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ABSTRACT Controlling closed architecture industrial robot manipulators poses significant challenges due
to limited access to inner controller configurations and specific control gain structures. The absence of open
torque or voltage interfaces further compounds these difficulties. Consequently, traditional methods such as
the computed-torque approach often prove inadequate when applied to closed architecture robots, widening
the gap between advanced control algorithms and practical industrial requirements. In response, this paper
introduces a unified framework that utilizes adaptive neural networks to tackle these challenges in controlling
closed architecture industrial manipulators. Our approach operates independently of the robot’s dynamics,
inner controller configuration, and control gain structure. We provide thorough evidence showcasing the
boundedness of all control variables. Moreover, the proposed approach is versatile, allowing for the use of
a single joint velocity controller across robotic manipulators employing closed control architecture, even
under varying conditions. Our strategy streamlines implementation without requiring complex calculations
for updating control variables. Experimental results and comparative studies are provided to illustrate the
applicability and effectiveness of our proposed control strategy compared to existing approaches.

INDEX TERMS Industrial robot, manipulator, neural networks, adaptive control, closed control architecture.

I. INTRODUCTION
The realm of closed architecture industrial robot control
has garnered significant attention in research circles over
an extensive period [1], [2], [3], [4], [5], [6], [7], [8],
[9]. Among various industrial robotic systems, the robot
manipulator stands out as a prominent choice for experimen-
tation, primarily due to its nonlinear Lagrangian dynamic
structure [10], [11], [12], [13]. Devising control schemes
for industrial robot manipulators is cumbersome due to the
absence of open torque or voltage interfaces. Moreover,
the inner controller of such robots remains concealed
within proprietary domains, rendering it inaccessible for
modifications. These two structural factors give rise to an
awkward situation, making it challenging to control closed
architecture robotic systems.

Traditional methods, such as the computed-torque
approach, calculate torques corresponding to desired joint
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motions [14], [15], [16], [17]. However, the absence of
a torque interface for feed-forward control renders these
conventional techniques unsuitable for industrial robots.
Consequently, a significant disparity emerges between
the sophisticated control algorithms developed in robotics
research and the simplistic control methodologies prevalent
in industrial robotic applications. This chasm underscores the
pressing need to bridge the gap between advanced control
strategies pioneered in academic spheres and the pragmatic
demands of industrial robotics.

Lange and Hirzinger [1] were the first to introduce
a control strategy for industrial robotics. They proposed
position-based control for industrial robotic manipulator
by seamlessly incorporating it into conventional control
systems. This integration enabled precise positioning through
cascaded joint controllers. Grotjahn and Heimann [2] further
advanced the field with a model-based feedforward control
approach, integrating nonlinear precorrection schemes and
trajectory correction terms to enhance control precision and
adaptability.
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Recent advancements in the control of closed architecture
robots have been notable in the works of Wang et al. [3], [7],
[8]. In [3], an adaptive-based controller was introduced for
closed architecture robot manipulators. This controller relied
on the assumption that a second-order linear time-varying
system exhibits uniform exponential stability. In [8], the
authors proposed an improved controller where the aforemen-
tioned stability assumption is eliminated. Additionally, they
introduced adaptive controllers capable of accommodating
unknown inner controller gains. This significantly stream-
lines the design and implementation of adaptive controllers in
industrial robots and also addresses an important theoretical
stability issue. However, in both [3], [8], the inner controllers’
structure is assumed to be known by the user but cannot be
modified. Moreover, a specific control gain structure, namely
diagonality, was assumed in their analysis. Additionally,
the incorporation of closed-loop reference dynamics in [8]
poses a non-trivial task, requiring intricate calculations for
updating control variables. Furthermore, in [8], the design of
the proposed controller or command signal varies depending
on diverse conditions, lacking a unified approach. In short,
both [3], [8] lack a simplified and easy-to-implement unified
control strategy that can be applied regardless of the inner
control configuration and control gain structure.

Another significant contribution in this field is highlighted
in the research conducted by Khan et al. [6], [9]. Their
study introduces an innovative neural network-based control
approach specifically tailored for industrial robot manipula-
tors operating within uncertain closed architectures and with
unknown dynamics. Diverging from prior studies, their work
presents a novel approach employing unconstrained control
actions, eliminating the necessity of knowledge for inner
controller configuration and control gain structure. However,
it is worth noting that in the study by Khan et al., particularly
in [6], the boundedness of the joint velocity command signal
and its integral was not explicitly demonstrated. Moreover,
in [9], the neural network appeared to lack the necessary
inputs or arguments to adequately capture the desired integral
action of the inner controller.

In our research, we introduce a unified framework that har-
nesses adaptive neural networks to control closed-architecture
industrial manipulators. Our proposed approach offers
several distinct advantages:

1) In contrast to previous works such as [3] and [8], our
method operates independently of the robot’s dynam-
ics, inner controller configuration, and control gain
structure. This unique feature renders our approach
model-free and superior in performance.

2) Unlike studies such as [6] and [9], we offer compre-
hensive evidence demonstrating the boundedness of
all control variables, ensuring stability. Additionally,
the design of the proposed controller enables it to
approximate all possible configurations of the inner
controller.

3) In contrast to prior works like [3], [8], our approach
exhibits global applicability. It allows for the

implementation of a single joint velocity controller
across various robotic manipulators with closed control
architecture, even in diverse operating conditions.

4) Unlike the approach presented in [8], we simplify
implementation by eliminating the complexity associ-
ated with updating control variables, as observed in
previous research efforts [8].

II. PROBLEM FORMULATION
Let Y ∈ Rn denote the output of an unknown nonlinear
function, with z ∈ Ro representing its input. We express the
objective function Y using a neural network (NN) as [5]:

Y = G2(z) + Ê (1)

where G ∈ Rn×np1 stands for an unknown ideal matrix,
2(z) ∈ Rnp1 represents an activation function, and Ê ∈ Rn

denotes an approximation error. In this study, we employ
a radial basis function (RBF) neural network where the
activation function 2 = [θ1, · · · , θnp1

] ∈ Rnp1 is defined

as [18]

θi = exp
(
−

∥z− µi∥
2

ρ2
i

)
, i = 1, · · · , np1 (2)

where µi = [µi1, · · · , µio]T ∈ Ro is the center of the
i−th neuron, and ρ = [ρ1, · · · , ρnp1

]T ∈ Rnp1 is the
distance parameter, with ρi > 0. Therefore, the activation
function 2, as defined in (2), is inherently bounded. This
neural network architecture proves capable of accurately
approximating nonlinear functions withminimal error, and its
weights can be adaptively adjusted in real-time, eliminating
the need for a prior learning phase. The approximation error
can be further minimized by employing a sufficiently large
number of neurons within the neural network.

The dynamics of an n-DOF industrial revolute joints robot
manipulator can be written as [19]

M (q)q̈+ S(q, q̇)q̇+ g(q) = u (3)

whereM (q) ∈ Rn×n is the inertia matrix which is symmetric
and positive definite, S(q, q̇) ∈ Rn×n is the Coriolis
and centrifgual matrix such that Ṁ (q) − 2S(q, q̇) is skew-
symmetric, g(q) ∈ Rn is the gravitational torque, q̇ ∈ Rn

is the joint velocity and u ∈ Rn is the control input.
In industrial robotic manipulators, the inner control loop

commonly employs either a Proportional-Derivative (PD)
controller with gravity compensation, given by u = −KP(q−

qc)−KD(q̇− q̇c)+g(q), or a Proportional-Integral-Derivative
(PID) controller without gravity compensation, represented
as u = −KP(q− qc)−KI (

∫ t
0 [q(ς )− qc(ς )]dς )−KD(q̇− q̇c)

or with gravity compensation as u = −KP(q − qc) −

KI (
∫ t
0 [q(ς ) − qc(ς )]dς ) − KD(q̇ − q̇c) + g(q) [10], [13].

Here, KP, KD, and KI ∈ Rn×n represent the inner controller
gains, and q̇c ∈ Rn denotes the user-defined joint velocity
commands. It’s noteworthy that irrespective of the specific
inner controller structure, a term KD(q̇ − q̇c) is typically
included for stability purposes. Therefore, the generalized
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form of the inner controller for uncertain closed architecture
industrial robots can be expressed as

u = −K (q̇− q̇c) + ϒ (4)

where K ∈ Rn×n is the gain of the inner controller.
Unlike in [3] and [8], in this study, we make a moderate
assumption regarding the positive definiteness of the inner
control gain rather than assuming it to be diagonal. ϒ ∈

Rn represents the unknown or hidden part of the inner
controller. Hence, our strategy remains independent of both
inner controller configuration and control gain structure,
providing a superior solution. By using (4), the dynamics of
the robotic manipulator in (3) can be presented as

M (q)q̈+ S(q, q̇)q̇+ g(q) = −K (q̇− q̇c) + ϒ. (5)

To approximate ϒ , we employ neural networks in (1). Thus,
ϒ is given as

ϒ = GU2U (q, q̇, q̇c,
∫ t

0
[q(τ ) − qc(τ )]dτ ) + Eu, (6)

where GU ∈ Rn×na represents the ideal constant weight
matrix of the neural network used for estimating the
uncertain inner loop controller model,2U (q, q̇, q̇c,

∫ t
0 [q(τ )−

qc(τ )]dτ ) ∈ Rna is the activation function vector and
Eu ∈ Rn is the approximation error for the uncertain
inner loop controller model. In contrast to [9], the neural
network (6) possesses adequate inputs or arguments to pre-
cisely approximate various inner controller configurations,
including integral action of the inner controller.

Using (6), the dynamics of the robotic manipulator in (5)
can further be presented as

M (q)q̈+ S(q, q̇)q̇+ g(q) = −K (q̇− q̇c)

+ GU2U (q, q̇, q̇c,
∫ t

0
[q(τ )

− qc(τ )]dτ ) + Eu. (7)

The objective is to design the user-defined joint velocity (or
position) command signals to enable the closed architecture
robot manipulator to track the desired joint positions given by
qd ∈ Rn, such that the tracking error 1q = q − qd → 0 as
t → ∞. We make the assumption that the desired signals qd ,
q̇d , and q̈d are bounded.

III. ADAPTIVE NEURAL NETWORK BASED JOINT
POSITION TRACKING CONTROLLER
Following the adaptive control approach in [8], we start by
defining the vectors λ, q∗

r as

λ = q− qr (8)

q∗
r = q̇r − γ (λ +

∫ t

0
λ(τ )dτ ) (9)

where γ is the design parameter. The reference dynamics, qr ,
is given as [8]

q̈r = q̈d − κ11q̇− κ01q+ β1λ̇ + β2λ + β3

∫ t

0
λ(τ )dτ,

(10)

where κ1, κ0 > 0 are the design constants. β1, β2, β3 ≥ 0 are
design constants. We define the sliding vector as

s = q̇− q∗
r = λ̇ + γ (λ +

∫ t

0
λ(τ )dτ ). (11)

By substituting (8) and (11) in (7), we get

M (q)(ṡ+ q̇∗
r ) + S(q, q̇)(s+ q∗

r ) + g(q)

= −K (q̇− q̇c) + GU2U (q, q̇, q̇c,
∫ t

0
[q(τ ) − qc(τ )]dτ ).

(12)

Utilizing (9), we can further express (12) as:

M (q)ṡ+ S(q, q̇)s+M (q)q̈r + S(q, q̇)q̇r + g(q)

+

[
−M (q)

d
dt
(γ (λ +

∫ t

0
λ(τ )dτ )) − S(q, q̇)(γ (λ

+

∫ t

0
λ(τ )dτ ))

]
= −K (q̇− q̇c) + GU2U (q, q̇, q̇c,

∫ t

0
[q(τ ) − qc(τ )]dτ ).

(13)

We approximate the terms −M (q) ddt (γ (λ +
∫ t
0 λ(τ )dτ )) −

S(q, q̇)(γ (λ+
∫ t
0 λ(τ )dτ )) and the dynamic modelM (q)q̈r +

S(q, q̇)q̇r + g(q) using distinct neural networks as:

Gλ2λ(q, q̇, λ, λ̇,

∫ t

0
λ(τ )dτ ) + Eλ

= −M (q)
d
dt
(γ (λ +

∫ t

0
λ(τ )dτ )) − S(q, q̇)(γ (λ

+

∫ t

0
λ(τ )dτ )), (14)

Gd2d (q, q̇, q̇r , q̈r ) + Ed
= M (q)q̈r + S(q, q̇)q̇r + g(q) (15)

where Gλ ∈ Rn×nb represents the ideal constant weight
matrix of the neural network used for estimating the
unknown term −M (q) ddt (γ (λ+

∫ t
0 λ(τ )dτ ))− S(q, q̇)(γ (λ+∫ t

0 λ(τ )dτ )). 2λ(q, q̇, λ, λ̇,
∫ t
0 λ(τ )dτ ) ∈ Rnb is the acti-

vation function vector and Eλ ∈ Rn is the approximation
error. Similarly, Gd ∈ Rn×nc represents the ideal constant
weight matrix of the neural network used for estimating the
dynamic model, 2d (q, q̇, q̇r , q̈r ) ∈ Rnc is the activation
function vector and Ed ∈ Rn is the approximation error for
dynamic model. Thus the proposed control scheme is model-
free, operating independently of robot dynamics.

Therefore, (13) can be presented as

M (q)ṡ+ S(q, q̇)s+ Gd2d + Ed + Gλ2λ + Eλ

= −K (q̇− q̇c) + GU2U + Eu. (16)
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For convenience, we omit explicitly specifying the parame-
ters of all activation functions in the presentation of neural
networks.

Let Ĝd , Ĝλ, and ĜU represent the estimations of Gd , Gλ,
and GU , respectively. Then by adding and subtracting terms
Ĝd2d , Ĝλ2λ and ĜU2U to (16), we get

M (q)ṡ+ S(q, q̇)s

= −Gd2d − Gλ2λ − K (q̇− q̇c) + GU2U + E

= −Gd2d + Ĝd2d − Ĝd2d − Gλ2λ + Ĝλ2λ − Ĝλ2λ

− K (q̇− q̇c) + GU2U − ĜU2U + ĜU2U + E

= −1Gd2d − Ĝd2d − 1Gλ2λ − Ĝλ2λ − K (q̇− q̇c)

+ 1GU2U + ĜU2U + E (17)

where1Gd = Gd−Ĝd ,1Gλ = Gλ−Ĝλ,1GU = GU−ĜU
and E = Eu − Ed − Eλ.
The joint velocity (or position) command q̇c is given as

q̇c = q̇r + Ĝ(Ĝd2d − ĜU2U − kgsgn(s)), (18)

where Ĝ ∈ Rn×n represents the estimation of K−1 and
kg is a positive design constant. The control parameter or
gain kg > 0 can be adjusted to zero by utilizing a neural
networkwith a sufficiently large number of neurons. The term
Ĝ× ĜU2U effectively addresses the uncertainty inherent in
the closed-architecture control system of industrial robots.
The remaining terms of the command signal (18) ensure the
overall stability of the closed-loop system.

The estimated weight matrices are updated by the follow-
ing neural network based update laws

˙̂Gd[j] = −0−1
d 2d[j]s (19)

˙̂GU [j] = −0−1
U 2U [j]s (20)

˙̂Gλ[j] = −0−1
λ 2λ[j]s (21)

where Ĝd[j], ĜU [j] and Ĝλ[j] denotes the [j]th column vector of
Ĝd , ĜU and Ĝλ, respectively. 2d[j], 2U [j] and 2λ[j] denotes
the [j]th element of vectors 2d , 2U and 2λ, respectively.
0−1
d , 0−1

U , 0−1
λ ∈ Rn×n are positive definite matrices.

The update law for Ĝ is introduced as

˙̂G[j] = −ljr[j]s (22)

where Ĝ[j] denotes the [j]th column vector of Ĝ. lj > 0 is
the update gain for the [j]th column. r[j] is the [j]th element
of a vector r defined as r = (Ĝd2d − ĜU2U − kgsgn(s)).
Hence, the control methodology is predicated on the notion
of formulating q̇c to encompass approximations of K−1 and
ϒ , alongside the necessary framework of the inner controller
to ensure closed-loop stability. This approach facilitates the
preservation of the desired inner controller structure upon
closure of the system through the cancellation of K−1 and
ϒ , consequently ensuring closed-loop stability.

From (17) and (18), we can describe the closed-loop
dynamics as

M (q)ṡ+ S(q, q̇)s

= −1Gd2d − Ĝd2d − 1Gλ2λ−Ĝλ2λ−Kq̇+ 1GU2U

+ ĜU2U + Kq̇r + KĜ(Ĝd2d−ĜU2U − kgsgn(s)) + E .

(23)

The closed-loop dynamics (23), can further be written as

M (q)ṡ+ S(q, q̇)s

= −1Gd2d − Ĝd2d − 1Gλ2λ − Ĝλ2λ − K (q̇− q̇r )

+ KĜ(Ĝd2d − ĜU2U − kgsgn(s))

+ 1GU2U + ĜU2U

+ kgsgn(s) − kgsgn(s) + E

= −K λ̇ − 1Gd2d − 1Gλ2λ + 1GU2U − Ĝλ2λ + E

− K1Ĝ(Ĝd2d − ĜU2U − kgsgn(s)) − kgsgn(s), (24)

where 1Ĝ = K−1
− Ĝ.

The differential-cascaded system describing the closed-loop
dynamics can be presented as

1q̈ = −κ11q̇− κ01q+ λ̈ + β1λ̇ + β2λ + β3

∫ t

0
λ(τ )dτ,

(25)

M (q)ṡ+ S(q, q̇)s

= −K λ̇ − 1Gd2d − 1Gλ2λ − Ĝλ2λ + 1GU2U + E

− K1Ĝ
(
Ĝd2d − ĜU2U − kgsgn(s)

)
− kgsgn(s).

(26)

Consider the Lyapunov function

V =
1
2
sTM (q)s+

na∑
j=1

1
2
1GTU [j]0

−1
U 1GU [j]

+

nb∑
j=1

1
2
1GTλ[j]0

−1
λ 1Gλ[j] +

nc∑
j=1

1
2
1GTd[j]0

−1
d 1Gd[j]

+
1
2

n∑
j=1

1
lj
1ĜT[j]K1Ĝ[j]. (27)

By differentiating the Lyapunov function (27) with respect to
time and using the closed loop-dynamics in (24) and update
laws (19), (20), (21) and (22), we get

V̇ = −sTK λ̇ − sT Ĝλ2λ − kgsT sgn(s) + sTE

= −sT (K λ̇ + Ĝλ2λ) − kgsT sgn(s) + sTE

= −sT (K λ̇ + ĜĜ−1Ĝλ2λ) − kgsT sgn(s) + sTE . (28)

Given that Ĝ represents the estimation of K−1, it follows that
Ĝ−1 represents the estimation of K . Therefor by using (11),
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we get,

V̇ = −sTK (λ̇ + ĜĜλ2λ) − kgsT sgn(s) + sTE

= −

(
λ̇ + γ (λ +

∫ t

0
λ(τ )dτ )

)T
K

(
λ̇ + ĜĜλ2λ

)
− kgsT sgn(s) + sTE . (29)

If the gain parameter γ is set to γ = Ĝ, and the term λ +∫ t
0 λ(τ )dτ is approximated using Ĝλ2λ, and if the control
parameter kg is chosen to be greater than the upper bound b
of E , ensuring that the condition sTE−kgsT sgn(s) ≤ −(kg−

b)|s| is met, then we obtain:

V̇ = −

(
λ̇ + ĜĜλ2λ

)T
K

(
λ̇ + ĜĜλ2λ

)
≤ 0. (30)

Theorem 1: Let β1, β2, β3 ≥ 0. The gain parameter γ is
chosen as γ = Ĝ, and Ĝλ2λ represents the approximation of
the term λ +

∫ t
0 λ(τ )dτ . Additionally, the control parameter

kg is selected as kg > b. Then, the joint velocity (or
position) command signal in (18) along with adaptive neural
network-based update laws in (19)-(21) and adaptive law
in (22) along with the reference dynamics given in (10)
ensures the convergence of the joint tracking errors, i.e.,
1q → 0 and 1q̇ → 0 as t → ∞.
Proof: From the Lyapunov function described in (27) and

its derivative in (30), we have that variables s, Ĝλ, ĜU , Ĝd ,
and Ĝ are bounded (∈ L∞).

Moreover, since λ̇+ĜĜλ2λ is inL2 and ĜĜλ2λ is inL∞,
we can conclude that λ ∈ L2 ∩ L∞,

∫ t
0 λ(τ )dτ ∈ L2 ∩ L∞,

λ̇ ∈ L2 and λ → 0 and
∫ t
0 λ(τ )dτ → 0 as t → ∞.

Considering s = λ̇ + γ (λ +
∫ t
0 λ(τ )dτ ), we deduce

that λ̇ is also bounded. Thus,
∫ t
0 λ̈(τ )dτ = λ̇ − λ̇(0) also

belongs to both L2 and L∞, indicating the convergence and
boundedness of the integral.

In the subsystem (25) of the differential-cascaded system,
the output x = [1qT , 1q̇T ]T is determined by two inputs:

y1 = λ̈ and y2 = β1λ̇ + β2λ + β3
∫ t
0 λ(τ )dτ . Given that both∫ t

0 y1(τ )dτ and y2 are bounded, the output associated with y1
is square-integrable and bounded [20]. Additionally, based on
the properties of stable linear systems [21], the outputs linked
to y2 are also square-integrable and bounded. Consequently,
the overall output x is square-integrable and bounded. Thus,
from (10), we conclude that q̈r ∈ L∞. Moreover, from the
implications of (10), 1q̇ is in L∞, then q̇ is also in L∞,
leading to q̇r = q̇ − λ̇ being in L∞. Hence, from (9), both
q∗
r and q̇

∗
r are in L∞.

In this study, following similar methodologies outlined in
prior research (e.g., [7], [8]), we demonstrate the bounded-
ness of qc and

∫ t
0 qc(τ )dτ by leveraging the input-output

characteristics of an inverted dynamics of robot manipulator
dynamics within a closed architecture. This approach avoids
the need to assume uniform exponential stability of a linear
time-varying system, as was required in previous studies such
as [3]. Specifically, we analyze the inverted dynamics of an
industrial manipulator equipped with a PID controller with

gravity compensation setup in the inner loop. This setup is
detailed in [8]. The inverted dynamics equation is given by:

K (q̇− q̇c) = −KP(q− qc) − KI

∫ t

0
[q(τ ) − qc(τ )]dτ

−
d
dt
[M (q)q̇] +M (q)q̇− S(q, q̇)q̇− g(q).

(31)

The linear system (31), with outputs as −KP(q − qc) and
KI

∫ t
0 [q(τ ) − qc(τ )]dτ , is exponentially stable and strictly

proper when inputs y1 =
d
dt [M (q)q̇], y2 = M (q)q̇ −

S(q, q̇)q̇−g(q) are zero. Since q̇ ∈ L∞ andM (q) is symmetric
and uniformly positive definite, the inputs

∫ t
0 y1(τ )dτ, y2 are

bounded. The outputs corresponding to y1 are bounded [20],
as are those for y2 [21]. Consequently,

∫ t
0 [q(τ ) − qc(τ )]dτ ,

q − qc ∈ L∞, indicating qc ∈ L∞. A closer examination
of (26) alongside the properties of the symmetric and positive
definiteM (q) reveals that ṡ ∈ L∞. Consequently, this implies
that both q̈ and 1q̈ are in L∞. From (31), q̇− q̇c ∈ L∞, and
thus q̇c ∈ L∞. Since 1q̇ ∈ L∞ and 1q̈ ∈ L∞, 1q and 1q̇
are uniformly continuous. Therefore, 1q → 0 and 1q̇ → 0
as t → ∞. □
Remark 1: The adaptive neural network-based design

proposed in this study distinguishes itself from that of [8].
Specifically, our design operates independently of both
the inner controller configuration and its gain structure.
Instead of requiring diagonalization, as in [8], our approach
necessitates a moderate assumption of positive definiteness
on the controller gain. Moreover, we introduce a universal
joint velocity controller that remains consistent across robotic
manipulators with closed control architecture, even amidst
varying conditions. In contrast, in [8], the joint velocity (or
position) command is contingent upon the inner controller
structure and prior knowledge of its parameters.

We can further modify the reference dynamics in (10) as

q̈r = q̈d − κ11q̇− κ01q+ Ĝλ2λ (32)

to eliminate β1, β2, β3 from the controller design. In the
work by Wang and Li [8], the reference dynamics described
in (25) are utilized to derive the variables λ, λ̇, and

∫ t
0 λ(τ )dτ .

These variables are then used to compute qr , q̇r , and
q̈r , necessitating a non-trivial calculation procedures for
updating control variables (see equations (52)-(54) in [8]).

Our approach addresses this complexity by employ-
ing a modified neural network-based reference dynamics,
as defined in (32). Since the initial estimates of the weights
Ĝd (0), ĜU (0), and Ĝλ(0) can be set to zero [18], we can
directly compute qr , q̇r , and q̈r . It is important to note that
the neural network compensation becomes inactive when
the weights are initialized to zero at t = 0. However, the
feedforward term q̈d and the feedback terms 1q̇, 1q in the
reference dynamics (32) continue to ensure bounded tracking
errors.

To implement the proposed controller, we follow these
steps:
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FIGURE 1. Ur5e industrial robot.

1) Define the desired trajectory.
2) Initialize the neural networkweights Ĝd (0), ĜU (0), and

Ĝλ(0) to zero.
3) Set the control parameters 0d , 0U , 0λ, kg, Ĝ(0), κ1, κ0,

and lj.
4) Compute q̈r using (32).
5) Calculate the activation functions 2d and 2U .
6) Compute λ, λ̇, and

∫ t
0 λ(τ )dτ using (8). Then, calculate

2λ.
7) Determine the vector q∗

r = q̇r − ĜĜλ2λ.
8) Calculate the sliding vector s using (11).
9) Apply the joint velocity (or position) command signal

according to (18).
10) Update the weight matrices Ĝd , ĜU , and Ĝλ using the

update laws in (19), (20), and (21), respectively. Also,
update the estimate of Ĝ in (22).

11) Repeat from step 4 to 10 until the desired task is
achieved.

Theorem 2: If the gain parameter γ is chosen as γ = Ĝ,
and Ĝλ2λ represents an approximation of the term λ +∫ t
0 λ(τ )dτ . Additionally, the control parameter kg is chosen
such that kg > b. Then, by employing the joint velocity
(or position) command signal described in (18), along with
adaptive neural network-based update laws in (19)-(21) and
the adaptive law in (22), in conjunction with the reference
dynamics provided in (32), we ensure the convergence of the
joint tracking errors, i.e., 1q → 0 and 1q̇ → 0 as t → ∞.
Proof:According to (30), Ĝλ is bounded, and by definition

in (2), the activation function 2λ is also bounded. With (32),
the subsystem (25) of the differential cascaded system
changes to

1q̈ = −κ11q̇− κ01q+ λ̈ + Ĝλ2λ (33)

FIGURE 2. Position tracking errors of the proposed neural network-based
controller.

FIGURE 3. Position tracking errors of the controller in [8].

with output as x = [1qT , 1q̇T ]T and inputs as y1 = λ̈
and y2 = Ĝλ2λ. According to Theorem 1,

∫ t
0 y1(τ )dτ =∫ t

0 λ̈(τ )dτ = λ̇ − λ̇(0) ∈ L2 ∩ L∞, and we also establish
that y2 ∈ L∞. Employing analogous reasoning to that of
Theorem 1, we deduce that x ∈ L∞. Consequently, q̈r ∈

L∞. Demonstrating the boundedness of other control signals
follows a procedure akin to Theorem 1. □

IV. EXPERIMENTAL RESULTS
The proposed control system was implemented on the
UR5e industrial manipulator (see Fig. 1) for experimental
validation. The manipulator’s inner control loop, which
governs its operation, remains fixed and undisclosed to the
user. Consequently, users can only specify inputs to the robot
through joint position or velocity commands. To streamline
the robot’s movement, we directed our attention toward its
primary axes, which include the base, shoulder, and elbow,
while leaving the minor axes unchanged. The desired joint
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position is defined as qd = [( π
18 )[1 − cos( 2π t3 )], π

2 +

π
18 [1−cos( 2π t3 )], π

18 [1−cos( 2π t3 )]]T (in radians). A sampling
frequency of 125 Hz was employed during the experiment.

We chose 20 neurons for each of the neural network so
that kg can be assigned as zero. The parameters of the update
laws in (19-22) are specified as follows: 0−1

d = 0.3 ∗ I3,
Ĝ = 0.3 × I3, 0−1

U = 5 ∗ I3, 0−1
λ = 8 ∗ I3 and lj = 10,

j = 1, 2, 3. The weights of neural network were initialized
as Ĝd = 03×20, ĜU = 03×20 and Ĝλ = 03×20. The positive
design constants κ1, κ0 are selected as κ1 = 2 and κ0 = 3.
The effectiveness of the designed user-defined velocity (or

position) command signals in enabling the closed architecture
robot manipulator to track the desired joint positions is
demonstrated in Figure 2. Initially, the transient response
appears relatively low due to the neural network weights
being initialized to zero, compared to the position tracking
error obtained by the adaptive-based controller in [8],
as shown in Figure 3. However, as the neural network
weights are updated, the response of the designed controller
becomes more efficient, surpassing its counterpart in [8],
which exhibits fluctuations in its steady-state response.

V. CONCLUSION
The adaptive neural network framework proposed in this
study demonstrates promising results in addressing the
complexities associated with controlling closed architec-
ture industrial robot manipulators. The approach, which
operates independently of inner controller configuration
and control gain structure, exhibits comprehensive control
variable boundedness and global applicability across varying
conditions. Moving forward, future research endeavors will
focus on extending this framework to delve into task-space
control with a particular emphasis on achieving prescribed
performance bounds. This expansion aims to further enhance
the adaptability and efficiency of the proposed control
strategy in practical industrial settings.
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