
Received 5 April 2024, accepted 25 April 2024, date of publication 3 May 2024, date of current version 20 May 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3396526

A Novel Approach for Fuzzification of Rough
Sets Based on Fuzzy Preference Relation:
Properties and Application to Medicine
Selection Problem
RIZWAN GUL 1, SABA AYUB1, MUHAMMAD SHABIR1, ALI YAHYA HUMMDI 2,
AMER ALJAEDI 3, AND ZAID BASSFAR 3
1Department of Mathematics, Quaid-i-Azam University, Islamabad 45320, Pakistan
2Department of Mathematics, College of Sciences, King Khalid University, Abha 61413, Saudi Arabia
3College of Computing and Information Technology, University of Tabuk, Tabuk 71491, Saudi Arabia

Corresponding author: Rizwan Gul (rgul@math.qau.edu.pk)

This work was supported by the Deanship of Research and Graduate Studies, King Khalid University, through the Large Research Project
RGP2/552/44.

ABSTRACT Preference analysis is a significant component in decision-making (DM) when selecting an
optimal alternative. By comparing any two alternatives pairwise, preference relations (PRs) effectively depict
the preference degrees of decision-makers (DMrs). The rough set theory (RST) has been effectively applied
to cope with preference analysis by swapping the equivalence relation (Er) with the dominance relation (DR).
In this study, we propose new transfer functions to construct alternatives’ upward/downward fuzzy preference
degree (FPD) for evaluating upward and downward fuzzy PRs (FPRs). Based on these newly proposed
transfer functions, we present a novel method for fuzzifying RSs called the upward α-fuzzified preference
rough sets (α↑-FPRSs). The basic properties of the proposed α↑-FPRSs are thoroughly studied. Moreover,
several uncertainty measures related to α↑-FPRSs are presented. Meanwhile, we offered the notion of
upward fuzzy β-covering (UFβC) and upward fuzzy β-neighborhood (UFβ-nghd), upward β-neighborhood
(Uβ-nghd), and several related properties are explored. Based on UFβ-nghd and Uβ-nghd, we construct two
new models of UFβC rough sets (UFβ-CRSs) along with their properties. We formulate a novel technique
of multi-attribute DM (MADM). To legitimise the practicality of our proposed model, we provide a real-life
example of selecting an appropriate medication to treat a specific disease. Finally, we look into the efficacy
of the launched scheme through a comparison study.

INDEX TERMS Rough set, preference analysis, upward fuzzy β-covering, MADM.

I. INTRODUCTION
Decision analysis is a theoretical framework involving the
DM process, criteria, types, and methods. Much of the
research on DM under uncertain environments assumes a
specific kind of individual’s behavior and identifies the
preferences that indicate the behavior. Their private and
professional lives generally drive individuals’ behavior.
The main difficulty of the DM process in an uncertain
environment is determining how to cope with an individual’s
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attitude while achieving the ultimate goal. Yet, due to the
complexity, inaccuracy, and unstructured DM issues under
uncertainty and the constraints of information and cognition
for individual DMrs, it is hard to get a logical and scientific
DM with only a single DMr under uncertainty in practice.
To achieve an affordable and consistent optimal outcome,
specialists from diverse professions with varying specialties
are recruited to form a group and solve the DM issues
collectively. So far, the concept and theory of group DM
(GDM) have been applied to a variety of DM issues that
have arisen in management sciences, medical diagnosis,
engineering, and the social sciences.
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A. AN OVERVIEW ON THE DEVELOPMENT OF RST
Pawlak RST [33], [34] supplies us with an effective mathe-
matical way to cope with intelligent systems with inadequate
and incomplete knowledge. It has been determined to be very
effective in a variety of applications. The rough set (RS)
technique is based on an Er specifying the indiscernibility
relation between items. Although RST has been implemented
proficiently across multiple arenas, several shortcomings
might restrict its applications. The problem is that the
transitivity of that Er is practically difficult to validate, and
theoretical arguments contrary to their use mentioned already
in [68] and in [69], Alcantud proposed specific tests for
determining the consistency of observed behavior with this
framework. These shortcomings result in inaccurate infor-
mation regarding the objects under consideration. Because
of this reason, many academics invented more generic RS
variants, which provide an effective and flexible means of
data analysis. Zhu [58] proposed the idea of generalized RSs
based on relations. Ali et al. [1] analyzed several properties of
generalized RSs. She et al. [41] employed logical operators
in RS theory. Dubois and Prade [14] created the fuzzy
RS (FRS) by swapping out the crisp binary relations in
the universe with fuzzy relations. The popularity of RS
and FRS can be gauged by their applications in diverse
domains, such as medical diagnosis, data mining, attribute
reduction, pattern recognition, machine learning, feature
selection, neural network, DM, conflict analysis, etc.

While in actual DM, it is vital to take into account
DRs between objects in a specific order due to the prefer-
ence structures among conditions and decisions. Therefore,
Greco et al. [17], [18], [19] proposed dominance-based RSs
(DB-RSs), generalizing the RS theory by DR. Greco et al.
[16], [20] proposed fuzzy DB-RSs (FDB-RSs), where a
quantified measure of DR depicts the relationship that an
object O1 is preferred to another object O2, but also gives the
knowledge of howmuchO1 is preferred toO2. Chen et al. [7]
initiated dominance-based neighborhood RS (DB-NRS).
Shabir and Shaheen [40] created a novel procedure for
fuzzifying RSs based on α-indiscernibility by employing
a fuzzy tolerance relation. Radzikowska and Kerre [37]
explored a model of FRSs using fuzzy logical implication and
t-norm.

B. AN OVERVIEW ON THE DEVELOPMENT OF
COVERING-BASED RSS
Another perspective for the generalization of RSs consists
of replacing the partition induced by Er with a more general
concept known as covering. Covering-based RSs (CRSs) are
one of the most extensively investigated generalizations of
RSs that enable scholars to study roughness and uncertainty
in a broader context. In 1983, Zakowski [52] was the
first to propose a covering-based generalization of Pawlak
approximation operators. Recently, a large spectrum of
research has been conducted on this paradigm. In 1998,
Bonikowski et al. [5] initiated a novel model of CRS using

minimal description. Zhu and Wang [60] addressed three
different CRS models. Many significant properties of CRSs
were also discussed by Chen et al. [8], [9]. By fusing fuzzy
sets and CRSs, numerous researchers have extended CRS
versions to covering-based fuzzy RSs (CFRS). Deng et al.
[12] suggested a fuzzy covering. D’eer et al. [10] established a
fuzzy neighborhood based on fuzzy covering. D’eer et al. [11]
put forth neighborhood operators for CRSs. By employing
fuzzy β-neighborhoods, Ma [28] developed two types of
CFRS models, the generalization of CFRS when β = 1.
Also, Yang and Hu [48] investigated various kinds of fuzzy
β-covering based on RSs. Zhu [59] investigated topological
approaches to CRSs. Yang [47] pioneered fuzzy CRSs on
two different universes with application in DM. Zhang
and Dai [54] redefined FRS models in fuzzy β-covering
approximation spaces. Atef et al. [2] established several
variants of covering-based (I , T )-FRSs with applications
in DM. Zhu and Wang [67] interpreted the reduction and
axiomization of covering based generalized RSs.

C. A BRIEF REVISIT ON RS THEORY BASED ON FPRs
In certain circumstances, the DMrs are frequently asked
to give their preferences over alternatives, like teaching
evaluation, university ranking, credit approval, and stock risk
estimation. In these circumstances, PRs play a vital role
in communicating the preferences of DMrs. Orlovsky [30]
proposes FPR to express DMrs’ opinions over a group of
alternatives. The FPR not only reveals that one alternative
is preferred over another, but it also quantifies the degree
of preference. Xu [45] proposed intuitionistic PRs with
their application in group DM. Wang et al. [44] developed
a novel three-way MADM method with fuzzy comple-
mentary PRs based on additive consistency. Pawlak’s RS
theory and FRS cannot analyze the data with preference
structures. Subsequently, Hu et al. [22] pioneered a technique
to compute FPRs from samples specified by numerical
criteria and established the method to attribute reduction
of fuzzy preference-based RSs (FPB-RSs). They built
upward/downward FPRs of alternatives using thewell-known
Logsig sigmoid transfer function. Yang et al. [49] established
quantitative DB-NRSs (QDB-NRSs) via FPRs. Du and
Hu [13] presented a dominance-based rough fuzzy set.
Herrera-Viedma et al. [21] discussed sevral issues regarding
the consistency of FPRs. Han et al. [63] devised a three-way
group consensus mechanism based on probabilistic linguistic
PRs with acceptable inconsistency. Guo et al. [64] integrated
a large-scale GDM methodology combining three-way clus-
tering and regret theory under FPRs.

Qian et al. [35], [36] generalized Pawlak’s RS model
to a multi-granulation RS model by employing more than
one ER, which offers a novel granular computing perspec-
tive. Pan et al. [32] developed a multi-granulation fuzzy
preference RS paradigm for the ordinal decision system.
In this model, they reported that the FPD using the Logsig
sigmoid function is not additively consistent. Therefore, they
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formulate a new function for constructing upward/downward
FPRs. Unfortunately, the Pan et al. [32] method cannot form
upward/downward FPRs on a domain with similar values of
alternatives over some criteria (see Example 1). To overcome
this deficiency, we propose novel transfer functions to
construct the upward/downward FPRs of alternatives in this
work. Based upon these newly proposed transfer functions,
we present a novel method for fuzzification of RSs known as
α↑-FPRSs to solve the preference analysis problem.

D. A BRIEF REVISIT OF MADM
Generally, the DM is a typical procedure in the real world,
which can be defined as a procedure for evaluating alterna-
tives based on the available data under the given scenario.
With the advancement of science, DM has expanded from a
single attribute to multiple attributes. MADM usually identi-
fies the optimal alternative or arranges all alternatives based
on different attributes. There are several classical MADM
techniques in the literature. To address the MADM problem,
Hwang and Yoon [23] initiated the TOPSIS approach.
Krohling and Campanharo [26] pioneered fuzzy TOPSIS for
GDM. Xu and Da [65] established the ordered weighted
geometric averaging operators with MADM application.
Llamazares [66] devised a generalized TODIM method.
Zolghadr-Asli et al. [61] review of 20-year applications of
MADM. Behret [3] developed a group DMwith intuitionistic
FPRs. Zhan et al. [6] devised a three-way behavioral DM
using hesitant fuzzy information systems. Zhu et al. [15]
offered a probabilistic linguistic three-way approach using
regret theory and a fuzzy c-means clustering algorithm.
Bentkowska et al. [4] put forward a technique of DM with
an interval-valued FPR and admissible orders. Zhang et al.
[55] successfully applied the fuzzy covering-based
(I, T )-FRS model with the MADM problem of com-
pany recruitment. A covering-based variable precision
(I, T )-FRSs model was introduced by Jiang et al. [24].
Covering-based multi-granulation (I ,T )-FRS models are
reported by Zhan et al. [53] with their applicability in
MADM. Zhang et al. [56] employed the TOPSIS approach
in the framework of fuzzy covering approximation space.
Jiang et al. [25] suggested a MADM approach to medical
diagnosis based on covering-based variable precision
FRSs. Zhang et al. [57] put forth covering-based gen-
eralized intuitionistic FRSs with applications to MADM.
Abdelhafeez et al. [62] proposed a rank and analysis of sev-
eral solutions for healthcare waste to attain cost-effectiveness
and sustainability employing the neutrosophic MADM
scheme.

E. MOTIVATION AND AIM OF THIS ARTICLE
In the light of the literature survey, the critical research
motivations, knowledge gaps, novelty, and aim of this study
can be summed as follows:
1. As previously stated, the transfer functions used by

Pan et al. [32] to calculate the FPD for creating
upward/downward FPRs are not additively consistent.

As a result, we offer novel transfer functions that are
additively consistent to create the upward/downward
FPD.

2. Furthermore, fewer attempts have been made to explore
the structures of RSs via FPR. In the current literature,
scholars applied the FPR to create fuzzy approxi-
mations. However, even with the help of FPR, the
researchers could not determine the crisp approxima-
tions. Naturally, the question arises whether we can
obtain crisp approximations using FPR. The certifiable
answer to this query has driven the current authors to
the creation of α↑-FPRSs. Furthermore, the α↑-FPRSs
approximations act as a link between FPR and crisp set.

3. CFRS theory plays a significant role in dealing with
ambiguous and uncertain information. Although various
CRS models have been constructed within the frame-
work of FSs, there has been no prior investigation into
the development of CRSs rooted in UFβC, UFβ-nghd,
andUβ-nghd. Therefore, this article intends to introduce
the idea of UFβC, UFβ-nghd, and Uβ-nghd. Moreover,
two types of CRS approaches using UFβ-nghd and
Uβ-nghd are established.

4. In the process of medical diagnostic, how to choose
a suitable medicine from some medicines with the
same efficacy values to cure a particular disease
has turned into a typical problem for doctors and
patients. Generally, in a clinical setting, it is chal-
lenging for doctors to quantify the efficacy value of
medicine precisely. Therefore, the medicine selection
problem can be depicted as a MADM problem in
a finite fuzzy covering approximation space. This
article primarily addresses a method to choose an
optimal medicine among various medicines to cure a
particular disease. We can use a MADM technique to
rank all medicines according to their efficacy value
relative to each symptom and selects the best treatment
plan.

F. MAIN OBJECTIVES
Under the contributions of the above investigations, the
primary objectives of this research comprise the following
primary objectives:

1. To formulate the novel transfer functions for evaluating
the FPD of alternatives.

2. In light of the benefits of the newly proposed transfer
functions, efforts are made to invent the α↑-FPRS
model.

3. To study numerous uncertainty measures in the frame-
work of the α↑-FPRS model.

4. To devise the concept of UFβC and UFβ-nghd,
Uβ-nghd.

5. To construct two innovative CRS models based on
UFβ-nghd and Uβ-nghd.

6. To establish a novel MADM strategy based on the
developed UFβ-CRS model.

VOLUME 12, 2024 67683



R. Gul et al.: Novel Approach for Fuzzification of RSs Based on FPR

7. To demonstrate the realistic usage of the invented
MCDM approach through concrete examples in a
medicine selection problem.

8. To demonstrate the developed work’s superiority, per-
formance, and validity through a comparative analysis
between the designed approach and some prevailing
techniques.

G. FRAMEWORK OF THIS STUDY
The script has been structured in the following way.
1. Section II provides an outline of a few fundamental

concepts that are crucial for understanding our recom-
mended study.

2. In section III, we formulate new transfer functions to
compute upward/downward FPRs, which are additive
consistent.

3. Section IV presents a novel framework of fuzzification
of RSs via upward FPR known as α↑-FPRSs. Then,
we discussed some of the structural properties of
α↑-FPRSs in detail.

4. Some significant uncertainty measures of α↑-FPRSs
along with properties are presented in Section V.

5. Section VI defines the ideas of UFβC, UFβ-nghd, and
Uβ-nghd. Two new RS models based on UFβ-nghd and
Uβ-nghd are also established.

6. In Section VII, based on the upward fuzzy β-covering
rough sets model, a novel MADM approach to the
medicine selection problem is established.

7. Section VIII emphasises comparing various prevailing
strategies with our recommended method.

8. Lastly, some concluding remarks are drawn in
section IX.

II. PRELIMINARIES
This segment briefly reviews several basic notions related to
RSs, fuzzy relations, and FPRS.

A. ROUGH SETS (RSs)
In the RS theory [33], Er is critical to articulating data
uncertainty. This Er splits the universe into classes, which
are usually stated as information granules. Therefore, in RS
theory, we must deal with clusters of objects instead of a
single item.
Definition 1 ([33]): Let ∅ ̸= O be a finite universe and τ

be an Er over O. Then (τ,R) is termed as an approximation
space (As). Based on As, for any subset S ⊆ O, we can
construct the lower and upper approximations of S as:

Sτ =
{
♭ ∈ O | [♭]τ ⊆ S

}
,

Sτ
=
{
♭ ∈ O | [♭]τ ∩ S ̸= ∅

}
,

}
(1)

where,

[♭]τ =
{
q ∈ O | (♭, q) ∈ τ

}
. (2)

S ⊆ O is called definable in a given As if Sτ = Sτ
;

otherwise, it is called RS. Moreover, the regions listed below:

(i) Pos(S) = Sτ ,
(ii) Bnd(S) = Sτ

− Sτ ,
(iii) Neg(S) =

(
Sτ )c

,

are called the positive, boundary, and negative regions of
S, respectively. The Positive region contains the definite
elements, the boundary region has doubtful elements, and
the negative region contains the definite non-elements of S
subject to the given information.

B. SOME IDEAS RELATED TO FUZZY RELATIONS AND
FUZZY PREFERENCE RELATIONS
Definition 2 ([51]): A fuzzy set (FS) ξ onO is a function

fromO to [0, 1], i.e., ξ : O −→ [0, 1]. The value ξ (♭) of ξ at
♭ ∈ O signifies the membership degree of ♭ in ξ .
The collection of all FSs over O is symbolized by F(O).
Definition 3 ([51]): Let ξ1, ξ2 ∈ F(O). Then for all ♭ ∈

O, we have
(i) ξ1 ≤ ξ2 ⇐⇒ ξ1(♭) ≤ ξ2(♭);
(ii) (ξ1 ∩ ξ2)(♭) = ξ1(♭) ∧ ξ2(♭);
(iii) (ξ1 ∪ ξ2)(♭) = ξ1(♭) ∨ ξ2(♭);
(iv) ξ c1 (♭) = 1 − ξ1(♭).
Definition 4 ([40]): A FSµ ∈ F(O×O) is called a fuzzy

relation (FR) over O, i.e., µ : O ×O −→ [0, 1].
If µ is a FR over O, then
(i) µ is called reflexive FR if ∀ p ∈ O, µ(p, p) = 1.
(ii) µ is said to be symmetric FR if ∀ p, q ∈ O, µ(p, q) =

µ(q, p).
(iii) µ is called transitive FR if ∀ p, q, r ∈ O, µ(p, r) ≥∨

q∈O
µ(p, q) ∧ µ(q, r).

(iv) A FR is called a fuzzy Er if it is a reflexive, symmetric
and transitive FR.

Definition 5 ([21]): A FPR R̂ is a FS overO ×O, which
is characterized by a membership function µR̂ : O×O −→

[0, 1]. For O = {x1, x2, · · · , xn}, we can describe it through
an n× n matrix as follows:

x1 x2 · · · xn

R̂ =
(
θij
)
n×n =

x1
x2
...

xn


θ11 θ12 · · · θ1n
θ21 θ22 · · · θ2n
...

. . .
...

θn1 θn2 · · · θnn

 ,

where θij denotes the preference degree of alternative xi over
alternative xj, θij ∈ [0, 1], θij + θji = 1, ∀i, j = 1, 2, · · · , n.
Specifically,

• θij = 0.5 demonstrates indifference between xi and xj;
• θij > 0.5 reveals that xi is superior than xj;
• θij < 0.5 indicates that xj is superior than xi;
• θij = 1 shows that xi is absolutely superior than xj;
• θij = 0 means xj is absolutely superior than xi.
In Definition 5, the FPR is taken into account, θij simply

reflects the preference degree xi prior to xj. However, in actual
situations, we need to show the preference degree of xi is poor
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than xj. To accommodate both scenarios, we titled the FPR
in Definition 5 as upward FPR (UFPR) and named the other
FPR as downward FPR (DFPR). The UFPR is expressed as
R̂↑

=
(
θ

↑

ij

)
n×n and DFPR as R̂↓

=
(
θ

↓

ij

)
n×n. Generally, θ

↑

ij +

θ
↓

ij = 1. Thus, for the DFPR:

• θ
↓

ij = 0.5 demonstrates indifference between xi and xj;

• θ
↓

ij > 0.5 demonstrates that xi is poor than xj;

• θ
↓

ij < 0.5 indicates that xj is poor than xi;

• θ
↓

ij = 1 shows that xi is absolutely poor than xj;

• θ
↓

ij = 0 reveals xj is absolutely poor than xi.

Definition 6: A FPR R̂ = (θij)n×n is termed as an additive
consistent, if θij = θik − θjk + 0.5, ∀i, j, k ∈ {1, 2, · · · , n}.

Hu et al. [22] employed the Logsig sigmoid transfer

function
1

1 + ek
(
f (xi,a)−f (xj,a)

) to calculate the FPD of xi to

xj as:

θ
↑

ij =
1

1 + e−k
(
f (xi,a)−f (xj,a)

) , (3)

θ
↓

ij =
1

1 + ek
(
f (xi,a)−f (xj,a)

) , (4)

where k > 0.
According to Pan et al. [32], the FPD using the Logsig sig-

moid transfer function is not additively consistent. Therefore,
they propose different transfer functions to calculate the FPD
of xi to xj as:

θ
↑

ij = 0.5 ×

(
f (xi, a) −

∧n
i=1 f (xi, a)∨n

i=1 f (xi, a) −
∧n

i=1 f (xi, a)

−
f (xj, a) −

∧n
i=1 f (xi, a)∨n

i=1 f (xi, a) −
∧n

i=1 f (xi, a)
+ 1

)
(5)

θ
↓

ij = 0.5 ×

(
f (xj, a) −

∧n
i=1 f (xi, a)∨n

i=1 f (xi, a) −
∧n

i=1 f (xi, a)

−
f (xi, a) −

∧n
i=1 f (xi, a)∨n

i=1 f (xi, a) −
∧n

i=1 f (xi, a)
+ 1

)
(6)

where ‘‘
∨
’’ and ‘‘

∧
’’ are the maximum and minimum value

of f (xi, a) ∈ [0, 1], respectively.
Definition 7: Let R̂ be a FPR over O ×O. Then ℘ =(
O, R̂

)
is termed as fuzzy preference approximation space

(FPAs).

III. PROPOSED TRANSFER FUNCTIONS TO COMPUTE
UPWARD/DOWNWARD FPR
We can see that if the values of alternatives on any criterion
are different then the transfer functions (V) and (VI) of
Pan et al. [32] works, but they do not work when the values
of the alternatives on specific criteria are identical. Moreover,
in this article, we highlighted that the transfer functions for
calculating the FPD of [32] for the formation of UFPR and
DFPR are not additively consistent, which is verified in the
subsequent example.

TABLE 1. Fuzzy information system.

Example 1: Table 1 depicts a fuzzified information system
for the evaluation of credit card applicants. Let O = {xi :

i = 1, 2, · · · , 9} be the universe of nine applicants and C =

{a1, a2, a3} be the set of criteria, where a1 = high salery, and
a2 = young age, a3 = good education. Based on criterion
a1, construct the upward FPD of xi to xj(i, j = 1, 2, · · · , 9)
by using Eq. (5), we obtain as shown in the equation at the
bottom of the next page.

But based on criterion a2 and using Eq. (5), we get:

θ
↑

11 = 0.5 ×


f (x1, a2) −

∧n
i=1 f (xi, a2)∨n

i=1 f (xi, a2) −
∧n

i=1 f (xi, a2)
−

f (x1, a2) −
∧n

i=1 f (xi, a2)∨n
i=1 f (xi, a2) −

∧n
i=1 f (xi, a2)

+ 1


= 0.5 ×

(
0.3 − 0.3
0.3 − 0.3

−
0.3 − 0.3
0.3 − 0.3

+ 1
)

= 0.5 ×

(
0
0

−
0
0

+ 1
)

=?

We can observe that θ
↑

ij values do not exist ∀i, j =

1, 2, · · · , 9. Therefore, in the light of Pan et al. [32] method
we cannot calculate R̂

↑
a2 (xi, xj). To get rid of this defi-

ciency, we propose new transfer functions to construct the
upward/downward FPD of xi to xj as follows:

θ
↑

ij = 0.5 ×

( f (xi, a) −
∧n

j=1 f (xj, a)∨n
j=1 f (xj, a) +

∧n
j=1 f (xj, a)

−
f (xj, a) −

∧n
j=1 f (xj, a)∨n

j=1 f (xj, a) +
∧n

j=1 f (xj, a)
+ 1

)
, (7)

θ
↓

ij = 0.5 ×

(
f (xj, a) −

∧n
i=1 f (xi, a)∨n

j=1 f (xj, a) +
∧n

j=1 f (xj, a)

−
f (xi, a) −

∧n
j=1 f (xj, a)∨n

j=1 f (xj, a) +
∧n

j=1 f (xj, a)
+ 1

)
, (8)

where f : O × C −→ [0, 1] is a fuzzy membership function
and f (xi, a) ∈ [0, 1].
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Based on criterion a1, using Eqs (7) and (8) to compute
the upward/downward FPD of xi to xj(i, j = 1, 2, · · · , 9),
we obtain:

R̂↑
a1 (xi, xj)

=



0.50 0.75 0.80 0.60 0.70 0.80 0.75 0.75 0.75
0.25 0.50 0.55 0.35 0.45 0.55 0.50 0.50 0.50
0.20 0.45 0.50 0.30 0.40 0.50 0.45 0.45 0.45
0.40 0.65 0.70 0.50 0.60 0.70 0.65 0.65 0.65
0.30 0.55 0.60 0.40 0.50 0.60 0.55 0.55 0.55
0.20 0.45 0.50 0.30 0.40 0.50 0.45 0.45 0.45
0.25 0.50 0.55 0.35 0.45 0.55 0.50 0.50 0.50
0.25 0.50 0.55 0.35 0.45 0.55 0.50 0.50 0.50
0.25 0.50 0.55 0.35 0.45 0.55 0.50 0.50 0.50


,

(9)

R̂↓
a1 (xi, xj)

=



0.50 0.25 0.20 0.40 0.30 0.20 0.25 0.25 0.25
0.75 0.50 0.45 0.65 0.55 0.45 0.50 0.50 0.50
0.80 0.55 0.50 0.70 0.60 0.50 0.55 0.55 0.55
0.60 0.35 0.30 0.50 0.40 0.30 0.35 0.35 0.35
0.70 0.45 0.40 0.60 0.50 0.40 0.45 0.45 0.45
0.80 0.55 0.50 0.70 0.60 0.50 0.55 0.55 0.55
0.75 0.50 0.45 0.65 0.55 0.45 0.50 0.50 0.50
0.75 0.50 0.45 0.65 0.55 0.45 0.50 0.50 0.50
0.75 0.50 0.45 0.65 0.55 0.45 0.50 0.50 0.50


.

(10)

Based on criterion a2, using Eqs. (7) and (8) to compute
the upward/downward FPD of xi to xj(i, j = 1, 2, · · · , 9),
we obtain:

R̂↑
a2 (xi, xj)

=



0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50


,

(11)

R̂↓
a2 (xi, xj)

=



0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50


.

(12)

Based on criterion a3, using Eqs (7) and (8) to compute the
upward/downward FPD of xi to xj(i, j = 1, 2, · · · , 9), we get:

R̂↑
a3 (xi, xj)

=



0.50 0.25 0.20 0.30 0.25 0.45 0.45 0.40 0.50
0.75 0.50 0.45 0.55 0.50 0.70 0.70 0.65 0.75
0.80 0.55 0.50 0.60 0.55 0.75 0.75 0.70 0.80
0.70 0.45 0.40 0.50 0.45 0.65 0.65 0.60 0.70
0.75 0.50 0.45 0.55 0.50 0.70 0.70 0.65 0.75
0.55 0.30 0.25 0.35 0.30 0.50 0.50 0.45 0.55
0.55 0.30 0.25 0.35 0.30 0.50 0.50 0.45 0.55
0.60 0.35 0.30 0.40 0.35 0.55 0.55 0.50 0.60
0.50 0.25 0.20 0.30 0.25 0.45 0.45 0.40 0.50


,

(13)

R̂↓
a3 (xi, xj)

=



0.50 0.75 0.80 0.70 0.75 0.55 0.55 0.60 0.50
0.25 0.50 0.55 0.45 0.50 0.30 0.30 0.35 0.25
0.20 0.45 0.50 0.40 0.45 0.25 0.25 0.30 0.20
0.30 0.55 0.60 0.50 0.55 0.35 0.35 0.40 0.30
0.25 0.50 0.55 0.45 0.50 0.30 0.30 0.35 0.25
0.45 0.70 0.75 0.65 0.70 0.50 0.50 0.55 0.45
0.45 0.70 0.75 0.65 0.70 0.50 0.50 0.55 0.45
0.40 0.65 0.70 0.60 0.65 0.45 0.45 0.50 0.40
0.50 0.75 0.80 0.70 0.75 0.55 0.55 0.60 0.50


.

(14)

Based on the above discussion, the subsequent result is
obvious.
Proposition 1:

(
R̂

↑
a (xi, xj)

)T
= R̂

↓
a (xi, xj).

Proof: Straightforward.

R̂↑
a1 (xi, xj) =



0.5000 0.9167 1 0.6667 0.8333 1 0.9167 0.9167 0.9167
0.0833 0.5000 0.5833 0.2500 0.4167 0.5833 0.5000 0.5000 0.5000

0 0.4167 0.5000 0.1667 0.3333 0.5000 0.4167 0.4167 0.4167
0.3333 0.7500 0.8333 0.5000 0.6667 0.8333 0.7500 0.7500 0.7500
0.1667 0.5833 0.6667 0.3333 0.5000 0.6667 0.5833 0.5833 0.5833

0 0.4167 0.5000 0.1667 0.3333 0.5000 0.4167 0.4167 0.4167
0.0833 0.5000 0.5888 0.2500 0.4167 0.5833 0.5000 0.5000 0.5000
0.0833 0.5000 0.5888 0.2500 0.4167 0.5833 0.5000 0.5000 0.5000
0.0833 0.5000 0.5888 0.2500 0.4167 0.5833 0.5000 0.5000 0.5000


.
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According to newly constructed transfer functions (7)
and (8), we offer the subsequent definition.
Definition 8: The upward and downward fuzzy preference

classes [xi]R̂↑ and [xi]R̂↓ of xi generated by upward and
downward additive FRRs R̂↑

=
(
θ

↑

ij

)
n×n and R̂↓

=
(
θ

↓

ij

)
n×n

are respectively defined as follows:

[xi]R̂↑ =
θ

↑

i1

x1
+

θ
↑

i2

x2
+ · · · +

θ
↑

in

xn
,

[xi]R̂↓ =
θ

↓

i1

x1
+

θ
↓

i2

x2
+ · · · +

θ
↓

in

xn
,

where ‘‘+’’ denotes the union operation. Obviously, [xi]R̂↑

and [xi]R̂↓ are the fuzzy information granules containing xi.
The upward and downward additive FPRs form a family

of fuzzy information granules from the universe, which
constitute the upward and downward fuzzy preference
granular structures, respectively given by:

P(R̂↑) =

{
[x1]R̂↑ , [x2]R̂↑ , · · · , [xn]R̂↑

}
,

P(R̂↓) =

{
[x1]R̂↓ , [x2]R̂↓ , · · · , [xn]R̂↓

}
.

The subsequent result reveals that our newly constructed
transfer functions to evaluate the upward/downward FPD are
additive consistent.
Theorem 1: The constructed transfer functions provided in

Eqs. (7) and (8) to compute the upward/downward FPD are
additive consistent.

Proof: First of all, we prove the required result for the
upward FPD in the following three cases:
Case 1:

θ
↑

ii = 0.5 ×

(
f (xi, a) −

∧n
i=1 f (xi, a)∨n

i=1 f (xi, a) +
∧n

i=1 f (xi, a)

−
f (xi, a) −

∧n
i=1 f (xi, a)∨n

i=1 f (xi, a) +
∧n

i=1 f (xi, a)
+ 1

)
= 0.5 × (0 + 1)

= 0.5.

Case 2: as shown in the equation at the bottom of the next
page.

Case 3: as shown in the equation at the bottom of the next
page.

Analogously, we can prove that the downward FPD given in
Eq. (8) is additive consistent.

In the subsequent result, we investigate the characteristics
of 0.5− reflexivity, 0.5− symmetry, and 0.5− transitivity of
the UFPR based on additive consistency.
Proposition 2: Let R̂↑

=
(
θ

↑

ij

)
n×n be an UFPR based on

additive consistency on criteria a. Then for each x, y, z ∈ O,
the subsequent properties are satisfied:
1) 0.5− Reflexivity: R̂↑

a (x, x) = 0.5.
2) 0.5− Symmetry: R̂↑

a (x, y) = 0.5 ⇐⇒ R̂
↑
a (y, x) = 0.5.

3) 0.5− Transitivity: R̂
↑
a (x, y) ≥ 0.5, R̂↑

a (y, z) ≥ 0.5 H⇒

R̂
↑
a (x, z) ≥ 0.5.

Proof: It can directly derive by Theorem 1.

IV. UPWARD α-FUZZIFIED ROUGH APPROXIMATIONS
UNDER FPR
This segment offers an innovative concept of upward
α-fuzzified rough approximations based on upward-FPAs.
Wewill adopt the transfer function (7) to calculate the upward
FPD and introduce α↑-FPRSs and their related fundamental
properties with some examples.
Definition 9: Let ℘↑

=
(
O, R̂↑

)
be an upward-FPAs,

where ∅ ̸= O is a finite universe and R̂ is a UFPR
characterized by its membership function µR̂↑ : O ×

O −→ [0, 1]. For any α ∈ [0.5, 1), the upward α-fuzzified
preference lower and upper approximations for any S ⊆ O
are defined as:

R̂↑(S)
α

=

{
xi ∈ O : θ

↑

ij < 1 − α for all xj ∈ Sc
}
,

R̂↑(S)α =

{
xi ∈ O : θ

↑

ij ≥ 1 − α for some xj ∈ S
}
.


(15)

If R̂↑(S)
α

̸= R̂↑(S)α , then S is titled as an α↑-FPRS w.r.t
upward-FPAs; otherwise, it is called α↑-fuzzified preference
definable.

The information regarding the objects of O portrayed by
the above-described operators are as follows:

• R̂↑(S)
α
indicates a crisp set that contains objects xi ∈ O

equivalent to all objects xj ∈ Sc with upward FPD less
than to a certain α ∈ [0.5, 1).

• R̂↑(S)α indicates a crisp set that contains objects xi ∈ O
equivalent to at least one object xj ∈ S with upward FPD
greater than or equal to a certain α ∈ [0.5, 1).

The corresponding positive, boundary, and negative
regions of S ⊆ O for α ∈ [0.5, 1) are characterized as
follows:
(i) POSR̂↑ (S) = R̂↑(S)

α
,

(ii) BNDR̂↑ (S) = R̂↑(S)α − R̂↑(S)
α
,

(iii) NEGR̂↑ (S) =

(
R̂↑(S)α

)c
.

Here, we will provide an example to comprehend the idea
upward α-fuzzified rough approximations of S ⊆ O.
Example 2: Let R̂↑ be an UFPR over O given in (13),

where O = {x1, x2, · · · , x9}. If we take α = 0.6 and
S = {x1, x5, x6, x7, x8, x9} ⊆ O. Then the upward
α-fuzzified preference lower and upper approximations for
S are calculated by using Definition 9 as:

R̂↑(S)
α

= {x1, x6, x7, x9},

R̂↑(S)α = O.

Consequently, S is an α↑-FPRS, since R̂↑(S)
α

̸= R̂↑(S)α .
Further by direct computation, we have:

POSR̂↑ (S) = {x1, x6, x7, x9},

BNDR̂↑ (S) = {x2, x3, x4, x5, x8},

NEGR̂↑ (S) = ∅.
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Proposition 3: Let ℘↑
=
(
O, R̂↑

)
be an upward-FPAs,

S ⊆ O and α1, α2 ∈ [0.5, 1) be such that α1 ≤ α2. Then

1) R̂↑(S)
α2

⊆ R̂↑(S)
α1

;

2) R̂↑(S)α1 ⊆ R̂↑(S)α2 .

Proof:

1) For any xi ∈ R̂↑(S)
α2
, we have θ

↑

ij < 1− α2 for all xj ∈

Sc. As α1 ≤ α2, so 1 − α2 ≤ 1 − α1. Thus, θ
↑

ij <

1 − α1 for all xj ∈ Sc. This implies that xi ∈ R̂↑(S)
α1
.

Thus, R̂↑(S)
α2

⊆ R̂↑(S)
α1
.

θ
↑

ij + θ
↑

ji = 0.5 ×

( f (xi, a) −
∧n

j=1 f (xj, a)∨n
j=1 f (xj, a) +

∧n
j=1 f (xj, a)

−
f (xj, a) −

∧n
j=1 f (xj, a)∨n

j=1 f (xj, a) +
∧n

j=1 f (xj, a)
+ 1

)

+ 0.5 ×

(
f (xj, a) −

∧n
i=1 f (xi, a)∨n

j=1 f (xj, a) +
∧n

j=1 f (xj, a)
−

f (xi, a) −
∧n

j=1 f (xj, a)∨n
j=1 f (xj, a) +

∧n
j=1 f (xj, a)

+ 1
)

= 0.5 ×



f (xi, a) −
∧n

j=1 f (xj, a)∨n
j=1 f (xj, a) +

∧n
j=1 f (xj, a)

−
f (xj, a) −

∧n
j=1 f (xj, a)∨n

j=1 f (xj, a) +
∧n

j=1 f (xj, a)
+ 1

f (xj, a) −
∧n

j=1 f (xj, a)∨n
j=1 f (xj, a) +

∧n
j=1 f (xj, a)

−
f (xi, a) −

∧n
j=1 f (xj, a)∨n

j=1 f (xj, a) +
∧n

j=1 f (xj, a)
+ 1


= 0.5 × (1 + 1)

= 1.

θ
↑

ij + θ
↑

jk = 0.5 ×

( f (xi, a) −
∧n

j=1 f (xj, a)∨n
j=1 f (xj, a) +

∧n
j=1 f (xj, a)

−
f (xj, a) −

∧n
j=1 f (xj, a)∨n

j=1 f (xj, a) +
∧n

j=1 f (xj, a)
+ 1

)

+ 0.5 ×

( f (xj, a) −
∧n

j=1 f (xj, a)∨n
j=1 f (xj, a) +

∧n
j=1 f (xj, a)

−
f (xk , a) −

∧n
j=1 f (xj, a)∨n

j=1 f (xj, a) +
∧n

j=1 f (xj, a)
+ 1

)

= 0.5 ×



f (xi, a) −
∧n

j=1 f (xj, a)∨n
j=1 f (xj, a) +

∧n
j=1 f (xj, a)

−
f (xj, a) −

∧n
j=1 f (xj, a)∨n

j=1 f (xj, a) +
∧n

j=1 f (xj, a)
+ 1

f (xj, a) −
∧n

j=1 f (xj, a)∨n
j=1 f (xj, a) +

∧n
j=1 f (xj, a)

−
f (xk , a) −

∧n
j=1 f (xj, a)∨n

j=1 f (xj, a) +
∧n

j=1 f (xj, a)
+ 1



= 0.5 ×

(
f (xi, a) −

∧n
j=1 f (xj, a)∨n

j=1 f (xj, a) +
∧n

j=1 f (xj, a)
−

f (xk , a) −
∧n

j=1 f (xj, a)∨n
j=1 f (xj, a) +

∧n
j=1 f (xj, a)

+ 1 + 1

)

= 0.5 ×

(
f (xi, a) −

∧n
j=1 f (xj, a)∨n

j=1 f (xj, a) +
∧n

j=1 f (xj, a)
−

f (xk , a) −
∧n

j=1 f (xj, a)∨n
j=1 f (xj, a) +

∧n
j=1 f (xj, a)

+ 1

)
+ 0.5

= θ
↑

ik + 0.5.
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2) If xi ∈ R̂↑(S)α1 , then θ
↑

ij ≥ 1− α1 for some xj ∈ S. But
since α1 ≤ α2, so 1 − α1 ≥ 1 − α2. Therefore, θ

↑

ij ≥

1 − α2 for some xj ∈ S. This reveals that xi ∈ R̂↑(S)α2 .
Hence, R̂↑(S)α1 ⊆ R̂↑(S)α2 .

Theorem 2: Let ℘↑
=
(
O, R̂↑

)
be an upward-FPAs, α ∈

[0.5, 1) and S, T ⊆ O. Then

1) R̂↑(S)
α

⊆ S ⊆ R̂↑(S)α;

2) R̂↑(∅)
α

= ∅ = R̂↑(∅)α;

3) R̂↑(O)
α

= O = R̂↑(O)α;

4) R̂↑(Sc)
α

=

(
R̂↑(S)α

)c
;

5) R̂↑(Sc)α =

(
R̂↑(S)

α

)c
;

6) S ⊆ T H⇒ R̂↑(S)
α

⊆ R̂↑(T )
α
;

7) S ⊆ T H⇒ R̂↑(S)α ⊆ R̂↑(T )α;

8) R̂
↑

1 ⊆ R̂
↑

2 H⇒ R̂2
↑
(S)

α
⊆ R̂1

↑
(S)

α
;

9) R̂
↑

1 ⊆ R̂
↑

2 H⇒ R̂1
↑
(S)α ⊆ R̂2

↑
(S)α;

10) R̂↑(S ∪ T )
α

⊇ R̂↑(S)
α

∪ R̂↑(T )
α
;

11) R̂↑(S ∪ T )α = R̂↑(S)α ∪ R̂↑(T )α;

12) R̂↑(S ∩ T )
α

= R̂↑(S)
α

∩ R̂↑(T )
α
;

13) R̂↑(S ∩ T )α ⊆ R̂↑(S)α ∩ R̂↑(T )α .
Proof: (1)-(3) straightforward.

(4) For any xi ∈ O,

xi ∈ R̂↑(Sc)
α

⇐⇒ θ
↑

ij < 1 − α for all xj ∈ (Sc)c = S

⇐⇒ θ
↑

ij ≱ 1 − α for any xj ∈ S

⇐⇒ xi /∈ R̂↑(S)α
⇐⇒ xi ∈

(
R̂↑(S)α

)c
.

Hence, R̂↑(Sc)
α

=

(
R̂↑(S)α

)c
.

(5) For any xi ∈ O,

xi ∈ R̂↑(Sc)α ⇐⇒ θ
↑

ij ≥ 1 − α for some xj ∈ Sc

⇐⇒ θ
↑

ij ≮ 1 − α for all xj ∈ Sc

⇐⇒ xi /∈ R̂↑(S)
α

⇐⇒ xi ∈

(
R̂↑(S)

α

)c
.

Hence, R̂↑(Sc)α =

(
R̂↑(S)

α

)c
.

(6) Let xi ∈ R̂↑(S)
α
. Then θ

↑

ij < 1 − α for all xj ∈ Sc. But
since S ⊆ T so, T c

⊆ Sc. Thus in particular, θ
↑

ij <

1−α for all xj ∈ T c. Therefore, xi ∈ R̂↑(T )
α
indicating

that R̂↑(S)
α

⊆ R̂↑(T )
α
.

(7) If xi ∈ R̂↑(S)α . Then θ
↑

ij ≥ 1 − α for some xj ∈ S. But
since S ⊆ T so, θ

↑

ij ≥ 1 − α for some xj ∈ S ⊆ T
which demonstrates that xi ∈ R̂↑(T )α . Thus, R̂↑(S)α ⊆

R̂↑(T )α .

(8) If xi ∈ R̂2
↑
(S)

α
. Then θ

↑

2ij < 1 − α for all xj ∈ Sc.
But since R̂

↑

1 ⊆ R̂
↑

2 implies θ
↑

1ij ≤ θ
↑

2ij. Hence, θ
↑

1ij <

1 − α for all xj ∈ Sc. Therefore, xi ∈ R̂1
↑
(S)

α
showing

that R̂2
↑
(S)

α
⊆ R̂1

↑
(S)

α
.

(9) Analogous to the proof of (8).
(10) As S ∪ T ⊇ S and S ∪ T ⊇ T . So according

to part (6), we can write R̂↑(S ∪ T )
α

⊇ R̂↑(S)
α

and R̂↑(S ∪ T )
α

⊇ R̂↑(T )
α
. Thus, R̂↑(S ∪ T )

α
⊇

R̂↑(S)
α

∪ R̂↑(T )
α
.

(11) Since S ⊆ S ∪ T and T ⊆ S ∪ T . So through part (7),

R̂↑(S)α ⊆ R̂↑(S ∪ T )α and R̂↑(T )α ⊆ R̂↑(S ∪ T )α .
Therefore, R̂↑(S)α ∪ R̂↑(T )α ⊆ R̂↑(S ∪ T )α .
Conversely, for any xi ∈ O,

xi ∈ R̂↑(S ∪ T )α
H⇒ θ

↑

ij ≥ 1 − α for some xj ∈ (S ∪ T )

H⇒ θ
↑

ij ≥ 1 − α for some xj ∈ S or θ
↑

ij

≥ 1 − α for some xj ∈ T

H⇒ xi ∈ R̂↑(S)α or xi ∈ R̂↑(T )α
H⇒ xi ∈ R̂↑(S)α ∪ R̂↑(T )α
H⇒ R̂↑(S ∪ T )α ⊆ R̂↑(S)α ∪ R̂↑(T )α.

Hence, R̂↑(S ∪ T )α = R̂↑(S)α ∪ R̂↑(T )α .
(12) According to part (6) and using the fact that S ∩T ⊆ S,

S ∩ T ⊆ T we can get, R̂↑(S ∩ T )
α

⊆ R̂↑(S)
α

and R̂↑(S ∩ T )
α

⊆ R̂↑(T )
α
. Thus, R̂↑(S ∩ T )

α
⊆

R̂↑(S)
α

∩ R̂↑(T )
α
.

Conversely, for any xi ∈ O,

xi ∈ R̂↑(S)
α

∩ R̂↑(T )
α

H⇒ xi ∈ R̂↑(S)
α
and xi ∈ R̂↑(T )

α

H⇒ θ
↑

ij < 1 − α for all xj ∈ Sc and θ
↑

ij < 1

− α for all xj ∈ T c

H⇒ θ
↑

ik < 1 − α for all xk ∈ Sc ∪ T c
= (S ∩ T )c

H⇒ xi ∈ R̂↑(S ∩ T )
α

H⇒ R̂↑(S)
α

∩ R̂↑(T )
α

⊆ R̂↑(S ∩ T )
α
.

Hence, R̂↑(S ∩ T )
α

= R̂↑(S)
α

∩ R̂↑(T )
α
.

(13) By using part (6) and using the fact that S ∩ T ⊆ S,
S ∩ T ⊆ T we have, R̂↑(S ∩ T )α ⊆ R̂↑(S)α and
R̂↑(S ∩ T )α ⊆ R̂↑(T )α . Therefore, R̂↑(S ∩ T )α ⊆

R̂↑(S)α ∩ R̂↑(T )α .
The containments in parts (10) and (13) of the above

theorem may hold strictly, which can be verified by the
subsequent illustration.
Example 3: Let R̂↑ be an UFPR over O given in (9),

where O = {xi : i = 1, 2 · · · , 9}. If we
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take α = 0.5 and S, T ⊆ O such that S =

{x2, x3, x5, x6, x7, x8, x9}, T = {x2, x3, x4, x6, x7, x8, x9}, then
S ∪ T = {x2, x3, x4, x5, x6, x7, x8, x9}. By direct computation,
we get:

R̂↑(S)
α

= {x2, x3, x5, x6, x7, x8, x9},

R̂↑(T )
α

= {x2, x3, x6, x7, x8, x9},

R̂↑(S ∪ T )
α

= {x2, x3, x4, x5, x6, x7, x8, x9}.

Clearly, R̂↑(S ∪ T )
α

= {x2, x3, x4, x5, x6, x7, x8, x9} ⊃

{x2, x3, x5, x6, x7, x8, x9} = R̂↑(S)
α

∪ R̂↑(T )
α
, which

suggests that the inclusion in part (10) of Theorem 2 might
be strict.

Now, if S1 = {x1, x2}, T1 = {x1, x3}, then S1 ∩ T1 = {x1}.
For α = 0.5, we obtained:

R̂↑(S1)α = O,

R̂↑(T1)α = O,

R̂↑(S1 ∩ T1)α = {x1}.

We can observe that, R̂↑(S1 ∩ T1)α = {x1} ⊂ O =

R̂↑(S1)α ∩ R̂↑(T1)α , showing that the containment in part
(13) of Theorem 2 may hold strictly.
Remark 1: In RS theory, both the lower and upper

approximations of any S ⊆ O are definable, that is,
R(R(S)) = R(S) = R(R(S)) and R(R(S)) = R(S) =

R(R(S)). But in the environment of α↑-FPRSs, the upward
α-fuzzified preference lower and upper approximations of
S ⊆ O are hardly definable. Generally they still α↑-FPRSs,

that is, R̂↑
(
R̂↑(S)

α

)
α

= R̂↑(S)
α

̸= R̂↑
(
R̂↑(S)

α

)
α
and

R̂↑
(
R̂↑(S)α

)
α

̸= R̂↑(S)α = R̂↑
(
R̂↑(S)α

)
α
. To justify this

fact, here we elaborate the following example.
Example 4: Let R̂↑ be an UFPR overO given in (9). If we

take α = 0.5 and S = {x2, x3, x4, x6, x7, x8, x9} ⊆ O, then by
routine computation, we get:

R̂↑(S)
α

= {x2, x3, x6, x7, x8, x9},

R̂↑
(
R̂↑(S)

α

)
α

= {x2, x3, x6, x7, x8, x9},

R̂↑
(
R̂↑(S)

α

)
α

= O.

Clearly, we can observed that R̂↑
(
R̂↑(S)

α

)
α

= R̂↑(S)
α

̸=

R̂↑
(
R̂↑(S)

α

)
α
.

Now, if we consider S1 = {x1, x4} ⊆ O and α = 0.5, then:

R̂↑(S1)α = {x1, x4},

R̂↑
(
R̂↑(S1)α

)
α

= ∅,

R̂↑
(
R̂↑(S1)α

)
α

= {x1, x4}.

We can see that R̂↑
(
R̂↑(S1)α

)
α

̸= R̂↑(S1)α =

R̂↑
(
R̂↑(S1)α

)
α
.

Definition 10: Let℘↑
=
(
O, R̂↑

)
be an upward-FPAs and

α ∈ [0.5, 1). Then for any S, T ⊆ O, we define
1) S=̃T if and only if R̂↑(S)

α
= R̂↑(T )

α
;

2) S ∼=T if and only if R̂↑(S)α = R̂↑(T )α;

3) S ≈ T if and only if R̂↑(S)
α

= R̂↑(T )
α

and

R̂↑(S)α = R̂↑(T )α .
In the above definition, we give the new relationships

between sets based upon the upward α-fuzzified preference
lower and upper approximations.
Proposition 4: The relations =̃, ∼=and ≈ are Ers.
Proof: Obvious.

Theorem 3: Assume that ℘↑
=
(
O, R̂↑

)
be an upward-

FPAs and α ∈ [0.5, 1). Then for any S, T ,S1, T1 ⊆ O, the
following assertions hold:
1) S ∼=T if and only if S ∼=(S ∪ T ) and (S ∪ T ) ∼=T ;

2) S ∼=S1 and T ∼=T1 implies (S ∪ T ) ∼=(S1 ∪ T1);
3) S ∼=T implies (S ∪ T c) ∼=O;

4) S ⊆ T and T ∼=∅ implies S ∼=∅;

5) S ⊆ T and S ∼=O implies T ∼=O.
Proof:

(1) Let S=̃T . Then R̂↑(S)α = R̂↑(S)α . From part (11)

of Theorem 2, R̂↑(S ∪ T )α = R̂↑(S)α ∪ R̂↑(T )α .
Therefore, we get R̂↑(S ∪ T )α = R̂↑(S)α = R̂↑(T )α .
So S ∼=(S ∪ T ) and (S ∪ T ) ∼=T .
Conversely, let S ∼=(S ∪ T ) and (S ∪ T ) ∼=T . Then by
transitivity of ∼=, it follows that S ∼=T .

(2) Let S ∼=S1 and T ∼=T1, then R̂↑(S)α = R̂↑(S1)α and

R̂↑(T )α = R̂↑(T1)α . Thus R̂↑(S)α ∪ R̂↑(T )α =

R̂↑(S1)α ∪ R̂↑(T1)α . Therefore, by part (11) of The-

orem 2, R̂↑(S ∪ T )α = R̂↑(S1 ∪ T1)α . Hence, (S ∪

T ) ∼=(S1 ∪ T1).
(3) Let S=̃T . Then R̂↑(S)α = R̂↑(T )α . Through part (11)

of Theorem 2, R̂↑(S ∪ T c)α = R̂↑(S)α ∪ R̂↑(T c)α =

R̂↑(T )α ∪ R̂↑(T c)α = R̂↑(T ∪ T c)α = R̂↑(O)α .
Hence, (S ∪ T c) ∼=O.

(4) Let S ⊆ T and T ∼=∅. Then from Definition 10,
R̂↑(T )α = R̂↑(∅)α . Therefore, according to parts (2)
and (7) of Theorem 2, R̂↑(S)α ⊆ R̂↑(T )α = R̂↑(∅)α =

∅. Thus, S ∼=∅.
(5) Suppose that S ⊆ T and S ∼=O. Then in the light

of Definition 10, R̂↑(S)α = R̂↑(O)α . Therefore,
according to parts (3) and (7) of Theorem 2, O =

R̂↑(O)α = R̂↑(S)α ⊆ R̂↑(T )α . Thus, T ∼=O.
Theorem 4: Let ℘↑

=
(
O, R̂↑

)
be an upward-FPAs and

α ∈ [0.5, 1). Then for any S, T ,S1, T1 ⊆ O, the following
assertions hold:
1) S=̃T if and only if S=̃(S ∩ T ) and (S ∩ T )=̃T ;

2) S=̃S1 and T =̃T1 implies (S ∩ T )=̃(S1 ∩ T1);
3) S=̃T implies (S ∩ T c)=̃∅;

4) S ⊆ T and T =̃∅ implies S=̃∅;

5) S ⊆ T and S=̃O implies T =̃O.
Proof: Straightforward according to Theorems 2 and 3.
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Theorem 5: Suppose that ℘↑
=
(
O, R̂↑

)
be an upward-

FPAs and α ∈ [0.5, 1). Then for any S, T ,S1, T1 ⊆ O, the
following assertions hold:
1) S ≈ T if and only ifS ∼=(S∪T ) ∼=T andS=̃(S∩T )=̃T ;

2) S ≈ S1 and T ≈ T1 implies (S∪T ) ∼=(S1∪T1) and (S∩

T )=̃(S1 ∩ T1);
3) S ≈ T implies (S ∪ T c) ∼=O and (S ∩ T c)=̃∅;

4) S ⊆ T and T ≈ ∅ implies S ≈ ∅;

5) S ⊆ T and S ≈ O implies T ≈ O.
Proof: Direct consequence of Theorems 3 and 4.

V. UNCERTAINTY MEASURES ASSOCIATED WITH
α↑-FPRSs
In this section, we provide several measures to quantify the
uncertainty of α↑-FPRSs.
Definition 11: Let℘↑

=
(
O, R̂↑

)
be an upward-FPAs and

α ∈ [0.5, 1). Then themeasure of precision ρα
R̂↑
(S) ofS under

α↑-FPRS is defined as:

ρα
R̂↑ (S) =

∣∣∣R̂↑(S)
α

∣∣∣∣∣∣R̂↑(S)α
∣∣∣ , (16)

where ∅ ̸= S ⊆ O and | • | denote the set’s cardinality. The
corresponding rough degree γ α

R̂↑
(S) of S under α↑-FPRS is

defined as:

γ α
R̂↑ (S) = 1 − ρα

R̂↑ (S) = 1 −

∣∣∣R̂↑(S)
α

∣∣∣∣∣∣R̂↑(S)α
∣∣∣ . (17)

Obviously, ρα
R̂↑
(S), γ α

R̂↑
(S) ∈ [0, 1] for any S ⊆ O and α ∈

[0.5, 1).
The approximate precision can be viewed using the famous

Marczewski-Steinhaus metric (MS-metric). The MS-metric
measures the distance between two sets, S1 and S2, which is
given as:

δ(S1,S2) =

∣∣∣S11S2∣∣∣∣∣∣S1 ∪ S2
∣∣∣ = 1 −

∣∣∣S1 ∩ S2
∣∣∣∣∣∣S1 ∪ S2
∣∣∣ , (18)

whereS11S2 = (S1∪S2)−(S1∩S2) indicates the symmetric
difference between S1 and S2.

From Eq. (18), we observe that:
• δ(S1,S2) has a maximum value of 1 when S1 and S2 are
disjoint.

• δ(S1,S2) has a minimum value of 0 when S1 = S2.
By using the MS-metric to the upward α-fuzzified preference
lower and upper approximations, we obtained:

δ
(
R̂↑(S)

α
, R̂↑(S)α

)
= 1 −

∣∣∣R̂↑(S)
α

∩ R̂↑(S)α
∣∣∣∣∣∣R̂↑(S)

α
∪ R̂↑(S)α

∣∣∣
= 1 −

∣∣∣R̂↑(S)
α

∣∣∣∣∣∣R̂↑(S)α
∣∣∣

= 1 − ρα
R̂↑ (S). (19)

Hence, the measure of precision can be interpreted as an
inverse of MS-metric when applied to upward α-fuzzified
preference lower and upper approximations. In simple words,
the distance between the upwardα-fuzzified preference lower
and upper approximations determine themeasure of precision
of the α↑-FPRS approximations.
Proposition 5: Assume that℘↑

=
(
O, R̂↑

)
be an upward-

FPAs and α ∈ [0.5, 1). Then the measure of precision ρα
R̂↑
(S)

of ∅ ̸= S ⊆ O own the following properties:

1) ρα
R̂↑
(S) = 1 ⇐⇒ R̂↑(S)

α
= R̂↑(S)α ,

2) ρα
R̂↑
(S) = 0 ⇐⇒ R̂↑(S)

α
= ∅,

3) For a fixed R̂↑(S)α , ρα
R̂↑
(S) strictly monotonically

increases with
∣∣∣R̂↑(S)

α

∣∣∣,
4) For a fixed R̂↑(S)

α
̸= ∅, ρα

R̂↑
(S) strictly monotonically

decreases with
∣∣∣R̂↑(S)α

∣∣∣,
5) α1 ≤ α2 H⇒ ρ

α1
R̂↑
(S) ≤ ρ

α2
R̂↑
(S).

Proof: Straightforward.
Definition 12: Let℘↑

=
(
O, R̂↑

)
be an upward-FPAs and

α ∈ [0.5, 1). Then the measure of quality Qα
R̂↑
(S) of ∅ ̸=

S ⊆ O under α↑-FPRS is defined as:

Qα
R̂↑ (S) =

∣∣∣R̂↑(S)
α

∣∣∣∣∣∣S∣∣∣ . (20)

It may be noted thatQα
R̂↑
(S) requires entire information of S;

whereas ρα
R̂↑
(S) does not.

Proposition 6: For any S ⊆ O and α ∈ [0.5, 1),
Qα
R̂↑
(S) ≥ ρα

R̂↑
(S).

Proof: Straightforward.
Proposition 7: Let ℘↑

=
(
O, R̂↑

)
be an upward-FPAs

and α ∈ [0.5, 1). Then the measure of quality Qα
R̂↑
(S) of

∅ ̸= S ⊆ O own the following properties:

1) Qα
R̂↑
(S) = 1 ⇐⇒ R̂↑(S)

α
= S ,

2) Qα
R̂↑
(S) = 0 ⇐⇒ R̂↑(S)

α
= ∅,

3) α1 ≤ α2 H⇒ Qα1
R̂↑
(S) ≤ Qα2

R̂↑
(S).

Proof: Straightforward.
Definition 13: Let℘↑

=
(
O, R̂↑

)
be an upward-FPAs and

α ∈ [0.5, 1). Then the measure of completeness of knowledge
Cα
R̂↑
(S) of ∅ ̸= S ⊆ O under α↑-FPRS is defined as:

Cα
R̂↑ (S) =

∣∣∣R̂↑(S)
α

∣∣∣+ ∣∣∣R̂↑(Sc)
α

∣∣∣∣∣∣O∣∣∣ . (21)

Proposition 8: Let ℘↑
=

(
O, R̂↑

)
be an upward-FPAs

and α ∈ [0.5, 1). Then the measure of quality Cα
R̂↑
(S) of

∅ ̸= S ⊆ O own the following properties:

1) Cα
R̂↑
(S) = 1 ⇐⇒ S = ∅ or S = O,

2) Cα
R̂↑
(S) = 0 ⇐⇒ R̂↑(S)

α
= ∅ and R̂↑(S)α = O.

3) α1 ≤ α2 H⇒ Cα1
R̂↑
(S) ≤ Cα2

R̂↑
(S).

Proof: Straightforward.
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TABLE 2. Uncertainty measures of S ⊆ O for different values of
α ∈ [0.5, 1).

Here, we give an example to understand the concept of the
measure of precision, rough degree, measure of quality, and
measure of completeness of knowledge.

Example 5: If we take the UFPR R̂↑ over O given in (9)
and S = {x2, x3, x4, x5, x6, x7, x8, x9} ⊆ O, then for different
values of α ∈ [0.5, 1), the upward α-fuzzified preference
lower and upper approximations for S, and the corresponding
values of ρα

R̂↑
(S), γ α

R̂↑
(S),Qα

R̂↑
(S), and Cα

R̂↑
(S) are listed in

Table 2.

VI. UPWARD FUZZY β-COVERING ROUGH SETS
(UFβ-CRSs)
In this segment, we initially describe the concept of
UFβ-nghd and Uβ-nghd in upward fuzzy covering approx-
imation space, and some relative properties are studied. After
that, we will present two RS models based on UFβ-nghd and
Uβ-nghd.
Definition 14: Let∅ ̸= O be a finite universe andP(R̂↑)

be an upward fuzzy preference granular structures. Then
for every β ∈ (0, 1], we call P(R̂↑) an upward fuzzy

β-covering of O, if
( n⋃
i=1

[xi]R̂↑

)
(x) ≥ β for all x ∈

O. Moreover,
(
O, P(R̂↑)

)
is said to be an upward fuzzy

β-covering approximation space (UFβ-CAS).
Definition 15: Assume that

(
O, P(R̂↑)

)
be an

UFβ-CAS. For each x ∈ O, we define the UFβ-nghd ℵ
↑

(x,β)
of x as follows:

ℵ
↑

(x,β) =

⋂{
[xi]R̂↑ ∈ P(R̂↑) : [xi]R̂↑ (x) ≥ β

}
. (22)

Example 6: If we consider the UFPR R̂↑ overO provided
in (9), then the upward fuzzy preference classes [xi]R̂↑ for
i = 1, 2 · · · , 9 are exhibited Table 3. Clearly, we can see that

P(R̂↑) =

{
[x1]R̂↑ , [x2]R̂↑ , · · · , [x9]R̂↑

}
is an upward fuzzy

β-covering of O (0 < β ≤ 0.50). Let β = 0.40. Then,

ℵ
↑

(x1,0.40)
= [x1]R̂↑ ∩ [x4]R̂↑ ,

ℵ
↑

(x2,0.40)
= [xi]R̂↑ (i = 1, 2 · · · , 9),

ℵ
↑

(x3,0.40)
= [xi]R̂↑ (i = 1, 2 · · · , 9),

ℵ
↑

(x4,0.40)
= [x1]R̂↑ ∩ [x4]R̂↑ ∩ [x5]R̂↑ ,

ℵ
↑

(x5,0.40)
= [xi]R̂↑ (i = 1, 2 · · · , 9),

ℵ
↑

(x6,0.40)
= [xi]R̂↑ (i = 1, 2 · · · , 9),

TABLE 3. The upward fuzzy preference classes [xi ]R̂↑ .

TABLE 4. The UFβ-nghd ℵ
↑

(xi ,0.40).

ℵ
↑

(x7,0.40)
= [xi]R̂↑ (i = 1, 2 · · · , 9),

ℵ
↑

(x8,0.40)
= [xi]R̂↑ (i = 1, 2 · · · , 9),

ℵ
↑

(x9,0.40)
= [xi]R̂↑ (i = 1, 2 · · · , 9),

These elements ℵ
↑

(xi,0.40)
(i = 1, 2 · · · , 9) are listed in

Table IV:
Proposition 9: Suppose that

(
O, P(R̂↑)

)
be an

UFβ-CAS. Then for each x, y, z ∈ O, the subsequent
statements hold true:
1) ℵ

↑

(x,β)(x) ≥ β.

2) If ℵ
↑

(x,β)(y) ≥ β and ℵ
↑

(y,β)(z) ≥ β, then ℵ
↑

(x,β)(z) ≥ β.
Proof: Straightforward.

Proposition 10: Let β1, β2 ∈ (0, 1] be such that β1 ≤ β2.
Then ℵ

↑

(x,β1)
⊆ ℵ

↑

(x,β2)
for all x ∈ O.

Proof: For each x ∈ O, β1 ≤ β2 gives that
{
[xi]R̂↑ :

[xi]R̂↑ (x) ≥ β1

}
⊇

{
[xi]R̂↑ : [xi]R̂↑ (x) ≥ β2

}
. Thus

ℵ
↑

(x,β1)
=
⋂{

[xi]R̂↑ : [xi]R̂↑ (x) ≥ β1

}
⊆
⋂{

[xi]R̂↑ :

[xi]R̂↑ (x) ≥ β2

}
= ℵ

↑

(x, β2)
for all x ∈ O.

Definition 16: Assume that
(
O, P(R̂↑)

)
be an UFβ-CAS

with P(R̂↑) being an upward fuzzy β-covering of O for
some β ∈ (0, 1]. Then for each x ∈ O, we define the
Uβ-nghd of x as:

N ↑

(x,β) =

{
y ∈ O : ℵ

↑

(x,β)(y) ≥ β
}
. (23)

Example 7: Suppose that
(
O, P(R̂↑)

)
be an UFβ-CAS in

Example 6 with β = 0.40, then we get

N ↑

(x1,β)
= {x1},

N ↑

(x2,β)
= N ↑

(x3,β)
= N ↑

(x5,β)
= N ↑

(x6,β)

= N ↑

(x7,β)
= N ↑

(x8,β)
= N ↑

(x9,β)
= {x1, x2, · · · , x9},

N ↑

(x4,β)
= {x1, x4}.
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Proposition 11: x ∈ N ↑

(x,β)(x) for each x ∈ O.
Proof: According to part (1) of Proposition 9, it implies

that x ∈

{
y ∈ O : ℵ

↑

(x,β)(y) ≥ β
}

= N ↑

(x,β) for each x ∈ O.

Proposition 12: If x ∈ N ↑

(y,β), then N ↑

(x,β) ⊆ N ↑

(y,β) for
each x, y ∈ O.

Proof: For all z ∈ N ↑

(x,β), we have ℵ
↑

(x,β)(z) ≥ β.

Also, x ∈ N ↑

(y,β) implies ℵ
↑

(y,β)(x) ≥ β. From part (2) of

Proposition 9, there is ℵ
↑

(y,β)(z) ≥ β, and thus z ∈ N ↑

(y,β).

Hence, N ↑

(x,β) ⊆ N ↑

(y,β).

Proposition 13: x ∈ N ↑

(y,β) and y ∈ N ↑

(x,β) if and only if

N ↑

(x,β) = N ↑

(y,β) for each x, y ∈ O.

Proof: Let x ∈ N ↑

(y,β) and y ∈ N ↑

(x,β) for x, y ∈ O. Then

by Proposition 12, N ↑

(x,β) ⊆ N ↑

(y,β) and N ↑

(y,β) ⊆ N ↑

(x,β).

Thus, N ↑

(x,β) = N ↑

(y,β).

Conversely, if N ↑

(x,β) = N ↑

(y,β), then we have N ↑

(x,β) ⊆

N ↑

(y,β) and N ↑

(y,β) ⊆ N ↑

(x,β). Hence we can get that x ∈

N ↑

(y,β) and y ∈ N ↑

(x,β).
Based on the above discussion, here we will propose two

new covering RS models by using UFβ-nghd and Uβ-nghd.
In one model, the lower and upper approximation operators
of each FS are characterized in the fuzzy environment, while
in other model, the lower and upper approximation operators
of each crisp set are illustrated in the fuzzy context.

A. AN UFβ-CRS MODEL FOR FUZZY SETS
Definition 17: Let

(
O, P(R̂↑)

)
be an UFβ-CAS with

P(R̂↑) being an upward fuzzy β-covering of O for some
β ∈ (0, 1]. For each fuzzy subset S ∈ F(O), the lower
approximation˜apr↑

β (S) and upper approximation ãpr↑

β (S) of
S are defined as:

˜apr↑

β (S)(x) =

∧
y∈O

[(
1 − ℵ

↑

(x,β)(y)
)

∨ S(y)
]
, x ∈ O,

ãpr↑

β (S)(x) =

∨
y∈O

[
ℵ

↑

(x,β)(y) ∧ S(y)
]
, x ∈ O.


(24)

If˜apr↑

β (S) ̸= ãpr↑

β (S), then S an UFβ-CRS.

Example 8: Let
(
O, P(R̂↑)

)
be an UFβ-CAS in

Example 6. Then for

S =
0.6
x1

+
0.4
x2

+
0.3
x3

+
0.5
x4

+
0.7
x5

+
0.4
x6

+
0.8
x7

+
0.7
x8

+
0.2
x9

and β = 0.40, we have

˜apr↑

β

(S) =
0.3
x1

+
0.5
x2

+
0.5
x3

+
0.4
x4

+
0.5
x5

+
0.5
x6

+
0.5
x7

+
0.5
x8

+
0.5
x9

,

ãpr↑

β (S) =
0.65
x1

+
0.45
x2

+
0.45
x3

+
0.55
x4

+
0.45
x5

+
0.45
x6

+
0.45
x7

+
0.45
x8

+
0.45
x9

.

Proposition 14: Let
(
O, P(R̂↑)

)
be an UFβ-CAS with

P(R̂↑) being an upward fuzzy β-covering of O for some
β ∈ (0, 1]. For each fuzzy subsetS, T ∈ F(O), the following
assertions hold true:
1) ãpr↑

β (Sc) =
(˜apr↑

β (S)
)c;

2) ˜apr↑

β (Sc) =
(
ãpr↑

β (S)
)c;

3) ˜apr↑

β (O) = O;

4) ãpr↑

β (∅) = ∅;

5) ˜apr↑

β (S ∩ T ) = ˜apr↑

β (S) ∩˜apr↑

β (T );

6) ãpr↑

β (S ∪ T ) = ãpr↑

β (S) ∪ ãpr↑

β (T );
7) S ⊆ T H⇒ ˜apr↑

β (S) ⊆ ˜apr↑

β (T );

8) S ⊆ T H⇒ ãpr↑

β (S) ⊆ ãpr↑

β (T );
9) ˜apr↑

β (S ∪ T ) ⊇ ˜apr↑

β (S) ∪˜apr↑

β (T );

10) ãpr↑

β (S ∩ T ) ⊆ ãpr↑

β (S) ∩ ãpr↑

β (T );
11) If 1 − ℵ

↑

(x,β)(x) ≤ S(x) ≤ ℵ
↑

(x,β)(x) for all x ∈ O, then

˜apr↑

β (S) ⊂ S ⊆ ãpr↑

β (S).

Proof:
(1) Since,

ãpr↑

β (S
c) =

∨
y∈O

[
ℵ

↑

(x,β)(y) ∧ Sc(y)
]
,

where Sc(y) = 1 − S(y)

= 1 −

∧
y∈O

[(
1 − ℵ

↑

(x,β)(y)
)

∨ S(y)
]

= 1 −˜apr↑

β (S)

=
(˜apr↑

β (S)
)c

.

Hence, ãpr↑

β (Sc) =
(˜apr↑

β (S)
)c.

(2) Using S instead of Sc in part (1), we get ˜apr↑

β (Sc) =(
ãpr↑

β (S)
)c.

(3) Since O(x) = 1 for every x ∈ O. Thus,

˜apr↑

β (O)(x) =

∧
y∈O

[(
1 − ℵ

↑

(x,β)(y)
)

∨O(y)
]

= 1 = O(x).

Thus˜apr↑

β (O) = O.

(4) As ∅(x) = 0 for every x ∈ O. So,

ãpr↑

β (∅)(x) =

∨
y∈O

[
ℵ

↑

(x,β)(y) ∧ ∅(y)
]

= 0 = ∅(x).

VOLUME 12, 2024 67693



R. Gul et al.: Novel Approach for Fuzzification of RSs Based on FPR

Hence, ãpr↑

β (∅) = ∅.
(5) Since

˜apr↑

β (S ∩ T )(x) =

∧
y∈O

[(
1 − ℵ

↑

(x,β)(y)
)

∨ (S ∩ T )(y)
]

=

∧
y∈O

[((
1 − ℵ

↑

(x,β)(y)
)
∨ (S)(y)

)
∧

((
1 − ℵ

↑

(x,β)(y)
)
∨ (T )(y)

)]
=
(˜apr↑

β (S) ∩˜apr↑

β (T )
)
(x).

Hence,˜apr↑

β (S ∩ T ) = ˜apr↑

β (S) ∩˜apr↑

β (T ).
(6) Analogous to the proof of (5).
(7) If S ⊆ T , then S(x) ≤ T (x) for all x ∈ O. Thus

˜apr↑

β (S)(x) =

∧
y∈O

[(
1 − ℵ

↑

(x,β)(y)
)

∨ S(y)
]

≤

∧
y∈O

[(
1 − ℵ

↑

(x,β)(y)
)

∨ T (y)
]

= ˜apr↑

β (T )(x).

Hence,˜apr↑

β (S) ⊆ ˜apr↑

β (T ).
(8) Analogous to the proof of (7).
(9) Using the fact S, T ⊆ S ∪ T and part (7), we get

˜apr↑

β (S) ⊆ ˜apr↑

β (S ∪T ) and˜apr↑

β (T ) ⊆ ˜apr↑

β (S ∪T ).

Thus˜apr↑

β (S) ∪˜apr↑

β (T ) ⊆ ˜apr↑

β (S ∪ T ).
(10) Using the fact S ∩ T ⊆ S, T and part (8), we have

ãpr↑

β (S ∩ T ) ⊆ ãpr↑

β (S) and ãpr
↑

β (S ∩ T ) ⊆ ãpr↑

β (T ).
Hence ãpr↑

β (S ∩ T ) ⊆ ãpr↑

β (S) ∩ ãpr↑

β (T ).
(11) If 1 − ℵ

↑

(x,β)(x) ≤ S(x) ≤ ℵ
↑

(x,β)(x) for all x ∈ O, then

S(x) = ℵ
↑

(x,β)(x) ∧ S(x) ≤

∨
y∈O

[
ℵ

↑

(x,β)(y) ∧ S(y)
]

= ãpr↑

β (S)(x).

˜apr↑

β (S)(x) =

∧
y∈O

[(
1 − ℵ

↑

(x,β)(y)
)

∨ S(y)
]

≤

[(
1 − ℵ

↑

(x,β)(x)
)

∨ S(x)
]

= S(x).

Hence,˜apr↑

β (S) ⊂ S ⊆ ãpr↑

β (S).

B. AN UFβ-CRS MODEL FOR CRISP SETS
Definition 18: Let

(
O, P(R̂↑)

)
be an UFβ-CAS with

P(R̂↑) being an upward fuzzy β-covering of O for some
β ∈ (0, 1]. For S ⊆ O, we describe the upward β-lower
approximation S↑

β and upward β-upper approximation S↑

β of
S as:

S↑

β =
{
x ∈ O : N ↑

(x,β) ⊆ S
}
,

S↑

β =
{
x ∈ O : N ↑

(x,β) ∩ S ̸= ∅
}
.

 (25)

Moreover, if S↑

β ̸= S↑

β , S is called an Uβ-CRS. Otherwise,
S is called Uβ-nghd definable. The boundary and negative
regions in Uβ-CRS environment are listed as follows:
(i) POSβ↑ (S) = S↑

β ,

(ii) BNDβ↑ (S) = S↑

β − S↑

β ,

(iii) NEGβ↑ (S) =
(
S↑

β

)c.
Example 9: If we revisit Example 7 and take S =

{x1, x3, x4, x5}. Then S↑

β = {x1, x4} and S↑

β =

{x1, x2, · · · , x9}. Moreover, POSβ↑ (S) = {x1, x4}, BNDβ↑

(S) = {x2, x3, x5, · · · , x9} and NEGβ↑ (S) = ∅.
In the light of Definition 17, we can obtain the subsequent

result.
Theorem 6: Let

(
O, P(R̂↑)

)
be an UFβ-CAS with

P(R̂↑) being an upward fuzzy β-covering of O for some
β ∈ (0, 1]. Then for each S, T ⊆ O, the following assertions
hold true:
1) S↑

β ⊆ S ⊆ S↑

β;

2) (Sc)↑
β

=
(
S↑

β

)c
;

3) (Sc)↑β =
(
S↑

β

)c
;

4) O↑

β = O;

5) ∅↑

β = ∅;

6) (S ∩ T )↑
β

= S↑

β ∩ T ↑

β ;

7) (S ∪ T )↑β = S↑

β ∪ T ↑

β ;
8) S ⊆ T H⇒ S↑

β ⊆ T ↑

β ;

9) S ⊆ T H⇒ S↑

β ⊆ T ↑

β ;
10) (S ∪ T )↑

β
⊇ S↑

β ∪ T ↑

β ;

11) (S ∩ T )↑β ⊆ S↑

β ∩ T ↑

β .
Proof: Straightforward.

VII. MADM APPROACH BASED ON UFβ-CRSs
In this section, by utilizing the notion of UFβ-CRSs, a general
scheme is given for DM of the medicine selection.

Biomedical research is connected to large-scale, develop-
ing, and diversified data from various domains. As available
resources become increasingly diverse, there is a growing
need for multidisciplinary coordination among biomedical
researchers to address challenging research problems. As a
result, biomedical research has evolved into an interdisci-
plinary field. FS theory [51] provides a perfectly predictable
solution on a certain level due to the complexity of biological
systems and the limitations of actual mathematical theories
in specific cases. On the other hand, the RS theory [33] has
been revealed to be a powerful strategy for tackling many
classification and DM problems.

In numerous aspects, medical diagnosis is the field of
DM that lacks adequate data. According to the medical
perspective, the attribute value is generally vague. We can
acquire that incompleteness and uncertainty are inborn
characteristics of medical practice. In other words, some
medical information is commonly expressed in vague terms.
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In actual practice, medical professionals analyze patients
and determine best course of action or which is the best
medicine. That is to say, medical DM is the pattern of
different types of DM in which principles, procedures, and
knowledge are approximate. As a result, practical strategies
that are employed to tackle the traditional DM problems can
be applied to medical DM issues. Also, RS theory is very
appropriate for this inaccuracy in the medical sector.

A. DESCRIPTION OF MADM PROBLEM
In clinical practice, medical experts often integrate different
medicines to cure certain disease D. Assume that O = {mi :

i = 1, 2, · · · , n} be an assembling of n medicines, and
C = {a1, a2, · · · , ak} be a collection of k most common
symptoms/criteria (for instance, fever, fatigue, throat pain,
cough, etc.) of a specific disease. The weight vector of all
criteria W = (ϖ1, ϖ2, · · · , ϖk ), where 0 ≤ ϖj ≤ 1 and
k∑
j=1

ϖj = 1. According to the medical perspective, the

attribute value is generally vague. Therefore, the efficacy
value of medicines w.r.t. symptoms can be viewed as an FS.
Let E denote a finite set of the domain for the information
function f (mi, a) ∈ [0, 1]. In this article, we assume that
f (mi, a) stands for the recommendation degree of medicine
mi by the medical expert. [mi]aR̂↑

(mj) stands for medicine
mj’s efficacy value for the symptom ai (i = 1, 2, · · · , k ,
j = 1, 2, · · · , n). For a critical value β, let for each medicine
mi ∈ O, there is at least one symptom ak ∈ C such that
efficacy value of the medicine mj for the symptom ai is not
less than β, and P(R̂↑) is an upward fuzzy β-covering ofO.
Then the UFβ-nghd ℵ

↑
a

(mj,β)
ofmj w.r.t. criteria a is a FS given

as:

ℵ
↑
a1

(mj,β)
(mt ) =

[⋂{
[mi]aR̂↑

: [mi]aR̂↑
(mj) ≥ β

}]
(mt );

t = 1, 2, · · · , n, (26)

which represents the minimum of all efficacy values for every
medicine mt used to heal the symptoms. If a FS S represents
the capability of all medicines in O to combat the disease D,
since the inaccuracy of S, then we can take its approximate
estimation to the lower and upper approximations of S.

We signify the fuzzified information system (O, C,W, E).

B. DM ALGORITHM
To select the best medicine among the available ones, here
we offer a DM algorithm in the framework of UFβ-CRSs.
The relevant steps are outlined as follows:

Input: Fuzzified information system (O, C,W, E).

Step 1: Determine R̂
↑
at ; t = 1, 2, · · · , k via transfer

function given in Eq.(7).
Step 2: Evaluate [mi]

at
R̂↑

of mj w.r.t. at .

Step 3: Construct ℵ↑
at

(mj,β)
of mj w.r.t. at .

Step 4: Apply the fuzzy TOPSIS approach to find positive
ideal solution Iat+ and negative ideal solution Iat− as:

Iat+ = max
1≤j≤n

{
ℵ

↑
at

(mi,β)
(mj) : i = 1, 2, · · · , n

}
, (27)

Iat− = min
1≤j≤n

{
ℵ

↑
at

(mi,β)
(mj) : i = 1, 2, · · · , n

}
, (28)

where t = 1, 2, · · · , k .
Step 5: By using Definition 17, calculate ˜apr↑

β (I
at
+ ),

ãpr↑

β (I
at
+ ),˜apr↑

β (I
at
− ) and ãpr↑

β (I
at
− ).

Step 6: Determine the ranking index ϱt (mj), where

ϱt (mj) =

√√√√√√√
[
˜apr↑

β (I
at
+ )(mj) −˜apr↑

β (I
at
− )(mj)

]2
+

[
ãpr↑

β (I
at
+ )(mj) − ãpr↑

β (I
at
− )(mj)

]2
(29)

Step 7: Compute optimal index ∂(mj), where

∂(mj) =

k∑
t=1

ϖtϱt (mj). (30)

Step 8: Rank the medicines w.r.t. ∂(mj).
Output: A ranking outcome of all medicines.

Flowchart manifestation of the devised MADM strategy is
provided in Figure 1.

C. EXAMPLE ANALYSIS
In accordance with the problem description in Subsec-
tion VII-A, we provide an example of solving a medicine
selection issue to confirm the applicability of the recom-
mended approach.
Example 10: Assume that O = {mi : i = 1, 2, · · · , 9}

be the collection of 9 medicines prescribed to combat a
disease D and C = {a1, a2, a3} be the set of most common
symptoms (criteria) of the disease. The weight vector of
all symptoms W = (0.30279, 0.32236, 0.37485). The
evaluation of 9 medicines based on three symptoms are
depicted in Table 5.

For the selection of the most suitable medicine, the
calculation procedures are shown as follows:
Step 1: Based on criteria a1, a2, a3 and using Eq. (7) to

evaluate the upward FPD of mi to mj(i, j =

1, 2, · · · , 9), we obtain (31)–(33), as shown at the
bottom of page 17.

Step 2: The upward fuzzy preference classes [mi]
a1
R̂↑

,
[mi]

a2
R̂↑

and [mi]
a3
R̂↑

are given in Tables 6, 7, and 8.

From Tables 6, 7, and 8, we can see that P(R̂↑
ak ) ={

[mi]
ak
R̂↑

: i = 1, 2, · · · , 9, k = 1, 2, 3
}
are upward

fuzzy β-coverings of O (0 < β ≤ 0.50).
Step 3: Let β = 0.50 be the critical value. Then the elements

ℵ
↑
ak

(mi,β)
(i = 1, 2 · · · , 9, k = 1, 2, 3) are listed in

Tables 9, 10 and 11.
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FIGURE 1. Flowchart of the suggested MADM algorithm.

Step 4: In the light of Eqs. (27) and (28), the positive and
negative ideal solutions w.r.t. at are given as follows:

Ia1+ =
0.8000

m1
+
0.5500

m2
+
0.5000

m3
+
0.7000

m4
+
0.6000

m5

+
0.5000

m6
+

0.5500
m7

+
0.5500

m8
+

0.5500
m9

,

Ia1− =
0.5000

m1
+
0.2500

m2
+
0.2000

m3
+
0.4000

m4
+
0.3000

m5

+
0.2000

m6
+

0.2500
m7

+
0.2500

m8
+

0.2500
m9

,

Ia2+ =
0.5000

m1
+
0.8333

m2
+
0.5000

m3
+
0.6667

m4
+
0.7500

m5

+
0.6667

m6
+

0.6667
m7

+
0.7500

m8
+

0.5833
m9

,

Ia2− =
0.1667

m1
+
0.5000

m2
+
0.1667

m3
+
0.3333

m4
+
0.4167

m5

+
0.3333

m6
+

0.3333
m7

+
0.4167

m8
+

0.2500
m9

,

Ia3+ =
0.5000

m1
+
0.5000

m2
+
0.7500

m3
+
0.6875

m4
+
0.5625

m5

+
0.6875

m6
+

0.7500
m7

+
0.5625

m8
+

0.6250
m9

,

Ia3− =
0.2500

m1
+
0.2500

m2
+
0.5000

m3
+
0.4375

m4
+
0.3125

m5

TABLE 5. MADM Table.

+
0.4375

m6
+

0.5000
m7

+
0.3125

m8
+

0.3750
m9

.

Step 5: In the light of Definition 17, we have the following
approximations:

˜apr↑

β (I
a1
+ )

=
0.5000

m1
+

0.5000
m2

+
0.5000

m3
+

0.5000
m4

+
0.5000

m5

+
0.5000

m6
+

0.5000
m7

+
0.5000

m8
+

0.5000
m9

,
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TABLE 6. The upward fuzzy preference classes [mi ]
a1
R̂↑

.

TABLE 7. The upward fuzzy preference classes [mi ]
a2
R̂↑

.

ãpr↑

β (I
a1
+ )

=
0.6000

m1
+

0.5000
m2

+
0.5000

m3
+

0.6000
m4

+
0.5500

m5

+
0.5000

m6
+

0.5000
m7

+
0.5000

m8
+

0.5000
m9

,

TABLE 8. The upward fuzzy preference classes [mi ]
a3
R̂↑

.

TABLE 9. The UFβ-nghd ℵ
↑

a1
(mi ,0.50).

˜apr↑

β (I
a1
− )

=
0.2000

m1
+

0.4500
m2

+
0.5000

m3
+

0.3000
m4

+
0.4000

m5

+
0.5000

m6
+

0.4500
m7

+
0.4500

m8
+

0.4500
m9

,

R̂↑
a1 (mi, mj) =



0.5000 0.7500 0.8000 0.6000 0.7000 0.8000 0.7500 0.7500 0.7500
0.2500 0.5000 0.5500 0.3500 0.4500 0.5500 0.5000 0.5000 0.5000
0.2000 0.4500 0.5000 0.3000 0.4000 0.5000 0.4500 0.4500 0.4500
0.4000 0.6500 0.7000 0.5000 0.6000 0.7000 0.6500 0.6500 0.6500
0.3000 0.5500 0.6000 0.4000 0.5000 0.6000 0.5500 0.5500 0.5500
0.2000 0.4500 0.5000 0.3000 0.4000 0.5000 0.4500 0.4500 0.4500
0.2500 0.5000 0.5500 0.3500 0.4500 0.5500 0.5000 0.5000 0.5000
0.2500 0.5000 0.5500 0.3500 0.4500 0.5500 0.5000 0.5000 0.5000
0.2500 0.5000 0.5500 0.3500 0.4500 0.5500 0.5000 0.5000 0.5000


, (31)

R̂↑
a2 (mi, mj) =



0.5000 0.1667 0.5000 0.3333 0.2500 0.3333 0.3333 0.2500 0.4167
0.8333 0.5000 0.8333 0.6667 0.5833 0.6667 0.6667 0.5833 0.7500
0.5000 0.1667 0.5000 0.3333 0.2500 0.3333 0.3333 0.2500 0.4167
0.6667 0.3333 0.6667 0.5000 0.4167 0.5000 0.5000 0.4167 0.5833
0.7500 0.4167 0.7500 0.5833 0.5000 0.5833 0.5833 0.5000 0.6667
0.6667 0.3333 0.6667 0.5000 0.4167 0.5000 0.5000 0.4167 0.5833
0.6667 0.3333 0.6667 0.5000 0.4167 0.5000 0.5000 0.4167 0.5833
0.7500 0.4167 0.7500 0.5833 0.5000 0.5833 0.5833 0.5000 0.6667
0.5833 0.2500 0.5833 0.4167 0.3333 0.4167 0.4167 0.3333 0.5000


, (32)

R̂↑
a3 (mi, mj) =



0.5000 0.5000 0.2500 0.3125 0.4375 0.3125 0.2500 0.4375 0.3750
0.5000 0.5000 0.2500 0.3125 0.4375 0.3125 0.2500 0.4375 0.3750
0.7500 0.7500 0.5000 0.5625 0.6875 0.5625 0.5000 0.6875 0.625
0.6875 0.6875 0.4375 0.5000 0.6250 0.5000 0.4375 0.6250 0.5625
0.5625 0.5625 0.3125 0.3750 0.5000 0.3750 0.3125 0.5000 0.4375
0.6875 0.6875 0.4375 0.5000 0.6250 0.5000 0.4375 0.6250 0.5625
0.7500 0.7500 0.5000 0.5625 0.6875 0.5625 0.5000 0.6875 0.6250
0.5625 0.5625 0.3125 0.3750 0.5000 0.3750 0.3125 0.5000 0.4375
0.6250 0.6250 0.375 0.4375 0.5625 0.4375 0.3750 0.5625 0.5000


. (33)
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TABLE 10. The UFβ-nghd ℵ
↑

a2
(mi ,0.50).

TABLE 11. The UFβ-nghd ℵ
↑

a3
(mi ,0.50).

ãpr↑

β (I
a1
− )

=
0.5000

m1
+

0.3500
m2

+
0.3000

m3
+

0.4000
m4

+
0.4000

m5

+
0.3000

m6
+

0.3500
m7

+
0.3500

m8
+

0.3500
m9

,

˜apr↑

β (I
a2
+ )

=
0.5000

m1
+

0.5000
m2

+
0.5000

m3
+

0.5000
m4

+
0.5000

m5

+
0.5000

m6
+

0.5000
m7

+
0.5000

m8
+

0.5000
m9

,

ãpr↑

β (I
a2
+ )

=
0.5000

m1
+

0.6667
m2

+
0.5000

m3
+

0.5833
m4

+
0.5833

m5

+
0.5833

m6
+

0.5833
m7

+
0.5833

m8
+

0.5000
m9

,

˜apr↑

β (I
a2
− )

=
0.5000

m1
+

0.1667
m2

+
0.5000

m3
+

0.3333
m4

+
0.2500

m5

+
0.3333

m6
+

0.3333
m7

+
0.2500

m8
+

0.4167
m9

,

ãpr↑

β (I
a2
− )

=
0.3333

m1
+

0.5000
m2

+
0.3333

m3
+

0.4167
m4

+
0.4167

m5

+
0.4167

m6
+

0.4167
m7

+
0.4167

m8
+

0.3333
m9

,

˜apr↑

β (I
a3
+ )

=
0.5000

m1
+

0.5000
m2

+
0.5000

m3
+

0.5000
m4

+
0.5000

m5

+
0.5000

m6
+

0.5000
m7

+
0.5000

m8
+

0.5000
m9

,

ãpr↑

β (I
a3
+ )

=
0.5000

m1
+

0.5000
m2

+
0.6250

m3
+

0.5625
m4

+
0.5000

m5

+
0.5625

m6
+

0.6250
m7

+
0.5000

m8
+

0.5625
m9

,

˜apr↑

β (I
a3
− )

=
0.5000

m1
+

0.5000
m2

+
0.2500

m3
+

0.3125
m4

+
0.4375

m5

+
0.3125

m6
+

0.2500
m7

+
0.4375

m8
+

0.3750
m9

,

ãpr↑

β (I
a3
− )

=
0.3750

m1
+

0.3750
m2

+
0.5000

m3
+

0.4375
m4

+
0.3750

m5

+
0.4375

m6
+

0.5000
m7

+
0.3750

m8
+

0.4375
m9

.

Step 6: Based on formula (29), the ranking index can be
calculated as follows:

ϱ1(mj) =
0.3162

m1
+

0.1581
m2

+
0.2000

m3
+

0.2828
m4

+
0.1803

m5

+
0.2000

m6
+

0.1581
m7

+
0.1581

m8
+

0.1581
m9

,

ϱ2(mj) =
0.1667

m1
+

0.3727
m2

+
0.1667

m3
+

0.2357
m4

+
0.3004

m5

+
0.2357

m6
+

0.2357
m7

+
0.3004

m8
+

0.1864
m9

,

ϱ3(mj) =
0.1250

m1
+

0.1250
m2

+
0.2795

m3
+

0.2253
m4

+
0.1398

m5

+
0.2253

m6
+

0.2795
m7

+
0.1398

m8
+

0.1768
m9

.

Step 7: Since the weight of each criterion is specified as
ϖ1 = 0.30279, ϖ2 = 0.32236, ϖ3 = 0.37485.
So according to formula (30), the optimal index can
be calculated as follows:

∂(mj) =
0.1963

m1
+

0.2149
m2

+
0.2191

m3
+

0.2461
m4

+
0.2038

m5

+
0.2210

m6
+

0.2286
m7

+
0.1971

m8
+

0.1742
m9

.

Step 8: The ranking of the medicines is:

m4 ⪰ m7 ⪰ m6 ⪰ m3 ⪰ m2 ⪰ m5 ⪰ m8 ⪰ m1 ⪰ m9.

From the ranking outcome, we deduce that m4 is the
most suitable medicine for the treatment of disease D. The
graphical portrayal of the ranking of the medicines is shown
in Figure 2.
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TABLE 12. Comparison with the existing literature for β = 0.5.

FIGURE 2. Ranking of medicines.

VIII. COMPARISON ANALYSIS AND DISCUSSION
In this segment, we conduct a comparative study from
quantitative and qualitative features with various prevailing
methods to highlight the efficacy and supremacy of the
devised DM scheme and the particular comparison procedure
is as follows.

A. QUANTITATIVE COMPARISON
This part is devoted to a comparison study with some existing
methods to verify the superiority of our suggested scheme.
This section provides a comparison among the models of
Yang and Hu [48] and Ma [28] with our suggested MADM
approach. In the view of Example 10 of the previous section,
we see that the preceding models are unable make a decision
in certain cases, for instance, when β = 0.5. At the same
time, our proposed approach can easily accommodate this
situation. This indicates that our suggestedmethod is superior
to the approaches in [28], [48].
A comparative study among WA method [46], OWA

method [46] and the TOPSIS method [23] together with our
postulated strategy in the context of Example 10 is given
in Table 13. Additionally, the ranking outcomes are plotted
graphically in FIGURE 3.
In the light of the data displayed in TABLE 13 revealed that

the ranking order of the alternatives exhibits some variations.
Nonetheless, it is notable that m4 maintains its position as
an optimal alternative. Therefore, according to the above
discussion, the results acquired by the designed method are
highly reliable.

B. QUALITATIVE COMPARISON
In this segment, we examine the characteristics of the
developed approach and the launched studies in Zadeh [51],
Atef et al. [2], Deng et al. [12], Greco et al. [16], Krohling and
Campanharo [26], Pan et al. [32], Shabir and Shaheen [40],
and Zhu [58] from the qualitative viewpoint and the com-
parison outcomes are displayed in TABLE 14. We carry out
qualitative comparison from four perspectives: membership
degree (MD), depict preference analysis, the roughness of
an information system (IS), and covering characteristics to
showcase its superiority. According to TABLE 14, it becomes
evident that the postulated appraoch possesses all specified
qualities, but the mentioned strategies do not have all of them.

C. ADVANTAGES
In summary, the merits of the designed method based on
UFβ-CRSs are outlined as follows:

1. In the study of MADM problems with fuzzy infor-
mation, there are many DM approaches based on FR.
However, not all MADM problems can be characterized
by a FR. Because of this, we set forth the method to
resolve MADM problems with fuzzy information based
on UFβ-CRSs.

2. From TABLE 12, we can easily see that the studies
of Yang and Hu [48] and Ma [28] cannot rank all the
alternatives when β = 0.5. However, our postulated
scheme can provide good sorting outcomes. This means
that our proposed methodology is reasonable and
feasible.

3. By TABLE 13, we can find that although the specific
ranking of the objects by different schemes has minor
variations, the optimal choice remains consistent. This
phenomenon underscores the rationality of our recom-
mended method.

D. LIMITATIONS
Although the developed methodology has numerous benefits,
it is essential to admit its shortcomings:

1. The reported method mainly relies on the appropriate
choice of the parameter β. The sensitivity of this
parameter might be a shortcoming. In practice, various
inputs of parameter β might generate different ranking
outcomes, making the devised model less reliable or
biased results.

2. In our developed scheme, determining fuzzy approxi-
mations for FSs necessitates significant computational
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TABLE 13. Comparison of different methods.

FIGURE 3. Graphical representation of ranking of medicines using different methods.

TABLE 14. Characteristics comparison of different methods with developed approach.

resources, which can increase the DM process’s compu-
tational complexity.

IX. CONCLUSION AND FUTURE RESEARCH DIRECTIONS
Preference analysis is a substantial tool in decision anal-
ysis. The RST was effectively expanded to deal with
preference analysis by switching Er with DR. DR cannot
capture the fuzziness presented in the criteria. In this
article, we pointed out the transfer functions proposed
by Pan et al. [32] for the calculation of upward/downward

FPRs are not additive consistent through a concrete exam-
ple. Therefore, we have proposed new transfer functions
to determine the upward/downward FPD of alternatives
from the fuzzified information system. Based on UFPR,
we presented concepts of α↑-FPRSs and UFβ-CRSs
models.

In general, this article has the followingmain contributions:

• We have formulated two novel transfer functions to
compute upward/downward FPRs of alternatives, which
are additively consistent.
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• We have introduced the notion of α↑-FPRSs by
using UFPR. Their respective fundamental structural
properties have been investigated in detail.

• Based upon α↑-FPRSs, we introduced several uncer-
tainty measures, like the measure of precision, rough
degree, the measure of quality, and the measure of
completeness of knowledge along with their properties.

• Meanwhile, we established the concept of UFβ-CAS,
UFβ-nghd, andUβ-nghd. Two novel types of RSmodels
using UFβ-nghd and Uβ-nghd are also constructed,
along with their structural properties.

• To indicate the application of the postulated strategy
with fuzzy information, we have created an innovative
scheme to addressMADM issues using UFβ-CRSs. The
procedure and an algorithm of our devised method have
been presented. A practical case study has been provided
to illustrate the significance of the proposed scheme.

• At last, a comprehensive comparison has been made
with several prevailing approaches to scrutinizing the
effectiveness, validity, reliability, and advantages of the
suggested technique.

The recommended approach exhibits a broad spectrum of
potential applications. The following research directions will
deserve our future studies:

• In the future, we will combine our proposed technique
with other MADM problems to cope with medical
diagnosis problems.

• We will develop attribute reduction based on the
proposed UFβ-CRSs.

• By using fuzzy logical implication I and t-norm T ,
we will generalize our proposed UFβ-CRSs to upward
(I, T )- fuzzy β-covering RS.

• In the context of multi-granulation, we will extend
the idea of UFβ-CRSs to multi-granulation UFβ-CRSs
model and multi-granulation (I, T )- fuzzy β-covering
RS model.

• Also, we will investigate the topological properties of
UFβ-CRSs.

• We will also look into the potential hybridization of the
inventedmethodology to improve the accuracy of results
and implement these methods to real-world issues with
large data sets.
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