly after the human is already
in action. This delay can disturb human movements and be
particularly disruptive when an individual changes intention.

To summarize, for a power-assisted robot to significantly
improve agility, it is essential to ensure the following criteria:

1) Accurate and reliable interpretation of the user’s
motion intention.

2) Minimizing time delay in recognizing human motion
intentions to ensure closer alignment between the user’s
actions and the robot’s power assistance.

3) Assistance to the human user in conserving energy
while simultaneously enhancing movement speed.

B. LIMITATIONS OF FORCE/TORQUE-BASED CONTROL
METHODS ON AGILE MOVEMENT: A MATHEMATICAL
ANALYSIS
While interaction F/T signals exhibit limitations in recog-
nizing intention for agile movements, prior applications in
previous studies have proven successful, offering valuable
insights into the control framework. These frameworks are
also applicable to employing sEMG signals as command
sources instead of F/T signals. In [8], an admittance control
framework was developed by incorporating the intention to
deal with the unknown masses and moments of inertia of
the robot. An intention-guided control was also proposed for
an upper-limb power-assist exoskeleton with a force-sensing
resistor and admittance control [9]. In [10], a passivity-based
nonlinear admittance control method provided assistance for
an unknown payload while recognizing the intention via the
F/T sensor. In these studies, the F/T sensor can successfully
recognize motion intention because the human interacts with

FIGURE 4. Simplified dynamic model of the coupled system between
human limb and robot.

the robot based on the intendedmotion, resulting in alignment
between the measured F/T signal and the motion intention,
as shown in Fig. 3-(a) and (c). Then, they perform assistance
by reducing the impedance of the robot or payload with the
F/T signal.

On the other hand, when enhancing agility, the robot should
push the human limb, such as Fig. 3-(b). This means that the
power-assisted control should provide sufficient assistance to
reduce the impedance of not only the robot but also the human
body. Therefore, the intention and the interaction force cannot
be in the same direction due to the action-reaction principle,
as shown in Fig. 1. Additionally, there is a difference in the
perspective of the time delay effect. In previous studies that
utilized F/T signals, it was sufficient to provide assistance
after human force generation because the focus is on the
impedance of the robot or payload. However, to enhance
agility compared to inherent body movement, late assistance
is a critical issue since the robot should provide assistance
not for the robot movement but for the body movement.
Delayed assistance does not involve assisting human actions
directly but rather involves the robot following the human’s
movements. Therefore, we need to reconsider the signal
when recognizing the intention for power-assisted control to
increase agility.

The delay in the F/T signal can be explained by the
causal relationship of physical human-robot interaction that
occurs after human movement, as explained in Fig. 2, and
previous studies [19], [20]. However, to the best of the
author’s knowledge, no literature has discussed the discrep-
ancy between F/T signal and motion intention. Therefore,
we present descriptions that interaction F/T signal can be the
same direction for the different intentions, and vice versa.

Fig. 4 shows a simplified schematic diagram describing
the coupled system between the human and robot. x and F
represent the position and force, respectively.Mass, damping,
and gravitational force are described by M , B, and G,
respectively. The subscripts (·)h, (·)r , and (·)int represent the
values for humans, robots, and interaction, respectively. The
subscripts (·)w and (·)wo indicate with and without a robot,
respectively.

We can represent the interaction force such as:

Fint = Kint (xh,w − xr,w) (1)

considering the direction of the sensor. The interaction force
is measured by the relative position between the human limb
and the robot and the stiffness of the interface connecting
the human limb and the robot, denoted as Kint . The
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FIGURE 5. (a) Sign of the interaction torque according to the (4).
(b) Conditions for each interaction status. Area-A represents disturbance,
area-B represents assistance, and area-C represents resistance statuses
via power-assisted robot. The measured interaction torque can be in the
same direction for different situations and intentions.

Fig. 3-(a) and (b) show that the F/T signal can be in a different
direction for the same intention since it can detect only the
positional differences between the human limb and the robot,
which is indirect to the human intention, i.e., Fint , not Fh.
Additionally, we can show that the F/T signal can be in

the same direction for different intentions, such as Fig. 3-(b)
and (c). The dynamics of the human limb without and with
the assistance robot are as follows [21]:

Mhẍh,wo + Bhẋh,wo + Gh = Fh,wo (2)

Mhẍh,w + Bhẋh,w + Gh = Fh,w − Fint (3)

For the same movement which means Xh,w = Xh,wo where
Xh = [xh ẋh ẍh], we can obtain following relationship.

Fh,wo = Fh,w − Fint (4)

We can determine several conditions with this relationship.
The blue area (A) in Fig. 5, corresponding to Fig. 3-(a), is in a
state of disturbance since Fh,w/Fh,wo > 1, which implies that
the human uses more force for the same movement, showing
that the human needs to overcome the impedance of the robot
and apply more human force. However, the red area (B) in
Fig. 5, corresponding to Fig. 3-(b), is the assistance condition
because Fh,w/Fh,wo < 1. This implies that humans use less
force for the same movement. Conversely, the green area
(C) in Fig. 5, corresponding to Fig. 3-(c), showing different
directions of Fh,w and Fh,wo, is the resistance condition. This
is because the human generates a force (Fh,w) in the opposite
direction to the original human force (Fh,wo) for the same
movement. This implies that humans resist incorrect robot
input. Likewise, using the F/T signal alone to determine
intention is difficult because it can be in the same direction
for different intentions.

III. EXPERIMENTAL METHODOLOGY
We set up experiments to verify the benefits of employing
sEMG signals to enhance agility. To analyze the characteris-
tics of employing each signal, four conditions, described in
Fig. 7, were compared in three comparison experiments for
elbow motion. This study was approved by the institutional
review board (IRB) at POSTECH for human subject tests
(number PIRB-2022-E012).

FIGURE 6. Configurations of a 1-DOF system (a) Overview of the arm and
load (b) Electric motor, torque sensor, IMU sensor, and electrodes. The
subject performs elbow motion while sitting, aligning the axis of the
elbow and motor, and tightening the strap sufficiently.

A. HARDWARE CONFIGURATION
Experiments were conducted using a 1-DOF system for
elbow motion assistance, as shown in Fig. 6. EtherCAT
was selected as the communication protocol for implement-
ing 1 kHz real-time data acquisition (DAQ) and control.
An EC-iø52mm brushless motor (Maxon Motor, Switzer-
land) was synchronized with the other DAQ devices. The
motor is equipped with a 43:1 reduction gear so that the
maximal continuous torque becomes 27.52 Nm. AnM2210A
torque sensor (Sunrise, China) was installed to capture
the interaction torque between the forearm and robot, and
its signal was amplified and acquired from ClipX (Beck-
hoff, Germany). The DAQ interface, visual feedback and
real-time data processing were implemented using Microsoft
Foundation Classes(MFC). sEMG signal recordings passed
through a Model 1800 AC amplifier (A-M Systems, USA)
with an internal notch filter of 60 Hz, band-pass filter
ranging from 10 to 500 Hz, and gain of 10,000. The sEMG
signal was captured from a bipolar conductive adhesive
hydrogel-type electrode (Covidien, Ireland) considering the
notifications about factors that impact the sEMG signal
according to SENIAM recommendation [22]. Target muscles
were selected as the triceps brachii for the extension muscle
and biceps brachii for the flexion muscle. A wire-based
sEMGacquisition systemwas used to reduce the transmission
time delay of the signals. An IMU sensor (March Bionics,
Korea) captured the angle of the elbow joint not for the
control of a robot but for validation of the results.

B. PROTOCOL
Eleven (N=11) healthy male subjects participated in the
experiment. The participants were included through prelim-
inary assessments and self-reports to ensure the following
criteria: no history of musculoskeletal or neurological
diseases, normal muscle strength, and normal joint range
of motion. The load (5.18 kg ± 1.55 kg), which can
produce approximately 50% of the maximal torque of the
subject measured during MVC, was affixed on the subject’s
forearm. The MVC measurements were performed with the
elbow positioned at 90 degrees. The presence of the load
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FIGURE 7. Four comparison conditions of the experiments. (a) inherent
motion (baseline): Subjects moved the body without a robot. (b) no
assistance: Subjects wore the robot. No controller was applied to the
robot. (c) F/T-based: Subjects wore the robot. The interaction F/T signal
was used for intention recognition. (d) sEMG-based: Subjects wore the
robot. The sEMG signal was used for intention recognition. (c) and (d) are
passivity-based admittance control(shaping) schemes. τ and θ indicate
the torque and angle, respectively. µ indicates the sEMG signal. τ̂h means
estimated human joint torque.

increases the impedance of the subject’s forearm, resulting
in conditions requiring power assistance.

We conducted a comparative experiment for four condi-
tions described in Fig. 7.
1) Inherent motion (baseline): Subjects do not wear the

robot such as Fig 7-(a).
2) No assistance: Subjects wear the robot. Any controller

is not applied to the robot Fig 7-(b).
3) F/T-based: Subjects wear the robot. The passivity-

based admittance control is applied to the robot using
the interaction F/T signal as human intention, such as
Fig 7-(c). The details of the controller are explained in
Section III-C.

4) sEMG-based: Subjects wear the robot. The passivity-
based admittance shaping control is applied to the
robot using the sEMG signal to recognize the human
intention, such as Fig 7-(c). The details of the controller
are explained in Section III-C.

Three experiments were conducted, with subjects perform-
ing the task under each of the four conditions in a random
sequence. The subjects could monitor their current position
and informed that they should give their best effort during
these experiments. They rested sufficiently between each trial
to avoid muscle fatigue. The experiments are as follows:
1) Experiment #1 - Following a reference trajectory:

The subjects follow the reference trajectory five times
for elbow motion. The reference trajectory described
in Fig. 8-(a) was introduced for visual feedback to the

user to enable a fair comparison of the four conditions
with the same task and to confirm the possibility of
assistance in slow motion.

2) Experiment #2 - Step response: The subjects were
asked to move the forearm as fast as possible to reach
the target position, which is the step response, five
times. The target position is 90◦ and starts at random
timing.

3) Experiment #3 - Maximum speed of repetitive
movement: The subjects were asked to repeat the
elbow motion ten times between 0◦ and 90◦ as quickly
as possible.

C. REAL-TIME CONTROLLER
We utilized a passivity-based admittance control method
[10] in this experiment that follows system dynamics into
a user-defined nominal system and enables safe interactions
between the robot and human via an interconnection of
passive systems. Then, we used the interaction torque signal
and sEMG signal to recognize human intention as shown in
Fig. 7-(c) and (d).

When using the interaction torque signal (F/T-based), the
controller is shown in Fig. 7-(c), and it is the same with
previous works [10]. We applied a low-pass filter (LPF)
to deal with the noise of interaction torque signals with
5 Hz cutoff frequency, considering the bandwidth of human
movement.

When using sEMG signal (sEMG-based), the control
structure is shown in Fig. 7-(d). The control scheme can be
used safely even with sEMG signals as an input, without
breaking passivity as proved in [10].
The controller’s gains were set to ensure sufficient

assistance while minimizing any sense of discomfort due to
the excessive assistance for the user through preliminary tests
and feedback from the subjects. The subjects were allowed to
become familiar with the system and control methods.

The sEMG signal is filtered as mean-absolute-value
(MAV) in this study because it is too noisy to be used directly
in the control scheme [23]. MAV (µMAV ) was used, which
can be calculated using the moving average of the absolute
value of the raw sEMG signal (µraw) as below because it is a
simple and well-used method for smoothing noisy signals.

µMAV (k) =
1
W

k∑
j=k−N+1

|µraw(j)| (5)

where W is the window size of the moving average, and it is
W = 100 that is 100 ms in this study considering the effect
of window size, as explained in Section V-C.
Also, we utilized the fact that the relationship between the

sEMG signal and joint torque is exponential [15] to recognize
human intention. In detail, the estimation model that can be
used simply and effectively is as follows:

τ̂i,h = µa
i,MAV · exp(b− c · µi,MAV ) (6)
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FIGURE 8. Experiment #1: Results for the following a reference trajectory experiment. (e) is a box plot for each subject’s result. (f) shows the total
average and standard deviation of iEMG values for each condition, with percentages representing the value compared to the baseline.

where a, b, and c are user parameters [24] and subscript i
represents flexion or extension. The parameters are estimated
through the nonlinear regression with the sEMG and torque
data acquired through the maximal voluntary contraction
(MVC) process. This was conducted for each subject
separately, and both flexion (r = 0.984 ± 0.0144) and
extension (r = 0.982 ± 0.0165). Although there are various
joint torque estimation models [25], [26], this paper focuses
on analyzing features of the results that appear when each
signal is employed to recognize motion intention, and the
above model is enough to recognize the intention in our tasks.

D. ANALYSIS OF RESULTS
To analyze the results from an agility perspective, we used the
following metrics, considering the meaning of agility [27],
[28]:

agility ∝
1∫ Tf

Ts µraw(t)dt
·

1
1Te

(7)

where Ts,Tf and 1Te denotes started time and finished
time of the task; and elapsed time is represented by the
difference between Tf and Ts which is 1Te = Tf −

Ts.
∫ Tf
Ts µraw(t)dt denotes integrated sEMG (iEMG). The

iEMG and elapsed time represent muscle effort and physical
performance, respectively [4], [29].

In Experiment #1, we analyzed agility using only the iEMG
values of the flexion muscle. This is because the task is
restricted to the same motion (1Te = 4.0), and is slow
enough not to use the extension muscle, as shown in Fig. 8.
In Experiment #2, the agility is analyzed using iEMG of
flexion muscle and elapsed time. This is because the task is
for the flexionmuscle, as shown in Fig. 9. The Ts is the start of
reference, and Tf is the timing when the human limb position
reaches the target position. In Experiment #3, the iEMG value
of flexion and extension muscle and elapsed time were used

to analyze the agility. The Ts and Tf are the start and end of
the ten times of elbow motion.

The iEMG value and elapsed time were normalized based
on the maximum values of each subject for each task [30],
[31]. Additionally, the onset of each signal is detected by
the threshold, which is set at (mean+3×standard deviation)
measured before the start of each motion [32]. The pairwise
comparisons were conducted for four conditions in three
experiments.

The Kruskal–Wallis one-way analysis of variance test
in Experiment #1 and permutation multivariate analysis of
variance in Experiments #2 and #3 are performed [33],
[34]. This is because the experiment’s results did not
follow normality according to the Shaprio-Wilk test, and
Experiments #2 and #3 obtained results for interrelated
multivariate variables, which are sEMG and task elapsed
time. Statistical significance was set at a p-value < 0.05. All
data comparisons were performed using MATLAB software
(MATLAB 2020b Math; MathWorks Inc., MA, USA).

IV. RESULTS
In this section, we analyzed the results of the comparison
experiments introduced in Section III-B from an agility
perspective as explained in Section III-D.

A. EXPERIMENT #1: FOLLOWING REFERENCE
TRAJECTORY
Fig. 8 shows the results of Experiment #1. The agility can
be interpreted by comparing the iEMG value of flexion
muscle as explained in Section III-D. For all the subjects,
sEMG-based reduced the iEMG value of flexion compared
to the baseline, while F/T-based reduced it only for the no
assistance and not for the baseline. For the statistical analysis,
there were significant differences in iEMG values of flexion
muscle between baseline and no assistance (p < .001),
baseline and sEMG-based (p < .001), no assistance and
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FIGURE 9. Experiment #2: Results for the step response experiment.
(e) and (f) represents the total average and standard deviation of all
subjects’ results for the normalized elapsed time and iEMG value of
flexion muscle, respectively. The percentage indicates the value compared
to the baseline condition.

F/T-based (p = .0055), no assistance and sEMG-based
(p < .001), and F/T-based and sEMG-based (p < .001),
excluding between baseline and F/T-based (p = .1463).

B. EXPERIMENT #2: STEP RESPONSE
Fig. 9 shows the results of elapsed time and muscle usage
to reach the target position, which is 90◦. The agility can
be interpreted by comparing the iEMG value of flexion
muscle and elapsed time as explained in Section III-D. On
average, sEMG-based reduced the iEMG value of the flexion
muscle and elapsed time compared to the baseline. However,
F/T-based reduced them only for the no assistance and not
for the baseline. There were significant differences in agility
between baseline and no assistance (p < .001), baseline
and sEMG-based (p < .001), no assistance and F/T-based
(p = .03), no assistance and sEMG-based (p < .001), and
F/T-based and sEMG-based (p < .001), excluding between
baseline and F/T-based (p = .0581).
Moreover, the time difference between the onset of the

filtered sEMG signal and the F/T signal is approximately
100 ms, as the onset timing of the filtered sEMG signal
is approximately 183 ms and the measured F/T signal is
approximately 283 ms when the sEMG-based was used. It is
also reflected in the timing of motor input, as shown in
Fig.9-(d), because sEMG and F/T signal are command

FIGURE 10. Experiment #3: Results of the maximum speed of repetitive
movement experiment. (a), (b) and (c) show the elapsed time, and the
iEMG value of flexion and extension muscles, respectively. The
percentage indicates the value compared to the baseline condition.

sources of the sEMG-based and F/T-based control, respec-
tively. This shows that the sEMG-based has more rapid
assistance timing than the F/T-based control. As a result, the
sEMG-based method can make rapid assistance and increase
agility compared to baseline condition.

C. EXPERIMENT #3: MAXIMUM SPEED OF REPETITIVE
MOVEMENT
Fig. 10 shows the experimental results for the Experiment
#3. The agility can be interpreted by comparing the iEMG
value of flexion and extension muscle and elapsed time,
as explained in Section III-D. On average, sEMG-based
reduced the iEMG values for flexion and extension muscles
and elapsed time compared to the baseline. However,
F/T-based control reduced them compared to the no assis-
tance and not to the baseline. For the statistical analysis,
there were significant differences in agility between baseline
and no assistance (p = .002), baseline and sEMG-based
(p = .026), no assistance and F/T-based (p = .017), no
assistance and sEMG-based (p < .001), and F/T-based and
sEMG-based (p = .002), excluding between baseline and
F/T-based (p = .2452). As a result, the sEMG-based can
enhance agility by reducing muscle usage and increasing the
maximum speed.

V. DISCUSSION
According to the experimental results, agility increased when
using the sEMG-based method compared to the inherent
motion in the sense of muscle usage and elapsed time to take a
task. On the other hand, the F/T-basedmethod could enhance
agility compared to the no assistance condition, whereas not
for the inherent motion. This implies the F/T-based method
can only reduce the impedance of the robot. In this section,
further discussions take place about the experimental results
and benefits of employing the sEMG signal to recognize
human intention from an agility perspective. Also, the
challenging issue of using sEMG signals is discussed.

A. BENEFITS OF SEMG SIGNAL: CORRECT RECOGNITION
We introduced the possibility of incorrect intention recog-
nition by interaction F/T signal for increasing agility.
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FIGURE 11. (a) Experimental results around the start of the motion from
the step response experiment (Experiment #2). (b) Explanation of the
rapid timing of assistance in the time domain with the procedure from
human intention to movement. (c) Explanation of the step response
results from the human input/output perspective for each condition.

The experimental results can confirm this, as shown in
Fig. 8-(c). When agility was enhanced via the sEMG-based
method, the features of the F/T signal showed an extension
(downward) direction both when the human body required
robot assistance for the upward movement and when the
forearm pushed the robot for extension movement. This
implies that the interaction F/T signal has the same direction
for different intentions. Additionally, when using the F/T-
based method, the measured torque was approximately
zero because the F/T signal was in the same direction
as intention only when the human felt robot impedance.
Therefore, the F/T-based method cannot enhance agility
effectively compared to inherent body movement and only
enhances agility compared to the no assistance condition
while reducing the impedance of just the robot instead of
the human-robot coupled system. In statistical analysis, the
reason why baseline and F/T-based methods did not show
a significant difference is also that the F/T-based method
reduced the impedance of the robot, resulting in motions
similar to inherent motion. As a result, the best scenario
of the F/T-based method is to make the system equivalent
to inherent movement since it can only reduce the robot’s
impedance. This provides experimental evidence that direct
measurement is required for correct intention recognition to
increase agility.

B. BENEFITS OF SEMG SIGNAL: RAPID ASSISTANCE
TIMING
The results of Experiment #2 show that the sEMG-based
method can react faster than the F/T-basedmethod, implying
that the sEMG-basedmethod can reduce the time delay effect
of the F/T-based method, as shown in Fig. 9-(d). Moreover,

FIGURE 12. (a) MAV signal of same raw sEMG signal for three window
sizes. (b) Motor input of sEMG-based control for three window sizes.

motor input can be applied before human motion initiation,
as shown in Fig. 11-(a), via the sEMG-basedmethod because
it can be measured prior to human movement. Fig. 11 also
shows that the IMU and F/T sensor have time-delayed issues.

As a result, we can expect an increase in bandwidth
while reducing the response time via rapid assistance
timing, as illustrated in Fig. 11-(c). Experiment #3 shows
the possibility of an increase in the bandwidth of human
movement since the maximum speed is increased through
the rapid and correct assistance of sEMG-based control.
Although in this study, we just used the fast timing of the
sEMG signal, the optimal timing of assistance should be
analyzed because it can affect the performance of assistance
[35], [36]. Furthermore, since EMD varies depending on the
muscle type and fatigue, it is important to consider these
factors when adjusting assistance timing using the sEMG
signal.

C. ATTENUATION EFFECT OF MAV FILTER
The MAV filter was used to deal with the noise of the sEMG
signal. However, it could attenuate the current information of
the signal according to the window size as it is the average
value of the previous window size data. Fig. 12 shows the
effect of the MAV filter based on window size. The same raw
signal may also have different features, as shown in Fig. 12.
As such, a trade-off between noise reduction and attenuation
effect exists when using the sEMG signal. Therefore, the
window size should be appropriately selected. It should be
noted that theMAV signal contains current signal information
because the new signal is not delayed by window size but
attenuated by it.

D. MAGNITUDE OF MOTOR TORQUE
As observed in Fig 8-(d) and 9-(d), there is a difference in the
magnitude of motor torque between F/T-based and sEMG-
based methods. It is important to note that the presence
(sEMG-based) or absence (F/T-based) of assistance is not
determined by the magnitude of motor torque. The reason
the motor torque could not be increased further in the F/T-
based method is that reducing the robot’s impedance through
the F/T-based method allows the robot to better adjust to
and follow human movements, resulting in lower interaction
forces. These reduced interaction forces, in turn, limit the
magnitude of the control input in F/T-based control. Suppose
the robot’s impedance is decreased and the gain is increased
to enhancemotor torque in the F/T-basedmethod. In that case,
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FIGURE 13. An example of hesitation during the step response task
(Experiment #2). (a) Human limb position (b) MAV sEMG signal of flexion
and extension muscle. The subject hesitates to move the limb and uses
the flexion muscle, which is used to lift the limb (flexion motion), but
uses the extension muscle to resist the motion.

the robot may oscillate because the F/T-based method fails to
recognize human intention correctly, leading to a repetition
of the situations described in Fig 3-(a) and 3-(b), causing the
robot to oscillate. The results from three experiments showing
that the F/T-based method has lower agility compared to
inherent motion also demonstrate that themagnitude of motor
input does not determine the presence of assistance.

There was also a psychological effect for the magnitude
of motor torque. In particular, when using the sEMG-based
method, there were cases where the robot’s assistance was
awkward or was afraid of being too high of assistance. This
is becausemost people have rarely experienced being assisted
at a fast timing and move at a faster speed than the maximum
speed of inherent body movement. As a result, a situation of
hesitation occurs while taking the step response task, such as
Fig. 13.

VI. CONCLUSION
This study discussed the benefits of employing sEMG
signals for power-assisted control to recognize the intention
from an agility perspective. Therefore, we conducted three
comparison experiments with four conditions, which are
inherent motion, no assistance, F/T-based, and sEMG-
based. The experimental results demonstrate that the sEMG-
based method enhanced agility compared to inherent body
movement, while the F/T-based method only reduced the
robot’s impedance. The sEMG-basedmethod reduced flexion
muscle usage by 29.45% in the following trajectory task,
reduced flexion muscle usage by 25.92% and elapsed time
by 5.61% in the step response task, and reduced flexion
muscle usage by 16.68% and elapsed time by 7.14% in the
maximum speed of repetitive movement task, compared to
inherent body movement. As a result, we confirmed that
sEMG-based control could enhance agility through rapid and
direct measurement of motion intention while addressing
the limitations of the F/T signal for agile movement. These

results can offer guidance on selecting the appropriate signal
for recognizing motion intention with the characteristics of
each signal.

Our study is limited to healthy male subjects and focuses
on simple elbow motion. Therefore, based on the benefits
of employing sEMG signals for power-assisted control
from the agility perspective we analyzed in this study,
we plan to expand the results for diverse participants and
motions in future works. Furthermore, we plan to progress
towards power-assisted control by merging the advantages
of F/T signals and sEMG signals. We will also consider
the assistance timing and other direct signals, such as brain
signals, as future works.
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