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ABSTRACT The Internet of Things (IoT) represents a swiftly expanding sector that is pivotal in
driving the innovation of today’s smart services. However, the inherent resource-constrained nature of
IoT nodes poses significant challenges in embedding advanced algorithms for cybersecurity, leading to an
escalation in cyberattacks against these nodes. Contemporary research in Intrusion Detection Systems (IDS)
predominantly focuses on enhancing IDS performance through sophisticated algorithms, often overlooking
their practical applicability. This paper introduces Deep-IDS, an innovative and practically deployable Deep
Learning (DL)-based IDS. It employs a Long-Short-Term-Memory (LSTM) network comprising 64 LSTM
units and is trained on the CIC-IDS2017 dataset. Its streamlined architecture renders Deep-IDS an ideal
candidate for edge-server deployment, acting as a guardian between IoT nodes and the Internet against
Denial of Service, Distributed Denial of Service, Brute Force, Man-in-the-Middle, and Replay Attacks.
A distinctive aspect of this research is the trade-off analysis between the intrusion Detection Rate (DR)
and the False Alarm Rate (FAR), facilitating the real-time performance of the Deep-IDS. The system
demonstrates an exemplary detection rate of 96.8% at the 70% threshold of DR-FAR trade-off and an
overall classification accuracy of 97.67%. Furthermore, Deep-IDS achieves precision, recall, and F1-scores
of 97.67%, 98.17%, and 97.91%, respectively. On average, Deep-IDS requires 1.49 seconds to identify and
mitigate intrusion attempts, effectively blocking malicious traffic sources. The remarkable efficacy, swift
response time, innovative design, and novel defense strategy of Deep-IDS not only secure IoT nodes but
also their interconnected sub-networks, thereby positioning Deep-IDS as a leading IDS for IoT-enhanced
computer networks.

INDEX TERMS Network security, deep learning, intrusion-detection system (IDS), Internet of Things (IoT),
LSTM, response mechanism, intrusion detection rate.

I. INTRODUCTION
By 2025, the number of IoT devices is expected to exceed
41 billion [1]. IoT technology lies at the core of modern smart
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services, encompassing smart healthcare systems, smart
homes, smart cities, smart offices, and smart manufacturing
industries [2]. Its rapid integration across various sectors
not only fuels its growth but also increasingly attracts the
attention of cybercriminals [3], leading to a significant rise
in the rate of intrusions on IoT devices [4]. Keeping pace
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with the swift advancements in the IoT sector, cybercriminals
are constantly developing new strategies for intrusion [5].
Addressing the dynamic nature of these threats necessitates
a real-time IDS designed for efficient detection. This paper
introduces Deep-IDS, a real-time IDS that boasts remarkable
performance and an impressive detection rate.

The Deep-IDS is an edge-server-based system that sits
between the IoT network and the Internet. Under the hood,
an optimally designed LSTM network trained with the intru-
sion features of five frequently occurring IoT intrusions [6]
classifies the incoming network packets into one of the
six classes. The system allows traffic flow from sources
classified as benign and discards others. The incorporation of
an effective threshold, discovered by empirical experiments,
ensures a balance between the detection and false alarm
rates and draws a distinct line separating the proposed Deep-
IDS from similar approaches. It has been designed to detect
intrusions from an array of IoT nodes consisting of sensing,
processing, communication, and power subsystems. The
overall design of Deep-IDS ensures insignificant detection
delay, enabling it to detect intrusion in real-time.

The proposed Deep-IDS performs better than most of
the IDSs developed using similar technology [7]. A well-
engineered network trained with relevant intrusion features
and equipped with an array of simplified IoT nodes has
contributed to this achievement. Moreover, the empirical
approach of threshold selection has ensured the optimal trade-
off between the False Alarm Rate (FAR) and the detection
rate, making the Deep-IDS an effective solution to secure IoT
networks. Furthermore, it strengthens security by blocking
malicious traffic sources. The unique contributions of Deep-
IDS have been listed below:
• Detection Quality: The Deep-IDS detects intrusions
with 97.67% accuracy. Besides, the precision, recall,
and F1-scores are 97.67%, 98.17%, and 97.91%,
respectively.

• Detection Rate: The proposed IDS has a real-time
detection rate of 96.8% with only 1.49 seconds of
response delay.

• FAR Minimization: It uses an innovative empirical
approach that minimizes the false alarm rate by discov-
ering the optimal trade-off point between the detection
rate and the false alarm rate.

The remainder of this paper is structured into six sections.
The second section provides an overview of the relevant
literature. The third section outlines the methodology. In the
fourth section, we discuss the implementation process and the
response mechanism of the proposed IDS. The fifth section
is dedicated to presenting the performance evaluations and
analysis. The sixth section explores the limitations and future
directions of this research. Finally, the paper concludes in the
seventh section.

II. LITERATURE REVIEW
Machine Learning (ML) and Deep Learning (DL) algo-
rithms have become pivotal in enhancing network security

across various domains, including Wireless Sensor Networks
(WSNs) [8], Online Social Networks (OSNs) [9], Software
Defined Networks (SDNs) [10], and IoT networks [11]. Par-
ticularly, the field of intrusion detection within IoT networks
emerges as a dynamic area of research, reflecting the critical
need for robust security measures [12]. Azumah et al. [13]
proposed a sophisticated approach utilizing deep LSTM
networks to identify intrusions in IoT devices for smart
homes. Furthermore, Ahsan et al. [14] explored the efficacy
of DenseNet, CNN, and a combined CNN-LSTM model
in detecting DDoS attacks, showcasing the versatility of
DL methodologies. Additionally, the research conducted by
Yadav et al. [15] examines the detection of malicious traffic
in IoT devices connected to 5G networks, employing a
novel combination of Artificial Neural Networks (ANN) and
ML classifiers. The investigation of Banaamah et al. [16]
into various DL-based strategies for intrusion detection
underscores the significant potential of these technologies
to fortify IoT network security. The recent advancements in
applying DL methods in intrusion detection have inspired the
proposed Deep-IDS.

The DL-based IDS developed by Ashiku et al. [17], utiliz-
ing the UNSW-NB15 dataset, reports an impressive intrusion
detection accuracy of 94.40%. Musleh et al. [18] innova-
tively applied feature extraction techniques using VGG-16
and DenseNet on intrusion datasets and, through the employ-
ment of ML models such as Random Forest, K-Nearest
Neighbors, and Support Vector Machine (SVM), achieved
an accuracy of 92.40%. Other notable IDSs, including those
developed by Logeswari et al. [19], Mebawondu et al. [20],
and Abdelkhalek et al. [21], have reported accuracies of
82.20%, 76.96%, and 83.50%, respectively. Moreover, the
Secured Automatic Two-level IDS (SATIDS) introduced
by Elsayed et al. [22] showcases a remarkable accuracy
of 96.56%. Another innovative DL-based framework by
Kumar et al. [23] advances the field further by achieving an
intrusion detection accuracy of 97.45%. Outperforming these
approaches, the proposed Deep-IDS demonstrates a superior
accuracy of 97.67%.

The systematic review paper by Saied et al. [24] shows
that most DL-based IDSs are detection accuracy-centric,
leaving a significant research gap for improving the detection
rate, reducing detection delay, and false positive rate mini-
mization. None of the methods presented earlier conducted
experiments to minimize the FAR, which has been done in
the proposed LSTM-based Deep-IDS. Altunay et al. [25],
Bakhsh [26], Elsayed [22] et al., Chaganti et al. [27], and
many other studies used LSTM network for IoT intrusion
detection similar to the proposed method. However, most
state-of-the-art systems ignored the impact of LSTM network
simplicity to perform real-time intrusion detection with
insignificant IDS response delay [28]. It is a major research
gap in this field. A simplified LSTM network architecture
has been designed for the proposed Deep-IDS to minimize
the IDS response delay and make it an effective real-time
IDS.
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The Whale Integrated LSTM (WILS) framework for
intrusion detection by othi et al. [29], hybrid metaheuristics-
deep learning based IDS by Sanju et al. [30], Enhanced
LSTM (ELSTM) and Recurrent Neural Network (RNN)
combination based IDS developed by Donkol et al. [31] are
few of the sophisticated IDS development approaches with
promising performance. These complex methods are focused
on detection performance and ignore practical applications.
It is another research gap in the existing IDS research field.
The proposed Deep-IDS not only detects intrusions but also
controls the traffic flow from the malicious source to protect
the IoT node. That is why it is a practical approach to IoT IDS
development.

III. METHODOLOGY
This section presents the methodology used to develop
the proposed Deep-IDS. It starts by analyzing the most
effective network for developing the IDS. Then, the dataset is
thoroughly studied to understand its features. Subsequently,
feature extraction and processing methods are developed.
After that, the IoT node architecture is designed, and
its corresponding communication protocols are studied.
Finally, the LSTMnetwork architecture, training process, and
optimization methods have been presented.

A. DEEP LEARNING MODEL ANALYSIS & SELECTION
DL approach utilizes artificial neural networks with multiple
layers for learning complex patterns in data [32]. That is why
it is a good fit for understanding and effectively detecting
intricate attack patterns within network traffic. According to
Alsoufi et al. [33], multiple DL models work well in IoT
intrusion detection. However, CNNs [34], Recurrent Neural
Networks (RNNs) [35], and Long Short-Term Memory
(LSTM) networks [11] stand out from the rest. This section
explores the conceptual background of these models to
identify an appropriate model for IoT intrusion detection.

1) CONVOLUTIONAL NEURAL NETWORKS
Intrusions in a computer network through IoT come from
many different data structures. If it is a grid-like data
structure, CNN is effective in classifying them [36]. A CNN
is defined by equation 1, consisting of an input layer,
multiple hidden layers, and an output layer [37]. The hidden
layers include convolutional, pooling, and fully connected
layers. The primary advantage of CNNs is their ability
to learn hierarchical feature representations from raw data
automatically [38]. The computer network intrusion pattern
frequently changes. And it is necessary to retrain the models.
The CNN effectively retrieves features from new intrusion
patterns.

Yij = (X ∗ K )ij =
∑
m

∑
n

X(i+m)(j+n)Kmn (1)

In the equation 1, X is the convolution operation, K is the
kernel of n× n, Yij is the output feature map at position (i, j).

The kernel slides over the input data, computing the element-
wise multiplication followed by a summation to produce the
output feature map.

2) RECURRENT NEURAL NETWORKS (RNNs)
When classifying from short sequential data, the RNN
performs better than most of the DL models [39]. Unlike
feedforward networks, RNNs maintain an internal state that
captures information about previous time steps in the input
sequence. This internal state allows RNNs to model temporal
dependencies in data effectively [40]. These characteristics
of RNNmake it a potential DL model for intrusion detection.
Mathematically, the RNN is defined as equation 2.

ht = σ (Whhht−1 +Wxhxt + bh) (2)

yt = Whyht + by (3)

In equation 2, xt is the input at time step t , ht is the hidden
state, yt is the output, Whh, Wxh, and Why are the weight
matrices, and bh and by are the biases. The activation function
σ (·) is typically a nonlinear function such as the hyperbolic
tangent or ReLU.

3) LONG SHORT-TERM MEMORY (LSTM) NETWORKS
The RNN suffers from performance issues for long
sequences. At the same time, the vanishing gradient imposes
additional challenges for this model [41]. The LSTMs are a
type of RNN designed to overcome the vanishing gradient
problem [42]. LSTMs introduce a memory cell and three
gating mechanisms. The first gate is the input gate defined
by equation 4. The second gate is the forget gate, which
is expressed by equation 5. And the last gate is the output
gate conceptualized by equation 6. These gates control the
flow of information within the LSTM cell, allowing it to
learn and retain long-term dependencies effectively [43]. As a
result, it can be trained to detect intrusion from the lengthy
sequential signals of a computer network.

ft = σ (Wf [ht−1, xt ]+ bf ) (4)

it = σ (Wi[ht−1, xt ]+ bi) (5)

ot = sigma(Wo[ht−1, xt ]+ bo) (6)

The update and candidate cell states are defined by
equations 7 and 8, respectively.

C̃t = tanh(WC [ht−1, xt ]+ bC ) (7)

Ct = ft ⊙ Ct−1 + it ⊙ C̃t (8)

The final hypothesis of the LSTM network is defined by
equation 9

ht = ot ⊙ tanh(Ct ) (9)

In equations, 4, 5, 6, the ft , it , and ot represent the forget,
input, and output gates, respectively. Ct and C̃t denote the
updated and candidate cell states, respectively. The weight
matrices Wf , Wi, Wo, and WC , and the bias vectors bf , bi,
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FIGURE 1. An example of a network sequential data.

bo, and bC are the model parameters. The symbol ⊙ denotes
element-wise multiplication.

These deep learning techniques can be adapted and fine-
tuned for intrusion detection tasks, taking advantage of
their unique capabilities to process and learn from complex
network data.

4) SELECTION OF AN APPROPRIATE DEEP LEARNING
MODEL
Selecting an appropriate DL model for intrusion detection
in IoT networks depends on the data’s nature and the task’s
specific requirements. Each model discussed (CNN, LSTM,
RNN) has advantages and limitations. However, the selection
criteria hinge upon the feature alignment of the dataset
with the networks. The network data are long sequences as
presented in figure 1.

The features ideal for training CNN, RNN, and LSTM
are defined in equations 10, 11, and 12, respectively. Here,
in equation 10, x, y represents 2D spatial data,R is a set of real
numbers, and Cf is the set of CNN features. The SD, VL , and
TD in equations 11 and 12 are sets of sequential dependence
data, variable length data, and data with temporal dynamics,
respectively [44].

Cf = {Cf ∈ {x, y}|x ∈ R, y ∈ R} (10)

Rf =
{
Rf ∈ F

∣∣Property(f ) = SD ∨ VL ∨ TD
}

(11)

Lf =
{
Lf ∈ F

∣∣Property(f ) = SD ∨ VL ∨ TD
}

(12)

The ideal features for RNN and LSTM networks are
similar. However, LSTM networks are capable of handling
more extensive sequences than RNN. This relation is defined
by equations 13. On the other hand, CNN’s features are
exclusive to those of LSTM and RNN, which is expressed
in equation 14. The mathematical relations among the ideal
features to train CNN, RNN, and LSTM conclude that the
LSTM network is an appropriate choice for developing the
proposed Deep-IDS [45].

Rf ⊂ Lf (13)

{Cf ∩ Rf } ∪ {Cf ∩ Lf } = φ} (14)

The CNN performs best for the grid data structure.
The RNN suffers from vanishing gradient issues with
long sequences. The LSTM networks perform well with
sequential data. It is not affected by vanishing gradient
problems, no matter how long the sequence is. The proposed
methodology is a real-time network security system. That

is why training and inference time are crucial factors to
consider. RNNs have faster training times than LSTMs due
to their simpler architecture. However, LSTMs can perform
better, especially when dealing with long input sequences.
The LSTM network achieved 97.67% classification accuracy,
while RNN ended up with 91.44% in experimental analysis.
CNNs can have longer training times due tomany parameters,
but they are highly parallelizable, making them suitable for
GPU-accelerated training. The LSTM has been selected as
the deep learning model for computer network intrusion
detection by analyzing these limitations and advantages [46].

B. DATASET DESCRIPTION
The CIC-IDS2017 dataset, created by the Canadian Institute
for Cybersecurity, has been used in this experiment. It was
collected in 2017 and includes a variety of attack types
relevant to the IoT and modern network environments [47].
It contains approximately 2.8 million instances, with a
balance of benign and intrusion records. The dataset is
divided into multiple files for each day of the week,
allowing researchers to choose subsets of the data for their
experiments. The raw dataset contains duplicate values and
missing values. It also includes classes irrelevant to IoT
nodes. After removing duplicate values, missing values,
and irrelevant labels, the final dataset has 56,662 instances.
This clean dataset has been split into training, testing, and
validation sets with a ratio of 70:15:15, respectively. After
splitting, there are 39,663 data for training, 8499 for testing,
and 8499 for validating.

1) FEATURES AND VARIABLES
The CIC-IDS2017 dataset comprises 78 features and a
class label for each instance. These features include various
network traffic attributes, such as flow duration, source
and destination IP addresses, source and destination ports,
protocol, flow bytes, and packet-related statistics. Each
instance in the dataset is labeled as benign or one of
the several types of attacks, including DoS, DDoS, BRF,
Infiltration, and more.

2) SAMPLE DATASET TABLE
The CIC-IDS2017 dataset has 15 classes. One is for benign
traffic, and the rest of the fourteen are different types of
intrusions. A sample of the CIC-IDS2017 dataset is shown
in Table 1.

C. FEATURE EXTRACTION AND PREPROCESSING
Feature extraction and preprocessing for LSTM are crucial
steps in developing an effective IDS. It has been done using
Algorithm 1. The quality and structure of the input data
heavily influence the LSTM model’s performance. Ensuring
the dataset is preprocessed correctly can lead to more
accurate and efficient training, ultimately resulting in a more
robust and reliable model [48]. By normalizing the features,
handling categorical variables, selecting relevant features,
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TABLE 1. Sample of CIC-IDS2017 dataset with instances for each label.

and generating input sequences, we ensure that the LSTM
model can effectively capture the underlying patterns and
relationships in the data [49]. This, in turn, allows the model
to generalize well to unseen data, providing a high intrusion
detection accuracy and minimizing false alarms.

Algorithm 1 Feature Extraction and Preprocessing for
LSTM-Based IDS
Require: Dataset D, Window size w
Ensure: Preprocessed dataset Dseq for LSTM
1: Normalization:
2: for fi ∈ D do ▷ Each feature fi
3: finorm ←

fi−min(fi)
max(fi)−min(fi)

4: end for
5: Categorical Features:
6: for ci ∈ D do ▷ Each categorical ci
7: ciencoded ← one-hot(ci)
8: end for
9: Feature Selection:

10: MI ← Compute MI scores for fi against labels Y
11: Select fi with MI above threshold
12: Sequence Generation:
13: Dseq← ∅
14: for t = w to |D| do
15: Xseq← (Xt−w+1, . . . ,Xt )
16: Ytarget ← Yt+1
17: Dseq← Dseq ∪ {(Xseq,Ytarget )}
18: end for
19: return Dseq

1) NORMALIZATION
Since LSTMs are sensitive to the scale of input features, it is
essential to normalize the dataset. This experiment uses the
min-max normalization method to scale appropriate features
between 0 to 1 [50]. The process is defined in equation 15.
In the equation 15, X represents a feature value, and Xmin and
Xmax are the minimum and maximum values of the feature,

respectively.

Xnormalized =
X − Xmin

Xmax − Xmin
(15)

2) HANDLING CATEGORICAL FEATURES
Some of the features, for example, IP address, type of
protocol, etc., are non-scalable. These are categorical data.
In this experiment, we encoded them using one-hot encoding
governed by equation 16 [51]. In this equation, Pencoded is the
one-hot encoded vector for protocol types, and pi is a binary
value representing the presence (1) or absence (0) of the i-th
protocol type.

Pencoded = [p1, p2, . . . , pn] (16)

3) FEATURE SELECTION
Not every feature available in a dataset is relevant to the
classification process [52]. It is essential to select the relevant
feature to reduce the complexity of the model and improve
computational efficiency. In this experiment, the Mutual
Information (MI) [53] approach has been used to rank
features based on their relevance to the target variable. The
process is expressed using equation 17.

MI (X ,Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)
p(x)p(y)

(17)

In equation 17, X and Y are the feature and label variables,
and p(x, y), p(x), and p(y) are their joint and marginal
probabilities, respectively. Features with higherMI scores are
considered more relevant for the task.

4) SEQUENCE GENERATION
The LSTMnetworks are good at learning from and predicting
labels from sequential data. This is the fundamental reason
for choosing LSTM for this research. The training dataset is
well-structured. However, they are not structured as network
data sequences. The sliding window approach is defined by
equation 18, which has been used to convert the tabular data
into sequences. Here w is the window size, Xt and Yt+1 are
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FIGURE 2. IoT node architecture.

the input and output features at time step t , respectively [54].

(Xt−w+1,Xt−w+2, . . . ,Xt )→ Yt+1 (18)

D. IOT NODE ARCHITECTURE AND COMMUNICATION
PROTOCOLS
The proposed IDS works at the IoT node. Understanding
the IoT node architecture and communication protocol
is essential for the seamless integration of the proposed
IDS. The IoT node architecture, associated communication
protocols, and possible security vulnerabilities have been
discussed in this section.

1) IoT NODE ARCHITECTURE
The IoT node architecture, illustrated in figure 2, consisted
of sensing, processing, and communication subsystems. Each
node has an additional power subsystem to power up the
system. The sensors sense the environment and collect data.
The processing subsystem consists of the microcontroller.
It is responsible for processing and controlling the node’s
operations. Finally, the communication subsystem enables
data transmission between the IoT node and other devices
or networks. Usually, the IoT nodes are connected to edge
servers. The edge server communicates with the WiFi router,
which is a gateway [55]. The router is connected to the
Internet.

The intrusion at the IoT node affects the performance of the
devices. It is one of the significant indicators for detecting
probable intrusion. In this paper, the performance of an
IoT node has been characterized by its energy consumption,
latency, and throughput. The energy consumption E of an IoT
node as a function of its active time Tactive, idle time Tidle, and
power consumption during active and idle states, Pactive and
Pidle, respectively. The relationship among these entities is
expressed by equation 19.

E = Pactive · Tactive + Pidle · Tidle (19)

Latency and throughput have been used as two prominent
indicators of IoT performance. Deviation in latency and
throughput than usual is an indicator of intrusion. Latency L
has been defined as the time required to complete a specific
task, such as data acquisition, processing, or transmission.
Throughput Th is the rate at which an IoT node can process or
transmit data, measured in bits per second (bps). The relation
between latency and throughput is defined by equation 20
where D is the amount of data processed or transmitted, and
T is the time duration.

Th =
D
T

(20)

2) COMMUNICATION PROTOCOLS
Protocols govern communication over the Internet. IoT
communication is not an exception. The IoT nodes use
various communication protocols to exchange data with other
devices or networks. Many intrusion uses protocol-level
vulnerabilities. That is why secured communication protocols
are essential for IoT devices [56]. In this paper, the secured
communication protocols have been studied to improve the
detection rate of the proposed IDS. The protocols analyzed
have been listed in list [57]. These protocols have also been
used in a wide range of applications as well.
• IEEE 802.15.4 (e.g., Zigbee, Thread): low-power, short-
range communication

• Bluetooth Low Energy (BLE): energy-efficient, short-
range communication

• LoRaWAN: long-range, low-power wide area network
communication

• Cellular IoT (e.g., NB-IoT, LTE-M): long-range com-
munication using cellular networks

The performance of these communication protocols has
been characterized by transmission range, data rate, and
energy consumption. The energy consumption expressed as
Ec of a communication module during an active communi-
cation is a function of the transmission power Ptx , the data
rate R, and the amount of data D. The relation among these
variables is expressed in equation 21.

Ec =
Ptx · D
R

(21)

The transmission ranges Rtx have been estimated using the
Friis transmission equation defined by equation 22 [58].

Prx =
Ptx · Gtx · Grx · λ2

(4π)2 · d2
(22)

In equation 22, Prx is the received power, Gtx and Grx
are the transmitter and receiver gains, λ is the wavelength of
the signal, and d is the distance between the transmitter and
receiver. The maximum transmission range is estimated by
solving for d when Prx is at the minimum detectable level in
equation 22.

3) SECURITY VULNERABILITIES IN IoT PROTOCOLS
IoT protocols are designed to enable efficient communication
between IoT devices and networks. Many studies show that
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cybercriminals study the protocols and discover the vulner-
abilities to perform successful attacks on IoT devices [3].
The experiment presented in this paper has been conducted
within the scope of the CIC-IDS2017 dataset. The potential
vulnerabilities have been studiedwithin the boundaries of this
dataset and IoT protocols to specify the intrusions to detect.

a: COMMON SECURITY VULNERABILITIES
The CIC-IDS2017 dataset has 14 different intrusion patterns.
However, it is a comprehensive dataset, not exclusive to
IoT. That is why every intrusion is not applicable within the
context of this research. The core focus of this experiment
is to detect five frequently attempted intrusions at the IoT
end. These intrusions are DoS, DDoS, BRF, MITM, and
RP Attacks. A probabilistic model governs each intrusion
at the IoT node. The proposed IDS needs to align with
the probabilistic model of successful attacks explained in
section III-D3b [57]. While quantum vulnerabilities are
beyond the scope of this paper, it’s important to note that
the advent of quantum computing presents new challenges
in cybersecurity. With their potential to break traditional
encryption methods, Quantum computers could make current
security measures obsolete, introducing a new layer of
complexity in protecting against intrusions, including those
targeted in this research [59].

b: PROBABILISTIC MODEL FOR SUCCESSFUL ATTACKS
The probability model for a successful attack is formulated
with multiple factors. The most relevant and common
factors are the attacker’s capabilities, the protocol’s security
features, and the network’s defense mechanisms [60]. The
probabilistic model is defined in equation 23. Here P(A)
represents the probability of a successful attack, P(C)
represents the probability of the attacker’s capabilities, P(S)
represents the probability of the protocol’s security features,
and P(D) represent the probability of the network’s defense
mechanisms.

P(A|C, S,D) =
P(A,C, S,D)
P(C, S,D)

(23)

In equation 23, P(A,C, S,D) is the joint probability of a
successful attack, the attacker’s capabilities, the protocol’s
security features, and the network’s defense mechanisms.
The P(C, S,D) is the joint probability of the attacker’s capa-
bilities, the protocol’s security features, and the network’s
defense mechanisms. By estimating these probabilities, the
vulnerability of IoT protocols to various attacks is accessed.

E. PROPOSED DEEP-IDS
The proposed Deep-IDS is developed using an LSTM
network operated from an edge server. This section
presents the LSTM network architecture, training progress,
weight initialization method, and weight optimization
algorithm.

FIGURE 3. The LSTM network architecture.

1) LSTM NETWORK ARCHITECTURE
An LSTM network, illustrated in figure 3, with 64 hidden
units followed by a Dense output layer with six nodes, is at
the heart of the proposed Deep-IDS. The input layer of the
experimenting LSTM network receives data with timesteps
and feature pairs. The timesteps are the number of steps
in the input data. The features are the number of features
for each step. The input data are processed through the
64 hidden units. These units have internal memory cells.
The temporal dependencies of the sequential data are stored
in these memory cells. After processing, the data entered
the dense layer. There are six nodes in the dense layer. The
output from the dense layer is processed through the softmax
function to convert the output into a probability value for each
class.

2) TRAINING THE NETWORK
The proposed LSTM network has been trained with 39,663
instances. The training progress of the proposed network
is illustrated in figure 4. The training is completed after
ten epochs. In each epoch, there are 429 iterations. It takes
3 minutes and 21 seconds to complete the training. The
training and validation accuracy sharply rises till the second
epoch. After that, the learning curves maintain smooth
near-linear characteristics. The training and validation loss
demonstrate similar but inverse behavior. They rapidly reduce
up to the second iteration. After that, the curves maintain
near-linear characteristics.

a: WEIGHT INITIALIZATION
The initialization of weights is critical in successfully training
deep neural networks [61]. Appropriate initialization of
weight parameters accelerates the convergence rate and
mitigates gradient issues, including vanishing or exploding
gradients [62]. In this experiment, the He initialization has
been used. He Initialization, also known as He-Normal
initialization, was proposed by Kaiming He et al. [63] in
2015. The design of this particular model is tailored to
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FIGURE 4. Learning progress.

accommodate deep neural networks that utilize Rectified
Linear Unit (ReLU) [64] activation functions, as well as their
variations, including Leaky ReLU and Parametric ReLU.
While the hyperbolic tangent (tanh) activation function
is commonly utilized in LSTM networks, it has been
observed that He Initialization remains efficacious even when
implemented in conjunctionwith ReLU or its derivatives. The
primary idea behind He Initialization is to draw the initial
weights from a Gaussian distribution with a mean of 0 and
a variance of 2

ninput
, where ninput is the number of input units

in the weight tensor. The layer’s weightsW are initialized as
expression 24.

W ∼ N
(
0,

√
2

ninput

)
(24)

In equation 24, the N (0,
√

2
ninput

) represents a Gaussian

distribution [65] with a mean of 0 and a standard deviation
of
√

2
ninput

. The justification for employing this particular
initialization technique is its ability to preserve the weights’
variance throughout the forward and backward propagation
phases. This, in turn, mitigates the risk of encountering
vanishing or exploding gradient issues that may arise from
excessively small or large gradients.

b: OPTIMIZATION ALGORITHM
The ADAM optimization algorithm is widely utilized for
optimizing deep learning models during training [66]. The
method under consideration amalgamates the benefits of
the Adaptive Gradient Algorithm (AdaGrad) [67] and Root
Mean Square Propagation (RMSProp) [68] by preserving
distinct adaptive learning rates for individual weights and
revising them by the first and second moments of the
gradients. In the equation 25, gt represents the gradient
at time step t . Once the gradient is obtained, the first
and second momentum is calculated using its value by

equations 26 and 27, respectively. The β1 and β2 are the
exponential decay rates for the moments in these equations.

mt = β1mt−1 + (1− β1)gt (25)

vt = β2vt−1 + (1− β2)g2t (26)

m̂t =
mt

1− β t1
(27)

The bias-corrected first and second-moment estimates are
denoted by m̂t and v̂t , respectively, in equations 28 and 29.
The learning rate α and a small constant ϵ are used to
prevent division by zero. The updated weight at time step t
is represented by θt .

v̂t =
vt

1− β t2
(28)

θt = θt−1 − α
m̂t√
v̂t + ϵ

(29)

The proposed LSTM network’s suitability for the ADAM
optimization algorithm is attributed to its adaptability and
capacity to manage sparse gradients. The approach exhibits
computational efficiency, necessitates minimal memory, and
broadly applies to diverse deep learning models, encom-
passing non-convex optimization problems. The utilization
of the ADAM optimization algorithm guarantees the swift
convergence and proficient performance of the proposed
LSTM network.

IV. IMPLEMENTATION & RESPONSE MECHANISM
This section presents the experimental setup of the imple-
mentation process of the proposed Deep-IDS. One of the
unique features of the proposed IDS is balancing the detection
rate and false alarm rate to make it more effective and
user-friendly. This has been done by experimenting with
the response mechanism, which is also a part of this
section.

VOLUME 12, 2024 63591



S. Racherla et al.: Deep-IDS: A Real-Time Intrusion Detector for IoT Nodes Using DL

FIGURE 5. Overview of the implementation of the proposed Deep-IDS.

A. EXPERIMENTAL SETUP
The proposed Deep-IDS has been implemented and analyzed
in an experimental setup. Experimenting with the proposed
Deep-IDS in commercial or organizational networks raises
security and ethical concerns. A separate testbed has been
created to implement the proposed IDS. Python and the
TensorFlow library were used to implement the proposed
Deep-IDS. We used the Cooja Network Simulator (CNS)
and conducted experiments in the Contiki Operating System
(COS). As the IoT, a Raspberry Pi 4Model B fitted with 4 GB
of main memory has been utilized. The experimental setup is
illustrated in figure 5 [69].

B. RESPONSE MECHANISM
The Deep-IDS is operated from the edge server. The sensors
are capable of receiving data from the Internet using the
server. The principle above also holds in data transfer process.
The edge server is positioned as an intermediary between the
sensors and the router. Upon receiving a packet, the edge
server activates the Deep-IDS and then transfers the packets
to it. Upon detecting an intrusion, the IDS proceeds to assess
the likelihood associated with the specific incursion. If the
probability exceeds 70%, the Deep-IDS system will decline
the data and transmit a traffic block signal to the router. The
router functions to obstruct the origin of the unauthorized
access. If no incursion is detected, the Deep-IDS transfers the
data to the sensors.

The threshold of the responsemechanism has been selected
by analyzing the FAR and Detection Rate (DR), illustrated in
figure 6. It shows the FAR and the DR at various threshold
levels, ranging from 5 to 100. As the threshold increases,

FIGURE 6. Threshold selection.

we observe a general trend of decreasing FAR and DR.
At a threshold of 5, the system demonstrates a high DR of
99.99%, accompanied by a significantly high FARof 57.58%.
As the threshold reaches 50, the DR marginally decreases to
98.41% while the FAR experiences a substantial reduction
to 10.02%. Beyond this point, the decrease in FAR becomes
less significant while the DR continues to decline more
noticeably. At a threshold of 100, the FAR drops to 0%, but
the DR also reduces considerably to 85.17%. This analysis
highlights a trade-off between the system’s detection rate and
the false alarm rate as the threshold increases. To optimize
system performance, selecting a threshold that balances the
need for a high detection rate while minimizing false alarms
is crucial. The FAR and DR trade-off is optimized at the 70%
threshold.

V. PERFORMANCE EVALUATION
This section presents the performance evaluation of the Deep-
IDS developed in this paper. It starts with the evaluation
matrices. Then, the confusion matrix was analyzed to
evaluate classification performance. After that, the intrusion
detection rate and the IDS’s response time have been
assessed.

A. EVALUATION METRICS
The state-of-the-art machine learning evaluation metrics have
been used in this paper to evaluate the performance of
the proposed Deep-IDS [70]. These evaluation metrics are
calculated using True Positive (TP), True Negative (TN),
False Positive (FP), and False Negative (FN) values from the
confusion matrix illustrated in figure 7 [71]. The accuracy,
precision, recall (sensitivity), and F1 Score are defined by
equations 30, 31, 32, and 33, respectively [72]. Another
evaluation metric is FAR, which is the False Positive Rate
(FPR).

Accuracy =
TP+ TN

TP+ TN+ FP+ FN
(30)

Precision =
TP

TP+ FP
(31)

Recall =
TP

TP+ FN
(32)
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FIGURE 7. Confusion matrix analysis.

TABLE 2. Performance of the proposed Deep-IDS.

F1 Score =
2× (Precision× Recall)

Precision+ Recall
(33)

B. CONFUSION MATRIX ANALYSIS
The confusion matrix illustrated in figure 7 demonstrates the
performance of the proposed Deep-IDS to classify network
traffic into one of the six classes. Upon evaluating the
system’s performance using Accuracy, Recall, Precision, and
F1-Score, it is evident that it performs well in identifying
these categories. The system achieves an overall accuracy
of 97.67%. The recall values for BRF and Benign instances
are 0.970, while DDoS, DoS, MITM, and RP attacks have a
higher recall of 0.980.

The precision values indicate the system’s effectiveness
in identifying true positives. BRF and MITM attacks have a
precision of 0.990, while Benign instances have the highest
precision of 1.00. DDoS attacks have a precision of 0.990,
and DoS and RP attacks have a slightly lower precision of
0.960. The F1-Scores, representing the harmonic mean of
recall and precision, are 0.980 for BRF, 0.985 for Benign and
DDoS, 0.970 for DoS and RP, and 0.985 for MITM attacks.
In summary, the Deep-IDS exhibits high accuracy, recall,
precision, and F1 scores, indicating its strong performance
in classifying different types of intrusions. The overall
performance for each class of the Deep-IDS is listed in
table 2.

The exceptional results obtained from the confusionmatrix
analysis of Deep-IDS underscore its effectiveness in the real-
time identification and classification of network intrusions.

TABLE 3. Intrusion detection rate and response time.

The high recall and precision values across all categories,
particularly for critical intrusion vectors such as DDoS,
MITM, and BRF attacks, affirm the system’s robustness and
reliability in distinguishing between benign and malicious
traffic with minimal error. The system’s ability to achieve a
perfect precision score of 1.00 for benign instances highlights
its capability to accurately identify legitimate network
activities, thus reducing the likelihood of false positives that
could disrupt normal network operations. Moreover, the high
F1 scores indicate a balanced performance between recall and
precision, ensuring that the system is not only accurate but
also consistent in its intrusion detection capabilities. This bal-
ance is crucial for maintaining network security and integrity,
especially in dynamic and complex IoT environments where
the cost of false negatives or positives can be substantial.
These metrics provide compelling evidence of its potential
to significantly enhance cybersecurity defenses against an
evolving landscape of cyber threats.

C. DETECTION RATE AND RESPONSE TIME ANALYSIS
The proposed Deep-IDS achieves an overall accuracy of
97.67%. The detection rate plays a significant role in
evaluating its performance. The detection rate, defined by
equation 34, determines the robustness of the proposed Deep-
IDS.

Detection Rate, R =
Detected Intrusion
Total Intrusion

× 100 (34)

An experiment with known intrusions and random network
data has been conducted to identify the detection rate.
In this experiment, there are a total of 250 intrusions
and 1000 benign data sequences. The 250 intrusions were
randomly injected with benign data. There is no specific
pattern of benign and malicious sequence combinations. It is
a 180-minute lengthy experiment. Along with the detection
rate, the response time was also measured. The findings of
this experiment are listed in table 3.

The data in table 3 provide insights into the performance
of the proposed Deep-IDS when dealing with different
types of intrusions, specifically BRF, DDoS, DoS, MITM,
and RP attacks. The detection rates for BRF and DoS
attacks are the highest at 98%, with 49 out of 50 intrusions
detected in both cases. Meanwhile, the system performs
slightly less effectively for DDoS, MITM, and RP attacks,
achieving a detection rate of 96% by detecting 48 out of
50 intrusions. The response time varies across different
intrusion types, with RP attacks having the fastest response
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FIGURE 8. The detection rate and response time.

time of 0.92 seconds, followed closely by MITM attacks
at 1.05 seconds. BRF intrusions have a slightly longer
response time of 1.46 seconds, while DoS and DDoS
attacks require even more time, with response times of
1.98 and 2.02 seconds, respectively. The detection rate and
the response time have been illustrated in figure 8.

Figure 8 demonstrates the IDS’s impressive performance
across various attack types. The response time is fast enough
to consider it real-time intrusion detection.

D. PERFORMANCE COMPARISON
The Table 4 presents the performance comparison between
the proposed Deep-IDS and other similar approaches. The
proposed Deep-IDS demonstrates superior performance in
intrusion detection compared to several existing approaches,
as evidenced by a comprehensive performance compar-
ison. Deep-IDS outperforms other notable systems with
an accuracy of 97.67%, precision of 97.67%, a recall
of 98.17%, and an F1-Score of 97.91%. For instance,
Ashiku et al. [17] reported an accuracy of 94.40% but
did not provide figures for precision, recall, or F1-Score,
indicating a narrower focus on accuracy alone. Similarly,
Musleh et al. [18] achieved a commendable balance with
92.40% accuracy, 89.10% precision, and a 92% F1-Score,
yet fell short of the comprehensive performance metrics
offered by Deep-IDS. Notably, Logeswari et al. [19], and
Mebawondu et al. [20] presented systems with significantly
lower overall performancemetrics, highlighting the advanced
capabilities of Deep-IDS in handling various intrusion types
effectively. Elsayed et al. [21] and Kumar et al. [23] also
proposed systems with high accuracy rates of 96.56% and
97.45%, respectively, but neither matched the balanced
performance across all metrics achieved by Deep-IDS. This
comparison underscores the robustness and efficiency of
Deep-IDS in accurately detecting and classifying intrusions,
setting a new benchmark in the field of cybersecurity for IoT
systems.

VI. LIMITATION & FUTURE SCOPE
Every system has some limitations. The proposed Deep-IDS
is no exception. It suffers from several limitations, which have
been presented in this section.

TABLE 4. The performance comparison of the proposed system with
other similar systems (here NA means Not Available).

A. COST
The proposed Deep-IDS uses a Raspberry Pi 4 Model B
with 4GB primary memory. It is a headless computer and
an expensive device [73]. It has been designed to perform
many other sophisticated computations. That is why it is
an expensive device. In this experiment, it was used only
for intrusion detection. An embedded system exclusively
designed for the Deep-IDS would reduce the implementation
cost. However, developing an embedded system is beyond
this research’s scope. It creates a new opportunity to conduct
further research to make IDS hardware cost-effective.

B. ADVERSARIAL MACHINE LEARNING (AML) ATTACK
The proposed Deep-IDS demonstrates outstanding perfor-
mance as an intrusion detector. However, no counter-
measurement has been taken for the AML attack. The
CIC-IDS2017 is a public dataset. Anyone can access and
analyze the data to prepare sequences for an AML attack [74].
Even though AML attacks have been drawing significant
attention lately, they are not within the proposed Deep-IDS
context. However, it opens the door to conducting more
experiments to defend against AML attacks and secure the
proposed Deep-IDS.

C. REAL-WORLD EXPERIMENT
The proposed Deep-IDS has been experimented with in a
testbed that resembles a real-world scenario. As a result,
the performance of the proposed system is considered a
realistic result. However, a testbed does not encompass a large
perimeter like a realistic environment [75]. It is a significant
limitation of the proposed system.

D. CYBER-PHYSICAL SYSTEM SECURITY
This paper focuses on intrusion detection only. However,
a system is always vulnerable to cyber-physical intrusion [11]
unless necessary counter-measurement is taken. Anyone with
access to the edge server has the scope to make the entire
system vulnerable by gaining unauthorized access or altering
the IDS’s parameters.

The proposed Deep-IDS’s existing limitations are the
future scopes of further research. Eventually, more weak-
nesses of this system will be discovered, and in subsequent
research, those weaknesses will be strengthened. This is how,
through continuous improvement, the proposed Deep-IDS
will be an efficient, effective, and unique IDS.
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VII. CONCLUSION
The Deep-IDS presented in this paper is an innovative
solution to detect five types of intrusion in real-time with an
average of 97.67%. The methodology presented in this paper
has been developed to abridge the research gaps identified
through a comprehensive literature review. Unlike most of the
research conducted in this field, this paper justifies the Deep
Learning algorithms used in this paper through a rigorous
characteristics analysis. This paper has presented the design
and implementation of an effective LSTM network that
detects five types of intrusion with an average detection rate
of 96.8%. The average detection time is only 1.49 seconds.
The well-engineered network architecture incorporated with
the He weight initialization method has made it possible.
It has been further optimized through the ADAM opti-
mization algorithm. Furthermore, The appropriate sequence
generation method and other dataset processing techniques
have contributed to the outstanding performance of the IDS
developed in this paper. That is why it detects intrusion
in real-time with 97.67% precision, 98.17% recall, and
97.91% F1-Score. The innovative trade-off analysis between
the detection rate and false alarm rate has introduced a
uniqueness to this paper. An innovative response mechanism
has been developed and presented in this paper, which is the
roadmap to apply the detection made by the LSTM network.
It prevents the compromised IoT node from receiving any
further malicious traffic. As a result, it can no longer be used
as an access point by cybercriminals. It makes a significant
impact in strengthening the IoT node security as well as the
security of the whole interconnected network.
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