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ABSTRACT In this study, we propose the Uncertainty-aware Motion Planning Network (UaMPNet) to
address the challenges of learning-based motion planning in out-of-distribution scenarios, such as novel
environments, with a primary focus on enhancing motion planning performance. UaMPNet comprises a
feature extraction network and an uncertainty-aware sampling network. The feature extraction network
is constructed as a variational auto encoder characterized by a normalizing flow. It not only extracts
features from complex 3D point cloud data but also models that serve as a multimodal distribution,
enabling fine-grained clustering of environments with similar characteristics. Additionally, Uncertainty-
aware Sampling Network, leveraging evidential learning, provides both predictions and uncertainties,
allowing the adjustment of sampling ranges based on the uncertainty associated with predictions. This
promotes guided sampling and exploration within limited regions in new environments. We integrate
UaMPNet with the rapidly exploring random trees (RRT)-connect algorithm, creating a learning-based
motion planning algorithm capable of both exploration within limited ranges and exploitation toward the
goal area in new environments. Evaluating the proposed algorithm’s motion planning performance in novel
environments, including both simple 3D spaces and intricate office environments with a 7-DoF Franka Emika
Panda robot, we demonstrate its superior performance compared with that of state-of-the-art learning-based
motion planning algorithms.

INDEX TERMS Learning-basedmotion planning, evidential learning, normalizing flow, out-of-distribution.

I. INTRODUCTION
With the advancement in robotics technology, the application
areas of high-dimensional manipulators have expanded from
traditional industrial environments such as product assembly
and welding [1], [2] to fields such as the medical sector and
coffee shops [3], [4]. To effectively use manipulators in such
a wide range of applications, achieving fast and cost-minimal
motion planning, considering factors such as the length of the
path or the operational time of the robot, is essential.

Various motion planning approaches, including sampling-
based [5], [6], search-based [7], [8], [9], and trajectory
optimization-based methods [10], [11] have been proposed
to address this challenge. Sampling-based motion planning,
such as the rapidly-exploring random tree star (RRT*)
[12] algorithm, is widely used in robotics due to its
probabilistic completeness, scalability, and asymptotically
optimal properties in the context of optimal motion planning.
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However, as the dimensionality increases, the space com-
plexity grows, leading to difficulties in effective exploration
and a decrease in convergence speed—the so-called ‘‘curse
of dimensions.’’ Additionally, in situations where limitations
such as obstacles in the workspace exist, the efficiency
of traditional which follows a random sampling approach,
is compromised. Many samples are discarded because of
the presence of obstacles, and exploration in ‘challenging
regions’ with closely packed obstacles becomes difficult
within a reasonable time.

To address these issues, various sampling-based motion
planning algorithms [13], [14] have been proposed, and
more recently, with the advancement of artificial intelligence,
various learning-basedmotion planning algorithms have been
proposed in such contexts to overcome the inefficiency of
random sampling and achieve motion planning within a
reasonable time [15], [16], [17], [18], [19], [20].

In [16] and [17], a method based on manifold learning
is proposed using Conditional Variational auto encoder
(CVAE) [21], which uses previous motion planning data
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FIGURE 1. The problems with learning-based motion planning algorithms
in untrained environments. In (a), the sampling process becomes stuck,
while in (b), biased and noisy pathways are generated.

and environmental information to execute biased sampling
in restricted regions containing optimal pathways. Moreover,
in [18], Motion Planning Networks, a regression model, was
introduced to enhance motion planning speed. This model
takes the current state, goal state, and 3D point cloud for
environment as input, and outputs the next state. It guides the
sampling process, i.e., exploitation, facilitating rapid motion
planning in a learned environment. In [22], an improvement
in generalization performance for similar environments was
achieved by utilizing a variational auto encoder (VAE)
[23] to extract features from the environment’s 3D point
cloud and constructing a linearly interpolatable latent space.
However, these learning-based methods still face challenges
in generalizing to out-of-distribution settings, such as unseen
environments and unseen initial and goal configurations,
resulting in potential inaccuracies in predictions, increased
collisions with obstacles and a degradation in the optimality
of generated pathways [20], [24] as illustrated in Fig.1.

The uncertainty-aware motion planning network
(UaMPNet) is proposed in this study to address the
challenges of learning-based motion planning in untrained
environments. UaMPNet consists of a feature extraction
network that extracts features from 3D point cloud data of
obstacles and an uncertainty-aware sampling network that
predicts the next sample’s position. The feature extraction
network is trained to extract features from 3D point cloud
representing various environments using a VAE. Unlike the
Gaussian-VAE used in [22], our VAE is characterized by
a normalizing flow to model the latent space distribution

as a multimodal distribution, improving the representation
power for various environments and clustering performance
for environments with similar features [25].
Furthermore, to improve UaMPNet’s generalization per-

formance to out-of-distribution settings, we used deep
evidential regression [26] for the Uncertainty-aware Sam-
pling Network. Given the environment’s features, current,
and goal states, this network outputs both the prediction
for the next state and the uncertainty associated with the
prediction. This enables UaMPNet to guide the sampling
process continuously based on uncertainty, preventing getting
stuck in situations similar to Fig.1(a) while navigating around
obstacles. Furthermore, for Fig.1(b), we integrated UaMPNet
with the RRT-connect algorithm [6], creating the UaMPNet-
RRT-connect algorithm. This integration enables exploitation
towards the goal area in obstacle-free space, leveraging the
CONNECT heuristic to reduce path bias and noise, thereby
resulting in rapidly discover smoother pathways.

We evaluate the performance of our proposed algorithm
in motion planning for point-mass robots in simple 3D
environments and 7-degree-of-freedom (DoF) Franka Emika
Panda manipulators, demonstrating its superior performance
with minimal training data compared to the state-of-the-art
Points-Guided Sampling Network and PG-RRT [22].

Contributions to this paper include:
• UaMPNet efficiently limits exploration ranges based on
uncertainty and guides the sampling process towards
the goal area continually by producing both predictions
and uncertainty, addressing inefficiencies in untrained
environments.

• We modeled the feature extraction network as a
multimodal distribution by characterizing its latent
space with a normalizing flow. This method enhances
the representational capacity of point cloud data and
the clustering ability of environments with similar
characteristics.

• We propose UaMPNet-RRT-connect, capable of both
exploration within limited ranges and exploitation
toward the goal area, achieving fast and accurate
motion planning and demonstrate its generalization
performance for new and complex environments.

The rest of this study is organized as follows: Section II
reviews learning-based motion planning methods. Section III
describes the notation used in this study and the key concepts
of the proposed method. Section IV details the proposed
method, whereas Section V presents various experimental
results. In Section VI, we discuss the advantages and
disadvantages of the proposed algorithm. Finally, Section VII
concludes this study.

II. RELATED WORK
Sampling-based motion planning algorithms, such as rapidly
exploring random trees (RRT), probabilistic roadmaps,
and their variations, have been generally used to solve
motion planning problems in high-dimensional and complex
environments because of their features, such as probabilistic
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completeness (the probability of finding a valid path is 1),
computational efficiency, and scalability, which contribute to
numerous robotics tasks [27], [28], [29]. Based on sufficient
samples, several variations have demonstrated the ability
to find not only feasible pathways but also asymptotically
optimal pathways [12]. However, in high-dimensional spaces,
they suffer from slower convergence speed because of
the need for extensive exploration to locate asymptotically
optimal pathways. To address this, research has explored
techniques such as restricting the exploration range [13] and
biased sampling toward the goal area [30], [31].
Recent advancements in artificial intelligence have intro-

duced learning-based methods to overcome the slow conver-
gence speed of conventional methods in high-dimensional
spaces and rapidly locate optimal and suboptimal pathways.
In [16] and [17], CVAE were trained using previous optimal
motion planning data and obstacle poses or voxel representa-
tions of the environment. These models discovered subspaces
in the state space containing optimal trajectories. During
the motion planning phase, these learning-based models
were then combined with traditional sampling-based motion
planning, enabling fast exploration in the learned subspace,
thus quickly finding suboptimal pathways. Additionally,
research has been conducted to reduce exploration using
learned data and guide the sampling process toward the
objective, significantly enhancing motion planning speed.
OracleNet, proposed in [32], used a recurrent neural network
(RNN) structure to guide the sampling process, demonstrat-
ing rapid pathway generation in both simple 2D environments
and high-dimensional robotic motion planning. Motion
Planning Networks [19], a regression model, achieved good
generalization performance for similar environments by
training with 3D point cloud data. Motion Planning Networks
demonstrated promising motion planning performance when
combined with bidirectional iterative planning algorithms.
Points-Guided Sampling Network was proposed in [22] to
enhance generalization performance in similar environments.
Points-Guided Sampling Network extracted features from
3D point clouds, performed clustering on point clouds
with similar features, and modeled a linearly interpolatable
latent space using a VAE-based feature extraction net
(PointNet [33] encoder and AtlasNet [34] decoder) and mul-
timodal sampling net. Despite their outstanding performance,
especially in supervised learning scenarios, these motion
planning algorithms may face limitations when generalizing
to out-of-distribution settings [20]. This means that they
can only locate short pathways in environments similar to
those used for training. For completely unseen environments,
performance may be significantly degraded without the
use of random sampling or exploration. This is because
deep neural networks (DNNs) may learn only the mapping
function from inputs to predictions during the training
process, or they may learn only the inherent uncertainty
in the data from a maximum probability perspective [26].
To address this, various methods for learning the uncertainty
in network predictions for out-of-distribution settings have

been proposed [35] using dropout [36] as a Bayesian
approximation, probabilisticallymodeling the neural network
parameters to make predictions stochastically. [37] proposed
an ensemble-based uncertainty modeling method, reducing
the structural constraints of the model proposed in [35],
and performing parallel calculations to improve prediction
speeds and uncertainty prediction performance. Furthermore,
[26] and [38] explicitly modeled prediction uncertainty in
regression problems using evidential deep learning.

In our study, we used evidential deep learning to explicitly
model uncertainty to ensure the generalization performance
of deep learning-based motion planning methods in out-of-
distribution settings (unseen environments). This uncertainty
was used to appropriately adjust the sampling range and per-
form motion planning. This method addresses the challenges
posed by unseen environments and enhances the reliability of
the motion planning process.

III. PROBLEM FORMULATION
In this section, we elaborate on the motion planning problem
and the notation used for the proposed method. Let us denote
the set of all possible configurations of a robot with d
degrees of freedom (DoF) (C-space) as C ∈ Rd . Here, the
C-space consists of obstacle space (Cobs) and obstacle-free
space (Cfree = C \ Cobs). Similarly, the robot’s workspace
is structured to the C-space, with obstacle space (Xobs) and
obstacle-free space (Xfree = X \Xobs). The motion planning
problem is defined as finding a collision-free trajectory τ =
{ci|ci ∈ Cfree, i = [0,T ]} such that c0 = cinit, cT = cgoal,
given {cinit, cgoal, Cobs}.

In this study, we propose replacing the traditional
sampling-based motion planning’s random sampling method
with UaMPNet to guide the sampling process during motion
planning. The following are the key elements of the proposed
method:

First, the features of the 3D point cloud data (P ∈ R3×n)
for the environment are denoted as z ∼ p(z|P), where n
represents the total number of points per frame in the point
cloud data, obtained using an RGB-D camera concerning the
robot base frame.

Second, the distribution for the next sampling position is
denoted as cnext ∼ p(cnext|cc, cT , z), dependent on the current
and target states and the environmental features.

Finally, the DNN uncertainty is represented in two
ways [39]. The first is aleatoric uncertainty, defined as the
uncertainty on the data or noise and the second is epistemic
uncertainty, which is defined as the uncertainty about the
prediction. In this study, epistemic uncertainty is used to
adjust the sampling range for new environments, whereas
aleatoric uncertainty is used to account for data noise during
the sampling process.

IV. METHODS
In this section, we introduce UaMPNet and describe the
motion planning method that uses it. UaMPNet comprises a
feature extraction network for extracting point cloud features
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FIGURE 2. The overall schematic diagram of the proposed UaMPNet consists of a Feature Extraction Network, comprising an encoder and a decoder, and
an Uncertainty-aware Sampling Network with a DNN architecture.

and a Uncertainty-aware Sampling Network for predicting
the next sampling position based on uncertainties. The overall
architecture of the proposed model and the sampling process
for the next sample position are shown in Fig.2.

A. UNCERTAINTY-AWARE SAMPLING NETWORK
The Uncertainty-aware Sampling Network aims to guide the
robot to the objective by predicting the next sampling position
based on the current state, target state, and environmental
features. It also aims to use the learned network as effectively
as possible in new environments by considering uncertainty
and restricting sampling to a limited area. In the context
of regression model learning, the distribution for the next
sampling position of one of the robot’s joints is modeled,
considering the robot’s joint limits, as expressed in (1).

p(cnext|cc, cT , z) = Ntrunc(µ̄, σ̄ , a, b). (1)

Here, Ntrunc(·) denotes a truncated normal distribu-
tion [40], and µ̄, σ̄ denotes the mean and standard deviation
of the parent general normal probability density function
(PDF), whereas a and b denotes the truncated lower and upper
bounds. By assuming the distribution as above, we ensure that
the next sampling position is sampled within a reasonable
sampling range that takes into account the network’s
predictions and the robot’s joint limits. To explicitly model
uncertainty, the mean and variance of the distribution in (1)
are assumed to be random variables following a truncated

normal and inverse gamma distribution, respectively:

µ̄i ∼ Ntrunc

(
γi,

√
σ 2
i ν−1i , ai, bi

)
,

σ̄i ∼ 0−1(αi, βi), (2)

where 0(·) denotes the gamma function, i represents an index
that distinguishes each sample in the dataset and γ ∈ R, νi >

0, αi > 1, βi > 0.
In the Bayesian framework, our objective is to locate

the true posterior, p(µ̄, σ̄ |cnext). This is achieved by substi-
tuting the normal inverse-gamma distribution for the prior
distribution in the Bayesian framework, which is a joint
distribution for unknown mean and variance and serves as a
Gaussian conjugate prior [26]. ADNN is used to approximate
the substituted distribution, and the normal inverse-gamma
distribution is expressed as follows:

p(θ i|mi)

=
β

αi
i
√

νi

0(αi)
√
2πσ 2

i

(
1

σ 2
i

)αi+1

exp

{
−
2βi+νi(γi − µi)2

2σ 2
i

}
. (3)

Here, θ i = [µ̄i, σ̄i] denotes the parameters of the
truncated normal distribution for sampling cnext,i,, whereas
mi = [γi, νi, αi, βi] denotes the parameters of the normal
inverse-gamma distribution and the DNN output. Assuming
that the prior distribution is an normal inverse-gamma
distribution, the probability density function for cnext,i, given
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that mi, is calculated analytically as a student t distribution
with 2αi DoF:

p(cnext,i|mi) = St
(
cnext,i; γi,

βi(1+ νi)
νiαi

, 2αi

)
. (4)

As shown from the equation above, the network’s pre-
diction is E[µ̄i] = γi, and the corresponding aleatoric
uncertainty ual and epistemic uncertainty uep are defined
according to [38] as follows:

ual =

√
βi(1+ νi)

αiνi
, uep =

1
√

νi
. (5)

The network’s prediction represents the initial prediction
for the next sampling position at each step, with epistemic
uncertainty guiding the resampling process within a defined
range depending on prediction uncertainty. The noise in
the data used for network training is reflected in aleatoric
uncertainty.

Algorithm 1 describes the process for obtaining the next
sampling position, and this process can be broadly divided
into three steps.

First, calculate aleatoric and epistemic uncertainty from
the DNN output, which takes the current and target state and
point cloud features as input.

Second, from the truncated normal distribution parameter-
ized sample a new prediction (µ̄) with prediction, epistemic
uncertainty, and joint limits. This step represents obtaining
a new mean for the final sampling within the defined range,
adjusting the sampling distribution based on the calculated
epistemic uncertainty. As shown in Fig.3, the sampling range
to sample µ̄ is determined by the extent to which the
input values to Uncertainty-aware Sampling Network deviate
from the training dataset, leveraging the calculated epistemic
uncertainty. This process aims to use the trained network’s
predictions as much as possible while smoothly adjusting
the µ̄ sampling distribution from a sharp normal distribution
shape to a uniform distribution, as shown in Fig.3.

Finally, the sample cnext from the truncated normal
distribution is characterized by the new prediction (µ̄) and
aleatoric uncertainty. If the obtained sample, cnext ∈ Cobs, the
process is repeated until cnext ∈ Cfree.

We used the objective function proposed in [38] for
network training, composed of the model fitting and regular-
ization loss. The objective function is expressed as follows:

Li(ω) = LNLL
i (ω)+ λLR

i (ω)

= log σ 2
i + (1+ λνi)

(cnext,i − γi)2

σ 2
i

. (6)

In the above equations, ω represents the weights of the
neural network, and λ is the regularization coefficient.

B. FEATURE EXTRACTION NETWORK
To extract key features from the environmental point cloud for
integration into motion planning, we designed a VAE-based

Algorithm 1 Uncertainty-Aware Sampling Net

1 Function Uncertainty-aware Sampling
Network(T a

end, T
b
end, z):

2 Initialize a, b
3 γ, ν, α, β ← DNN(T a

end, T
b
end, z)

4 ual, uep← CalculateUncertainties(ν, α, β)
5 µ̄← µ̄ ∼ Ntrunc(γ, uep, a, b)
6 cnext ← cnext ∼ Ntrunc(µ̄, ual, a, b)
7 if cnext ∈ Cfree then
8 return cnext
9 return Uncertainty-aware Sampling

Network(T a
end, T

b
end, z)

feature extraction network. The VAE comprises an encoder
and decoder, mapping the point cloud to a feature space
z ∈ Rm, where m denotes the size of the latent space
dimension, and reconstructing the point cloud from the
embedded latent vector, respectively. The embedded latent
vector corresponding to the input point cloud data is utilized
as the feature of the point cloud.

In this study, the PointNet [33] architecture was employed
as the encoder for the feature extraction network. PointNet
is well-suited for tasks involving 3D unordered point sets,
offering permutation-invariant feature extraction, making it
widely used in applications like classification and semantic
segmentation. Additionally, the diffusion probabilistic mod-
els [41] were employed as the decoder, which reconstructs
point clouds from 3D Gaussian noise through the reverse
diffusion process. This model was trained by maximizing the
log-likelihood for each point, considering points of the point
cloud as a sample of a distribution.

Furthermore, we modeled the latent space of the VAE
as a multimodal distribution parameterized by normalizing
flow, as expressed in (8). Each mode represents various
features of point clouds in the latent space. Normalizing
flow, based on the change of variable theorem, sequentially
transforms simple distributions, such as normal distributions,
into complex distributions, enhancing the expressive power
for representing features of point clouds with different
positions, shapes, and sizes. This also significantly improves
clustering performance for environments with similar fea-
tures compared to modeling methods using single-mode
distributions like gaussian distributions.

p(z) = pw(w) ·
∣∣∣∣det∂Fδ

∂w

∣∣∣∣−1 , where w = F−1δ (z). (7)

Here, p(z) is the probability distribution for the latent
variable, serving as the prior distribution approximated by
the encoder during VAE training. Fδ represents an affine
coupling layer consisting of a trainable bijector, and pw(w)
is the standard normal distribution N (0, I).
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FIGURE 3. An example of a truncated normal distribution for sampling new predictions with different epistemic uncertainties. All graphs have a
mean of 1, and the epistemic uncertainties (EU) are 0.05, 0.5, and 5 from left to right. The truncated boundaries are [-1.57, 1.57]. Depending on the
predicted epistemic uncertainty, the sampling range is appropriately adjusted, ranging from a sharp Gaussian distribution to a shape resembling a
uniform distribution.

For network training, we utilized the objective function
proposed by [41], expressed as follows:

L(ψ,φ, δ) = Eq

[
T∑
t=2

N∑
i=1

DKL
(
q(x(t−1)i |x(t)i , x(0)i ) ∥

× pψ (x
(t−1)
i−1 |x

t
i , z)

)
−

N∑
i=1

log pψ (x
(0)
i |x

(1)
i , z)

+DKL

(
qφ(z|X (0)) ∥ pw(w) ·

∣∣∣∣det∂Fδ

∂w

∣∣∣∣−1
)]

.

(8)

Here, x represents a point in the point cloud, z is the latent
vector, t and i denote the number of diffusion steps and
the number of points in a single point cloud, respectively.
ψ , φ, and δ represent the parameters of each network, and
X (0) denotes the input point cloud. The last KL divergence
term in (8) ensures that the latent vector output from the
encoder follows a multimodal distribution parameterized by
normalizing flow.

C. UAMPNET WITH RRT-CONNECT
We integrated our proposed sampling method, UaMPNet,
with the sampling-based motion planning algorithm RRT-
connect [6]. RRT-connect is an algorithm that biases sampling
towards the goal region using a connect heuristic when
collision-free paths are identified, as seen in Algorithm 2.
By employing this algorithm, we utilize UaMPNet to
guide and explore within a constrained range in obstacle-
rich regions, while leveraging the connect heuristic for
exploitation in obstacle-free areas.

Algorithm 3 outlines the details of the motion planning
approach using our proposed method. Two trees are initial-
ized with the initial and goal configurations, respectively, and
the algorithm is iteratively executed for a predefined sampling
limit N . Here, ϵ is a fixed incremental distance used for tree
expansion. If the two trees connect and successfully generate

a path, it is returned, otherwise, nothing is returned upon
planning failure.

The functions and their roles in the motion planning are as
follows:
• Encoder: The encoder of the trained feature extraction
network processes the 3D point cloud to extract
corresponding features. This is executed only once for
a given environment, and the decoder is not used in the
motion planning process.

• Uncertainty− aware Sampling Network: Given the
most recently added nodes from both trees and environ-
mental features, this function outputs the position of the
next sample. The specific sampling process is detailed
in Algorithm 1.

• Extend: Expands a tree given the tree, a sample, and the
incremental distance if expansion is feasible.

• NearestNeighbor: Returns the closest node in the tree
to the given sample.

• Steer: Returns the node located ϵ distance away from
cnearest in the direction of the given sample.

• CollisionFree: Checks for collision between two nodes.
If no collision occurs, it connects the two nodes and
extends the tree.

• Connect: The core part of the RRT-connect algorithm.
It continuously extends the tree in the direction of the
given sample until a collision with obstacles occurs.

• Swap: Swaps the two trees.

V. EXPERIMENTS AND RESULTS
In this paper, we conducted a total of three experiments
to validate the uncertainty prediction performance and
motion planning capabilities of the proposed UaMPNet.
In experiment 1, we focused on evaluating the performance
of epistemic uncertainty prediction during environmental
changes and motion planning processes in a given envi-
ronment. Experiment 2 involved utilizing UaMPNet for
motion planning in a simple 3D environment for point-mass
robots and a more complex environment resembling an
office setup for a 7-DoF Franka Emilka Panda robot.
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Algorithm 2 Extend

1 Function Extend(T , c, ϵ):
2 cnearest ← NearestNeighbor(c, T )
3 cnew← Steer(cnearest , c, ϵ)
4 if CollisionFree(cnearest , cnew) then
5 T ← T ∪ {cnew}
6 if cnew = c then
7 return Reached

8 else
9 return Advanced

10 return Trapped

Algorithm 3 Connect

1 Function Connect(T , c, ϵ):
2 repeat
3 S ← Extend(T , c, ϵ)
4 until S ̸= Advanced;
5 return S

Algorithm 4 UaMPNet With RRT-Connect

1 Input: Initial state c0, goal state cT , point cloud P
2 Output: τ = {ci|ci ∈ Cfree, i = [0,T ]}
3 Initialize N , ϵ, T a

← {c0}, T b
← {cT }

4 z← Encoder(P)
5 for i = 0, . . . ,N do
6 cnext ←Uncertainty-aware Sampling

Network(T a
end , T

b
end , z)

7 if Extend(T a, cnext , ϵ) ̸= Trapped then
8 if Connect(T b, cnew) = Reached then
9 τ ← T a

∪ T b

10 return τ

11 Swap(T a, T b)

12 return ∅

We compared the motion planning performance against
the state-of-the-art algorithm PG-RRT [22], which utilizes
Points-Guided Sampling Network. Lastly, in Experiment 3,
we conducted a study to assess motion planning performance
based on different feature extraction methods. We compared
a single-mode latent space modeling approach with our
proposed method using Panda robot motion planning.

For the evaluation of motion planning performance,
we considered metrics such as success rate, cost (length of
the path in the configuration space of the robot), and average
planning time.

A. EXPERIMENTAL SETUP AND DATA COLLECTION
1) 3D ENVIRONMENTS WITH A POINT-MASS ROBOT
We configured the normalizing flow to perform 14 trans-
formations for the modeling of multimodal latent space,
and the feature extraction network was designed to undergo

100 diffusion processes. The size of the latent vector
(environment feature) extracted through this process was set
to 256. Uncertainty-aware Sampling Network was built with
a DNN architecture consisting of 5 hidden layers, applying
batch normalization to all layers but the final layer.

To obtain a point cloud for obstacles, in this case, a dataset
was constructed by sampling points on the obstacle surfaces
using mathematical representations of the obstacles with
the origin as the reference point. In other words, for the
sake of experiment simplification, it was assumed that a
fully scanned point cloud for the given environment could
be obtained. We acquired 5000 frames of point clouds for
environments with eight obstacles of different sizes randomly
positioned and environments with nine obstacles (includ-
ing one additional obstacle randomly added), respectively,
totaling 10,000 frames. This dataset was used for training
the feature extraction network. Also, previously selected
from the pool of 5,000 environments with eight obstacles,
50 environments were randomly chosen. For each selected
environment, pre-motion planning data for 100 different
initial and goal configurations of a point-mass robot were
obtained using the RRT* algorithm.

2) GAZEBO SIMULATION ENVIRONMENTS WITH A PANDA
ROBOT
The neural network structure used in the Gazebo simulation
experiment with the Panda robot was configured similarly
to the structure used in the previous 3D environment. The
Gazebo simulation environment was set up with a total of
5 obstacles, including a file holder, books, cola, a bear, and
a tissue box, placed on a table. To obtain point cloud data
for obstacles, we created environments with 4 obstacles (no
book) and 6 obstacles (two books) additionally. For each
environment, we captured point clouds consisting of different
5000 frames using a Kinect RGB-D camera mounted above,
with respect to the base frame of the Panda robot, in the
Gazebo simulation. In this case, we did not assume obtaining
a perfect point cloud for obstacles, and the method of
acquiring point clouds using an actual sensor was the same.
Additionally, obstacles were randomly positioned in each
environment.

The dataset, consisting of a total of 15,000 frames, was
divided into training, validation, and test sets with a ratio of
8:1.5:0.5 to train the feature extraction network. We selected
70 different environments out of those with 5 obstacles
for the training of the feature extraction network. For
Uncertainty-aware Sampling Network training, we obtained
pre-motion planning data for 100 different initial and goal
configurations for each selected environment, using the
Moveit! and OMPL interface with the RRT* algorithm.

All networks were trained on a system equipped with an
Intel i9-12900K CPU, 32GB RAM, and Nvidia 1080 GPU.

B. UNCERTAINTY ESTIMATION
The purpose of this experiment can be broadly divided into
two main objectives. Firstly, to observe the difference in
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FIGURE 4. The average predicted epistemic uncertainty during the motion
planning process in the selected office environment with the Panda robot
for the train and test scenarios. The blue color represents the results for
the training environment (seen-Xobs), while the red color represents the
results for the test environment (unseen-Xobs).

predicted epistemic uncertainty during the motion planning
process between the trained environment and untrained
environments belonging to the out-of-distribution setting.
Here, the out-of-distribution setting refers to data not utilized
in the training of the regression model Uncertainty-aware
Sampling Network. For instance, this includes scenarios
where the motion planning problem introduces changes in
obstacle positions or adds obstacles, leading to the extraction
of features (z) from the feature extraction network that
were not used in Uncertainty-aware Sampling Network
training, or cases where current and goal configurations not
utilized in Uncertainty-aware Sampling Network training are
provided. Secondly, to investigate whether the prediction of
epistemic uncertainty is sensitive to changes in the current
configuration (cc) during the motion planning process in a
given environment.

For this purpose, we selected 50 seen and 50 unseen
environments randomly and then performed motion plan-
ning for random initial and goal configurations. The seen
environment involved the random selection of 50 out of
the 70 environments mentioned in the previous V-A-2
for the training of Uncertainty-aware Sampling Network,
as described. The unseen environment, denoted as unseen-
Xobs, differs from seen-Xobs not only by changing the object’s
position as in [22] but also by increasing the complexity and
difference from the trained environment. We achieved this by
adding a book (An additional obstacle) to the environment,
resulting in a total of six randomly positioned obstacles.

The dataset mentioned in Section V-A-II was used for
UaMPNet training, and the regularization coefficient λ in (6)
was set to 0.01. The average of the predicted total epistemic
uncertainty during motion planning in the selected seen and
unseen environments is shown in Fig.4. In general, the unseen
environment had higher uncertainty, indicating a broader
sampling range when sampling in a new environment. Fur-
thermore, the relatively consistent uncertainty in predictions
for both seen and unseen environments implies that UaMPNet

FIGURE 5. Predicted samples and epistemic uncertainty during the
motion planning process of the 7-DoF Panda robot. The left column
represents results for one of the environments used in Fig.4 (train
scenario), while the right column represents results for one of the test
environments. Each row corresponds to a joint of the Panda robot. In the
figures, the red color represents the predicted samples, the cyan color
represents epistemic uncertainty, the purple dots denote the initial state
of the motion planning, and the magenta dots indicate the goal state of
the motion planning.

uses learned information effectively during motion planning
in new environments.

Fig.5 shows the sampled joint states and corresponding
epistemic uncertainty during motion planning in one seen
and one unseen environment used in Fig.4. We observed
that the predicted epistemic uncertainty during the motion
planning process in the unseen environment is consistently
higher at almost every sampling step. Furthermore, we noted
that the sampling range changes at each sampling step due
to variations in [cc, cT ], indicating that UaMPNet adequately
learns uncertainty in predictions for new inputs.

C. MOTION PLANNING WITH UAMPNET
1) MOTION PLANNING IN 3D ENVIRONMENTS
We compared our proposed method with PG-RRT using
motion planning for a point-mass robot in simple 3D
environments. The Points-Guided Sampling Network of
PG-RRT was trained using the same dataset as the one
mentioned in V-A-1 for the training of UaMPNet.
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FIGURE 6. An example of motion planning in a simple 3D environment
with a point mass robot. The blue path represents the result of
UaMPNet-RRT-connect, while the red path corresponds to PG-RRT. The
purple and green dots indicate the initial and goal states of the motion
planning, respectively, and the brown boxes represent obstacles. The
length of the generated paths is 150.95 for UaMPNet-RRT-connect and
221.49 for PG-RRT.

The objective of this experiment was to quickly locate
short pathways for untrained new environments. We selected
50 environments in a 3D setting with nine randomly
positioned obstacles of different sizes to demonstrate the
generalization ability of our proposed algorithm for unseen
new environments. In detail, the set of 50 different
environments with 9 obstacles chosen for testing were
utilized in the training of the feature extraction network.
However, these environments were not employed in the
training of Uncertainty-aware Sampling Network. Conse-
quently, when conducting motion planning in the given
test environments, environmental features not utilized in
the training of Uncertainty-aware Sampling Network are
input to Uncertainty-aware Sampling Network during the
motion planning process. Fig.6 shows examples of selected
3D environment pathways created using UaMPNet-RRT-
connect and PG-RRT. The motion planning parameter and
incremental distance ϵ, was set to 1 for both methods,
and the motion planning termination condition was set to
5000 samples. In untrained new environments, UaMPNet-
RRT-connect creates smooth pathways through exploitation
in obstacle-free areas and quickly locates appropriate path-
ways within limited exploration ranges in regions with
obstacles. In contrast, PG-RRT generates noisy and biased
pathways because of inaccurate predictions. Furthermore,
for motion planning performance evaluation, we performed
motion planning 100 times for a single initial and goal
configuration in each environment. Fig.7 shows the success
rates for each environment, average path length (cost),
and average planning time for the pathways generated by
the two algorithms. Here, we observed that our proposed
method generates faster and shorter pathways in almost all

FIGURE 7. Comparison of motion planning performance between
UaMPNet-RRT-connect and PG-RRT for a point-mass robot in a simple 3D
environment. average success rates, average costs (path length), and
average planning times for each of the 50 environments, with 100 motion
planning attempts per environment, are presented from top to bottom.

environments. Furthermore, both algorithms showed similar
success rates in all 3D environments for motion planning,
with UaMPNet-RRT-connect at 99.68% (4984/5000) and
PG-RRT at 99.66% (4985/5000).

2) MOTION PLANNING IN OFFICE ENVIRONMENT
Next, we conducted motion planning experiments for the
Franka Emika Panda robot in an office environment.
To demonstrate the algorithm’s generalization ability for
unseen environments, we used six randomly positioned obsta-
cles, similar to the V-B unseen environment configuration,
and 100 different environments, ten times more than in
previous studies [19], [22]. We selected one initial and goal
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FIGURE 8. Motion planning results for a Panda robot in an office environment using UaMPNet-RRT-connect. The images depict the motion planning
process for four out of 100 test environments, with the far-left representing the initial state and the far-right indicating the goal state. The intermediate
sections illustrate the robot’s movements along the generated paths.

configuration for each environment and performed motion
planning 100 times formotion planning result evaluation. The
incremental distance ϵ was set to 0.05 radians, consistent with
the default value in the RRT-connect algorithm implemented
in the OMPL interface, and the maximum sample count was
set to 5000.

Fig.8 shows the motion planning process for four environ-
ments out of 100. Furthermore, Fig.9 shows the success rates,
average path length (cost) in the robot’s configuration space,
and average planning time for the selected environments.
In all Panda robot experiment, the cost was calculated as the
sum of joint space trajectory lengths for the robot’s all joints,
measured in radians, using the same method as employed
in [22]. Regarding the path cost, both algorithms showed
similar values, with our proposed method having lower costs
in 55 environments. However, in almost all environments
(98/100), our proposed method showed a smaller average
planning time. In other words, our proposed method can
create paths in new environments faster. In fact, the average
cost across all environments was 6.06 radians, 7.08 radians,
and the average planning time across all environments was
1.45 seconds, 4.67 seconds, respectively. This indicates
that the proposed algorithm exhibited lower values in all
metrics. Furthermore, despite the limited sampling count,
the success rates for both algorithms differed significantly

in practically all environments. Overall, for motion plan-
ning, our proposed method demonstrated a success rate of
99.81% (9981/10000), while PG-RRT showed a success
rate of 58.06% (5806/10000), confirming the overwhelming
performance of our proposed method over PG-RRT in unseen
environments. Moreover, in the case of PG-RRT, pathway
generation failed for three environments, and the success rate
of pathway generation was only 50% or lower for 41 of
100 environments. In other words, when using the same
termination condition as in the previous 3D environments,
it was evident that, with the increase in dimensions, the
success rate drastically decreased in cases where incorrect
direction is provided, despite the previously reported high
success rate.

Secondly, to compare the difference between UaMPNet
and Points-Guided Sampling Network, we constructed PG-
RRT-connect by combining Points-Guided Sampling Net-
work and RRT-connect algorithms. The experiment was
conducted in the same environment as before, and the results
are shown in Fig.10. The success rate for the entire PG-RRT-
connect experiment was 99.36% (9936/10000), which was
significantly higher than PG-RRT. This is because a con-
siderable portion of the sampling process incorrectly guided
by Points-Guided Sampling Network in new environments
was replaced by the exploitation process of the RRT-connect
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FIGURE 9. Comparison of motion planning results for a Panda robot in 100 unseen office environments. From left to right, the graphs illustrate the
average success rate, average cost, and average planning time. Here, blue represents the results of UaMPNet-RRT-connect, while red corresponds to
the results of PG-RRT.

FIGURE 10. Comparison of motion planning results for a Panda robot in 100 unseen office environments based on the differences in the sampling
network. From left to right, the graphs illustrate the average success rate, average cost, and average planning time. Here, blue represents the results of
RRT-connect using UaMPNet (UaMPNet-RRT-connect), while red corresponds to the results of RRT-connect using Points-Guided Sampling Network
(PG-RRT-connect).

algorithm, enabling path creation with less inaccurate sam-
pling. Additionally, in the case of UaMPNet-RRT-connect,
motion planning failed at least once in three environments,
whereas in the case of PG-RRT-connect, motion planning
failed in a total of fifteen environments. In other words,
PG-RRT-connect demonstrated one or more failures in
motion planning in 12 environments when performingmotion
planning, in contrast to the proposed algorithm. When
comparing the created pathways, UaMPNet created pathways
with lower costs in 82 out of 100 environments, and generated
pathways faster in 72 environments in terms of pathway
creation time. Furthermore, for PG-RRT-connect, the average
cost across all environments was 7.53 radians, and the average
planning time across all environments was 2.23 seconds.
This indicates that PG-RRT-connect also exhibited inferior
performance compared to the proposed algorithm.

Finally, we conducted experiments comparing the perfor-
mance of the proposed network’s sampling process guidance
with the traditional RRT-connect algorithm. The experiments

were carried out in both the trained environment and
untrained environments selected from previous experiments.
The network was trained in the same manner as before, and
the experimental conditions were maintained consistent with
previous settings.

In the first experiment, we compared the performance
of the proposed algorithm and the RRT-connect algorithm
in the trained environment, as defined in V-A-2, with a
total of 70 selected environments used for Uncertainty-aware
Sampling Network training. One set of initial and goal
configuration was chosen for each environment, and motion
planning was iteratively performed 100 times for each
environment with the selected configurations. Here, the initial
and goal configurations for each environment were selected
from the data used in network training. Fig.11 illustrates
the experimental results in the trained environment. The
proposed algorithm experienced only one motion planning
failure in a single environment, confirming the effective
learning of UaMPNet. In contrast, RRT-connect failed in
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FIGURE 11. Comparison of motion planning results for a Panda robot in 70 seen office environments based on the differences in the motion planning
algorithm. From left to right, the graphs illustrate the average success rate, average cost, and average planning time. Here, blue represents the results of
UaMPNet-RRT-connect, while red corresponds to the results of traditional RRT-connect.

FIGURE 12. Comparison of motion planning results for a Panda robot in 100 unseen office environments based on the differences in the motion
planning algorithm. From left to right, the graphs illustrate the average success rate, average cost, and average planning time. Here, blue represents the
results of UaMPNet-RRT-connect, while red corresponds to the results of RRT-connect.

motion planning in more than one instance in 26 out
of 70 environments. The success rates for all motion
planning attempts were 99.99% (6999/7000) for the pro-
posed algorithm and 87.76% (6143/7000) for RRT-connect.
Additionally, in terms of cost, the proposed algorithm
exhibited an average of 6.73 radians, while RRT-connect
showed 8.55 radians. Regarding planning time, the pro-
posed algorithm had an average of 1.35 seconds, whereas
RRT-connect had an average of 3.11 seconds. Here, the
average refers to the mean across all environments. These
results highlight the advantage of using neural networks to
guide the sampling process in motion planning, enabling
faster and more efficient motion planning compared to using
random sampling alone.

In the second experiment, the performance of the proposed
algorithm and the RRT-connect algorithm was compared
in untrained environments. The untrained environments and
initial and goal configurations for motion planning in each
environment were selected similarly to the experiments
conducted to compare UaMPNet-RRT-connect and PG-RRT-
connect. In other words, a total of 100 distinct environments,
each containing six obstacles, were chosen. Motion planning
was performed iteratively 100 times for each environment,
and Fig.12 presents the results. The proposed algorithm

achieved a success rate of 99.81% (9981/10000) in untrained
environments, which was slightly lower than in trained
environments, while the traditional RRT-connect achieved a
slightly higher success rate of 91.38% (9138/10000). Addi-
tionally, RRT-connect experienced motion planning failures
in more than one instance in 39 out of 100 environments.
In terms of cost, the proposed algorithm exhibited an average
of 6.06 radians across all environments, while RRT-connect
showed 8.22 radians. Regarding planning time, the proposed
algorithm had an average of 1.45 seconds, and RRT-connect
had an average of 2.88 seconds. Here, the average refers to
the mean of the results across all environments.

Through these results, we demonstrated the ability to
overcome limitations in deep learning-based motion planning
algorithms that may fail to provide suitable pathways in new
environments without additional methods such as random
sampling because of inaccurate predictions. We showed that
these limitations can be addressed by leveraging UaMP-
Net’s uncertainty-based re-sampling process. Furthermore,
we successfully alleviated the performance degradation
caused by misguided sampling processes and highlighted
the advantage of algorithmically incorporating exploitation
alongside neural network guidance in performing motion
planning in new environments, compared with relying solely
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FIGURE 13. Visualizing the latent space distribution of the feature
extraction network using t-SNE in a 2D space.(a) represents the outcome
of modeling a multimodal distribution using a normalizing flow, while
(b) depicts the latent space of a conventional VAE modeled with a
Gaussian distribution.

on neural networks which are prone to making inaccurate
predictions throughout the sampling process.

D. COMPARISON BASED ON FEATURE EXTRACTION
METHODS
Finally, we conducted experiments to evaluate the motion
planning generalization performance in new environments
based on the difference in feature extraction methods.
In this section, we compared our proposed multimodal
distribution modeling method for latent space with the
Gaussian distribution modeling method proposed in [22].
Fig.13 shows the 2D distribution of the original features
z ∈ R256 for both methods using t-distributed stochastic
neighbor embedding (t-SNE).

To assess the generalization performance based on the
difference in feature extraction methods, we constructed
UaMPNet-M using the multimodal distribution modeling

method and UaMPNet-G using the Gaussian distribution
modeling method. We trained both networks on data col-
lected from V-A-2 in the office environment and selected
100 unseen environments with six obstacles each for
comparison ofmotion planning performance, denoted as V-C.
Fig.14 shows the motion planning results obtained using
both UaMPNet-M and UaMPNet-G. Comparing success
rates, UaMPNet-M showed a slightly higher success rate at
99.81% (9981/10000) compared to 99.42% (9942/10000) for
UaMPNet-G.

Analyzing the environments where motion planning failed,
UaMPNet-M showed a tendency to fail repeatedly in specific
environments, whereas UaMPNet-G showed a similar trend
and also experienced slight failures in a broader range
of environments. Furthermore, in terms of generated path
length, UaMPNet-M located pathways with lower cost in
68/100 environments, and UaMPNet-M outperformed in
58/100 environments in terms of motion planning speed.
In fact, when comparing the average cost and planning
time across all environments, UaMPNet-M and UaMPNet-G
exhibited costs of 6.06 radians and 6.78 radians, and planning
times of 1.45 seconds and 1.79 seconds, respectively.

This demonstrates that the proposed feature extraction
method performs more extensive clustering based on the
similarity between environments (similar Uncertainty-aware
Sampling Network inputs), ensuring better guidance per-
formance for similar environments. For environments with
less similarity to trained environments (where UaMPNet-
G failed but UaMPNet-M succeeded), it predicts higher
epistemic uncertainty, allowing sampling over a broader
range to facilitate exploration using sampling-based motion
planning algorithms to locate a possible path.

VI. DISCUSSION
In this section, we compare our proposed method to previous
learning-based motion planning algorithms, highlighting
their advantages and disadvantages. Previous learning-based
motion planning algorithms often face a common challenge in
untrained environments, where inaccurate predictions might
hinder sampling processes. For example, Motion Planning
Networks [19] addresses this by combining a neural sampler
with a uniform sampler. However, using a uniform sampler
can be inefficient and cause the state to drift away. Further-
more, after the initial path generation, additional methods,
such as replanning are required. MπNet [20], attempts to
reduce epistemic uncertainty by training the network with
a large amount of data, but challenges in out-of-distribution
settings persist. When sampling is performed more than
a certain number of times near obstacle positions, Points-
Guided SamplingNetwork proposes amethod of doubling the
variance of the predicted truncated normal distribution. This
method requires continuous checking of collision sampling in
a given state and significantly increases variation, potentially
resulting in sampling over a wide range. Collisions are likely
to occur frequently, especially in untrained environments,
resulting in a high probability of performing collision
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FIGURE 14. Motion planning results for 100 unseen office environments based on the difference in feature extraction methods. From left to right, the
graphs represent the average success rate, average cost, and average planning time. Here, the blue color indicates the outcome of the multimodal
distribution latent space modeling method, while the red color represents the results of the Gaussian distribution latent space modeling method.

sampling more than a certain number of times. Consequently,
many samples are discarded, making the approach inefficient.
In untrained environments, our proposed UaMPNet learns
uncertainty about predictions by directing the sampling
process within a specified range from the beginning without
discarding samples until the variance increases. Therefore,
we can generate pathways faster and locate shorter pathways
by limiting the sampling range appropriately depending
on the similarity between the given environment and the
training dataset. However, we discovered that our proposed
method performed similarly or slightly inferior to PG-RRT
in trained environments or environments highly similar to
the trained environment. There are three reasons for this:
First, our proposed method suffers from the discontinuity
problem, where slight environmental changes can result in
significant changes in robot motion [22]. This is because of
the deep neural network’s prediction interpolation, resulting
in degraded prediction performance in environments slightly
different from the trained environment [42]. Second, the
use of the connect heuristic contributes to this. The connect
heuristic can generate pathways that approach obstacles,
as shown in Fig.6. These paths may not be ideal, and
may create longer pathways compared to using only the
neural network in trained environments. Finally, the third
concerns the regularization coefficient λ in (6). λ plays a
role in mitigating the inflation of uncertainty by adjusting
the fitness of the network [26]. In other words, the prediction
performance of uncertainty in the network is sensitive to the
value of λ, and accordingly, it can predict high uncertainty
even in the learned environment, potentially disrupting the
sampling guidance process. In this study, we experimentally
determined the value of λ.

VII. CONCLUSION
The Uncertainty-aware Motion Planning Network
(UaMPNet) was proposed in this study to address the issue
of degraded motion planning performance in untrained,
unfamiliar environments for learning-based motion planning

algorithms. UaMPNet is a learning-based sampling network,
consisting of a feature extraction network for extract-
ing features and clustering similar environments from
the environment’s 3D point cloud. It also includes an
uncertainty-aware sampling network that guides the sampling
process, performs exploration within limited ranges based
on the uncertainty of prediction and combines with the
RRT-connect algorithm for motion planning. We compared
the proposed with state-of-the-art learning-based motion
planning in new environments using a 3D environment and
an office environment with a Franka Emika Panda robot.
The results demonstrated the superior performance of the
proposed method. Additionally, we evaluated uncertainty
prediction performance with environmental modifications
and feature extraction methods, highlighting the high
generalization ability of the proposed method for untrained
environments. In the future, we will conduct research
aimed at enabling neural networks to autonomously request
additional data for environments with high uncertainty, lever-
aging learned uncertainties. Through continuous learning
of the network using this approach, we aim to facilitate
self-adaptation to new environments, allowing the network
to find smooth and optimal paths in novel settings without
relying on the connect heuristic. Additionally, we will
explore research addressing the discontinuity issue while
simultaneously incorporating the learning of uncertainties.
This is intended to enhance the network’s ability to adapt and
navigate smoothly in new environments.
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