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ABSTRACT The complex interactions between the weather, the environment, and electrical infrastructure
that result in power outages are not fully understood, but because of the threat of climate change, the need for
models that describe how these factors produce power grid failures is acute.Without them, it remains difficult
to understand the amount of weather-related damage we may expect in the future, as well as how changes or
upgrades to the infrastructure may mitigate it. To address this problem, a modeling framework is proposed in
this article that integrates data derived from structural vulnerability analysis into a machine-learning based
weather-related power outage prediction model to create a model that is sensitive both to the weather and
the technical configuration of the infrastructure. This Physics InformedMachine Learning (PIML) approach
is demonstrated using data from a major power utility operating in the US State of Connecticut, and is
compared against a fragility curve modeling approach using some of the same data. The validation of the
PIML model shows superior predictive ability, as well as variable sensitivities that follow expected patterns.
These results suggest that the model would be able to evaluate the influence that different configurations of
the infrastructure would have on the occurrence of power outages caused by severe storms, allowing for the
anticipated effects of investments in infrastructural upgrades to be quantified and optimized.

INDEX TERMS Electrical distribution, fragility curves, machine learning, power grid, power outages,
reliability.

I. INTRODUCTION
Severe weather events are becoming more frequent and more
disruptive to the power grid, and are currently responsible for
billions of dollars in economic damage every year [1]. In the
United States, this is a particular concern because current
climate projections show that the frequency and intensity of
thunderstorms are going to significantly increase in North
America [2], [3], [4], where they are already a leading cause
of power outages [5], [6]. Combined with the effects of aging
infrastructure, it will become increasingly difficult for power
utilities to deliver reliable electrical power to their customers.
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Whereas this a recognized problem, as demonstrated
by the recent $10 billion of US Government funding
directed to power grid resilience projects [7], how various
infrastructural, meteorological, and environmental factors
influence the risks of weather-related power outages is still
not fully understood. This is not from a lack of trying to
understand these processes. To date, there have been many
attempts to create predictive models and other analytical
frameworks to quantify storm-related infrastructure risk.
But because the power grid is so large and complex, and
because there are many different factors that potentially
influence the risk of failures in the grid (storm characteristics,
proximity to trees, drought, vegetation health, infrastructural
configuration, etc), attempts to quantitatively describe the
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processes that contribute to the risk of power outages have
involved significant simplification.

II. LITERATURE REVIEW
One established method for weather-related power outage
prediction involves fitting an empirical model to data describ-
ing various environmental, meteorological and infrastructural
factors together with historical outages, often using machine-
learning. This method has been applied in various regions of
United States [8], [9], [10], [11], using different datasets to
describe the weather and the surrounding environment [8],
[12], [13], [14], [15], and has been proven to be effective
for different types of weather [16], [17], [18]. However,
this approach often treats the infrastructural system simply,
often ignoring the networked nature of the grid and other
aspects of the power system. Infrastructure is accounted for
in these models often only by counting the number of utility
poles, measuring the length of overhead conductors in an
area, or inferring the number of customers. By aggregating
information from a large amount of infrastructure, this
approach generates models that simplify the complexity of
the power system, but have good predictive power in the
overall impacts of storms.

These types of weather and environmentally-oriented
power outage models can also be effective at quantifying
the effects of specific grid hardening measures imple-
mented by power utilities. For example, a recent paper by
Taylor et al. [19] describes a weather-related power outage
prediction model trained with information that included
the application of a new vegetation management standard,
called ‘‘Enhanced Tree Trimming’’ (ETT) by the local
utility. By incorporating this information into a model that
is sensitive to various weather patterns, the authors were
able to control for the severity of weather over time. The
resultant comparisons demonstrated that this new vegetation
management standard was able to reduce weather-related
power outages by between 25.7 and 42.5% in some
cases [19]. However, power utilities have many technical
options for upgrading their infrastructure (e.g. new utility
poles, stronger power cables, improved crossarms), and it is
difficult to evaluate the effect of these types of improvements
without more detailed consideration of the infrastructural
components and their configuration.

Fortunately there has been considerable work in analyzing
the structural vulnerability of power system components to
environmental hazards. Specifically, mechanistic modeling
of the failure probability of overhead utility pole-wire dis-
tribution systems under storm loadings has been particularly
widely studied [20]. By treating the loadings and load
capacities as random variables in structural simulations,
fragility curves or surfaces expressing the pole failure
probabilities have been developed as a function of the wind
speed [21], [22], [23], [24], [25] as well as combinations of
wind and ice [26] or wind and storm surge [27]. However,
this physics-based modeling approach is limited because it

can only capture certain failure modes, such as pole rupture
or foundation failures [27]. Meanwhile, power outages due
to nonstructural reasons, such as contact with vegetation, are
more challenging to capture with such assessments. This is an
important consideration because vegetation-related damages
to power infrastructure is very common, with nearly 90% of
storm-induced power outages in the US state of Connecticut
being related to trees interacting with the overhead lines [11].
Although some recent literature has attempted to use tree
fragility curves to calculate the conditional probabilities of
trees falling and striking powerlines [28], the diversity in
the various tree morphologies and failure mechanisms limit
the predictive capacity of such models when applied at
scale. To this end, data-driven models have been found to
have superior predictive capabilities for in-situ outages [29].
However, such empirical models are limited by the available
quantity and quality of training data. This limitationmanifests
itself particularly for extreme events due to their rarity and
relative lack of data. However, physics-based models are not
prohibited by these data constraints and predictions at the
extremes can be done with more confidence [30], [31]. And
in some cases fragility curves are used in more complex,
hybrid modeling approaches including Bayesian updating of
the fragility curves based on data from observations [32], [33]
or using the physics-based simulations of the grid to generate
synthetic training data for machine learning models [34].
Because storm damages to the power grid are the result of

in-situ environmental and meteorological factors, as well as
the structural properties of the infrastructural components, the
modeling approaches referenced above all have significant
simplifying assumptions that could affect a model’s accuracy
and limit its potential application. Therefore, the integration
of the physics-based modeling with the data-driven predic-
tions could serve to improve the power outage predictions and
better capture the complexities of the system.

To address the shortcomings described above, there has
been a marked rise in amount of reliability modeling that
uses Physics Informed Machine Learning (PIML) in recent
years [35], [36]. This term describes a range of methods
that combine machine learning and knowledge of physics
to create predictive tools or simulations with enhanced
capabilities. This can take the form of Machine Learning
models that fit data using loss functions informed by physical
equations, using physical simulations to generate data for
machine learning algorithms, or machine learning based
analysis of physical information in complex or engineered
systems [36]. Whereas this type of modeling is often used
to predict failures in complex engineered systems, it has
also been used to inform maintenance schedules, and other
types of operational decision-making [36], [37], [38]. PIML
approaches have been applied to analyze power systems
recently. In Gjorgiev et al, a deep learning model was trained
with simulation data from a power systems model to be
able to detect failing insulators in the power transmission
system [39], and in Varbella et al a physics-based model of
power transmission circuits was used to generate training

VOLUME 12, 2024 63569



P. L. Watson et al.: Integrating Structural Vulnerability Analysis and Data-Driven Machine Learning

data for a graph neural network to predict the occurrence of
cascading outage events [40].

III. METHODOLOGY
Below, we describe a novel PIML analytical approach that:

• Creates a predictive model for weather-related power
outages

• Combines methods from machine-learning weather-
related outage prediction models and structural vulnera-
bility analysis

• Sensitive to environmental and meteorological condi-
tions, as well as the age, materials, and configuration of
the infrastructural components

We compare this approach with a more typical fragility
curve outage model, based on the same structural vulner-
ability analysis data. Whereas the PIML model is a more
complex predictive model, it is able to more completely
represent the in-situ risk factors related to weather-related
damages to the power grid than previously published models
of this type. The motivation for this is not primarily to
produce a model with greater predictive accuracy. Because
the PIML modeling approach is more comprehensive and
includes information derived both the environmental hazards
and the infrastructural configuration, it has applications in
evaluating theoretical configurations of power infrastructure
and the corresponding risks of in-situ weather related
outages. The PIML modeling approach has a range of
applications, including quantifying the benefits of a variety
of technical resilience upgrades or grid hardening measures,
very much like Taylor et al. did for specifically for vegetation
management [19]. This in-turn would allow power utilities
to calculate the expected returns on investments in grid
resilience, and to optimize their planned improvements.

The multidisciplinary PIML power outage modeling
approach is similar to other machine-learning weather-
related power outage prediction models which use a
machine-learning algorithm trained on data of various
environmental risk factors and the observed outages from
historical storms. But in addition to those established
methods, we integrate a new set of data derived from fragility
curves produced by structural fragility analysis of the power
infrastructure in high wind conditions. This information
allows us to describe the meteorological and environmental
risk factors, along with the mechanical strength of the
infrastructure for various ages, materials, and technical
configurations. The fragility curves produced can also be
used to create a competitive outage model based solely on
this information, so that the benefits of our proposed PIML
approach can be evaluated.

The PIML model can be considered a Hybrid Physics
Informed Machine Learning approach that uses physical
simulations to generate datasets [36], but the specific process
and aims of this approach are unique in the literature to
our knowledge. Whereas PIML has been used in the past
to predict failures in the power transmission systems by
using physics-based models to generate data [34], [39], [40],

we are applying PIML in a way where the physics-based
system is used to elucidate one of the risk factors present
in a complex system exposed to environmental hazards.
Unlike previous works, the ML model is not being applied
to replicate the results of the physics-based model, rather the
physics-based model is being used to generate information
that the ML model can interpret and characterize. Also, the
potential applications of this approach are not limited to
the prediction of failures or operational decision support.
Because the resultant ML outage model will be sensitive
to the physical configuration of infrastructural components,
it has applications in the design and planning of power
systems in order to improve their in-situ resilience to
environmental hazards.

Fig. 1 describes the general architecture of this integrated
outage prediction model. Numerical Weather Prediction
(NWP) simulations are generated and serve as the meteo-
rological inputs to the outage prediction model alongside
the vegetation, climatic, and topographic data from various
sources, as well detailed infrastructural data provided by
a power utility that services about 1.2 million customers
in Connecticut, a state in the Northeastern US. That
infrastructure data is analyzed to produce the structural failure
probabilities of the poles via fragility scores generated from
physics-based simulations informed by simulated weather
conditions and constrained by the infrastructure’s physical
characteristics. Finally, all data is aggregated to the power
distribution circuit level, where machine learning models are
trained to predict the amount of damage in each circuit for
given environmental and infrastructural conditions. While
this approach is more data intensive than other established
methods, and thus more sensitive to data availability, it will
produce a model with fewer simplifying assumptions and
more fully represents the system it is representing.

A. MODELING DATA
Data for this model came from a wide range of sources
including physics-based structural and weather models, util-
ity databases, and national environmental datasets describing
the local vegetation, elevation, and climate (e.g., drought)
conditions. We aggregated this data for each of the 173 storm
events considered in this analysis and for each of the
912 power distribution circuits in the Eversource Connecticut
service territory, which produced a database of 31 variables
and 157,776 entries that describe the conditions during
storms, and the amount of resultant infrastructural damage.
All data processing was programmed in R with the sf
and terra libraries supporting for geospatial processing
tasks [41], [42], [43].

1) OUTAGE DATA
The power outage models described here predict a specific
outagemetric: the number of Damage Locations (aka Trouble
Spots [TS]), which is any location where the infrastructure
gets damaged, causing a power outage and requiring a service
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FIGURE 1. Architecture of statistical-mechanistic outage prediction modeling approach, demonstrating how data is processed to produce damage
predictions.

crew to repair the damage. This metric is particularly salient
to power utilities because the number of Damage Locations is
proportional to the number of service crews required to repair
the damage promptly, and can strongly influence restoration
times. Information for each Damage Location is tracked by
the utility’s Outage Management System (OMS), which is
a computer based system that tracks the damages and is
used to dispatch repair crews. For each historical storm used
in this analysis, we extracted the total number of damages
from the OMS database by assigning each outage that started
during the storm to the nearest power circuit, and counting
the number of outages associated with each circuit. Then
we applied a log transformation to the outages to reduce the
numerical range of the trouble spot counts. This shrinks the
relative magnitude of extreme values and helps the machine
learning algorithm fit the long tailed distribution of the
outages [44].

2) INFRASTRUCTURE DATA
Detailed information describing the location and vari-
ous technical characteristics of the infrastructure is often
maintained by major electrical utility companies for asset
management purposes. For this project, we used data from the
Eversource Connecticut utility service territory that describes
the age, class, and location of utility poles; and the location,
material, size, and insulation of overhead primary conductors.

The geospatial information of conductors consisted of a
collection of line segments which are one or more overhead
line spans with similar characteristics. The raw utility data
had several flaws in the geometries. We corrected them
with a procedural cleaning process, which combined line
segments shorter than a full span between two utility poles

with neighboring line segments. Using these completed line
segments, we were able to associate them spatially with
nearby utility poles and calculate the number of poles,
average span length, and average age of the poles in each
segment. This granular information about the characteristics
of the infrastructural components (e.g. age, class, etc) was
used to inform the parameters of the structural vulnerability
analysis and the resultant fragility scores for each line
segment, and was also used to directly derive some variables
for the ML outage model. More specifically, to create the
infrastructure variables for ML outage model, we aggregated
the information about utility poles, overhead conductors,
and reclosers for each circuit considered in the model to
generate the total number of utility poles, the total length of
overhead primary and secondary conductors, and the number
of reclosers in each power circuit.

3) WEATHER DATA & STORM SELECTION
173 extratropical and tropical weather events from 2005 to
2020 were included in this analysis, with impacts across the
domain that range from about 50 to 20,000 damage locations.
The event selection process was guided by an analysis of
outage records and weather observations, to identify when
and where severe weather coincided with power outages.
However, the collection of storms used is not comprehensive.
Winter and thunderstorms were not considered for this
study because of their meteorological complexity. While
related ML outage models have been developed [16], [18],
uncertainly in precipitation type, and the chaotic nature of
how convective storms develop make fitting accurate outage
models challenging. Some events were also removed from
consideration because they could not be clearly delineated
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from other sources of power outages (e.g. multiple storms
in succession, occurrence during heatwaves), or because of
missing data for initial and boundary conditions used by the
NumericalWeather Prediction (NWP) simulations. TheNWP
simulations were generated with the Weather Research Fore-
casting (WRF) system [45], initialized with North American
Mesoscale (NAM) forecast system analysis data [46]. These
simulations generated meteorological information about each
of the 173 storms considered, including descriptions of
Winds & Gusts, Planetary Boundary Layer (PBL) height,
Temperature, Humidity, and Precipitation over the course
of each 48 hour weather event. This is the same weather
simulation configuration used in other publishedworkswhere
the technical details of the model configuration are more
comprehensively described [10], [13], [19], [44]. Because
these simulations are based on a weather analysis product,
which are refined with observations of the historical weather
conditions, it can be considered to be a best estimate of the
weather conditions throughout the simulation domain. The
grid cells of the NWP simulation tended to overlap the power
circuits, with most power circuits spanning several cells. The
weather information was summarized for each power circuit
by taking an average of the values of the grid cells that the
power circuit overlaps with, weighted by the percentage of
overhead lines in each grid cell. This produced an hourly
time series of weather conditions for each power circuit for
each storm, and summary statistics (mean, max, etc.) were
calculated to use as variables for outage modeling, so that
total impact of the storm could be evaluated by overall storm
characteristics.

4) ENVIRONMENTAL DATA
Several additional variables were developed to describe
different environmental risk factors. Specifically variables
describing land cover including the tree canopy coverage
were developed by sampling and summarizing the National
Land Cover Database (NLCD) Canopy Cover [47] and
the NLCD Land Cover pixels [48] within 60m of primary
overhead conductors for each power circuit. Both of the tree
canopy coverage and the land cover datasets are available
spatially referenced at 30 meter resolution, and summary
statistics of values near overhead lines were calculated via
geospatial processing to produce modeling variables.

As with previously published models, we also included
a variable derived from the climatology of the leaf area
index (LAI) [10], [13], [44]. This variable varies seasonally,
and is a reasonable estimate of the amount of leaf surface
area presented by vegetation at any given time. This
information was available at coarse 10km resolution and
is best considered a seasonal indicator of the leaf status
of the trees that are present in an area. Because of spatial
correlations associated with seasonal changes of leaves, the
relatively coarse resolution of this information was consider
sufficient to capture the seasonal variability of vegetation,
as seasonal change is regional process that affects areas at the

scale of hundreds or thousands of kilometers. This data was
also used to calculate KEprox, a hybrid variable which is the
product of the LAI and the square of the maximum wind gust
speed from the NWP simulations to approximate the kinetic
energy of the wind stress exerted on tree branches.

Variables describing additional environmental conditions
were also included in the outage model. Maximum and mean
soil moisture levels were included from the NWP simulations
to describe soil conditions, which can affect the mechanical
properties of the soils and vegetation. To understand the
potential longer-term effects of drought on the health of
vegetation, we also included the Standardized Precipitation
Index (SPI), a drought index, for 1, 3, 12 and 24 month
periods by taking an average of each value found in the
area of each power circuit [49], producing average 1, 3,
12, and 24 SPIs for each circuit and storm. A variable
that describes the elevation of the infrastructure, which can
have an influence on localized weather conditions was also
included by sampling and summarizing the values from a
USGS dataset in the same way as we processed land cover
and tree canopy values [50].

A variable describing recent vegetation management
activity was also used to condition the risk that vegetation
presents to the infrastructure. More specifically, it is a value
that describes the proportion of the infrastructure treated with
an aggressive vegetation management standard, Enhanced
Tree Trimming (ETT), which clears all vegetation that
overhangs power lines within the power company’s right-
of-way around the power distribution infrastructure. This is
the same variable used in other published works, whereas
mentioned in the Introduction, it has also been used as a
variable in machine-learning based analysis quantifying the
effectiveness of this method of vegetation management [19],
[51], [52]. The processing of this data involved measuring the
length of overhead conductors in treated areas and calculating
the percentage of each circuit treated with this type of
vegetation management.

B. STRUCTURAL VULNERABILITY ANALYSIS
Structural vulnerability analysis was conducted to predict the
conditional probability of structural failure under a given set
of infrastructure and weather conditions while accounting
for variations in the loadings and material properties.
Such analyses are based off the fundamental underlying
engineering and mechanics principles, such as stress and
strain. A limit state function is defined to determine the
failure definition, such as when the stress exceeds thematerial
strength or when a certain deflection limit has been exceeded.
In the case of comparing the structural resistance R to the
stress S, the probability of failure Pf is expressed as:

Pf = P(R− S ≤ 0) (1)

The failure probability can be evaluated through different
methods, including simulation-based approaches such as
Monte Carlo simulation, as described in a collection of
previous literature [21], [26], [27], [31]. Fragility curves can
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TABLE 1. Inventory of missing infrastructure data.

then be developed, which express the failure probability as
a function of some engineering demand parameter, such as
earthquake peak ground acceleration or water depth.

For the application to the power distribution system,
the limit state of the structural simulations was defined as
pole rupture at the groundline, when the bending stress
exceeds the pole’s flexural strength [21]. The structural
model was developed similar to that in [21], where the
details of the distributions of the material properties, wind
load coefficients, and resistances can be found in detail.
The simulations were carried out using the commercial
structural analysis software ANSYS. The fragility curves
were developed using the wind gust V as the demand
parameter by varying the wind speeds and calculating
the failure probability at each speed using Monte Carlo
simulations. The wind pressures Pw (N/m2) on the poles and
conductors were calculated as:

Pw = 0.613V 2kzGCf (2)

where V is the 3-second wind gust at 10 m (m/s), kz is
the velocity pressure exposure coefficient, G is the gust
response factor, andCf is the shape factor or force coefficient.
The poles are assumed to be Southern yellow pine (SYP)
as also done in related work [21], [26], [31]. As the pole
thickness increases accordingly with pole height, the height
was assumed to be a noncritical parameter and was taken as
13.72 m (45 ft). As the wind forces on the conductors are
directly proportional to their projected areas, the conductor
projected area was considered for various configurations
of the span lengths and conductor size and number [53].
Additionally, the pole age is a critical factor in the pole’s
bending strength. Presently, the age degradation model
proposed by [54] was utilized to model the percentage of
strength loss as a function of pole age.

For various combinations of pole class, age, and conductor
area, the fragility curves were developed as a function
of the wind speed, and lognormal cumulative distribution
functions (CDFs) were fit. The effect of the various pole
classes, ages, and conductor areas were then investigated
through sensitivity analysis, and the mean of the lognormal
distributions were conditioned to consider the effects of the
various parameter combinations.

To calculate the fragility curve of each line segment,
data on the configurations and conditions of the poles and
overhead lines were extracted from the utility database. This
infrastructure data was made available for each subcircuit
line segment, as described above. Due to missing data in
some cases, for each line segment, the conductor size, average
pole age, average span length, and typical pole class from
the available data were calculated and taken as constant
throughout the line segment. An inventory of how much

missing data was present is shown on Table 1. For the rare
cases where no records of characteristics for an infrastructural
component were available, the mean values across the system
were assumed. For each storm event, the pole ages are first
updated based on the event date, and the fragility score was
calculated based on the maximum gust values produced by
the NWP model and applied to all poles in the line. The
fragilities were then compiled to the circuit level by taking
the mean of the fragility scores of the lines segments in each
circuit. This provided us an average fragility score for each
circuit for each event, which is used in both the fragility curve
and the PIML outage models.

C. OUTAGE MODELING
Two outage modeling approaches were employed to evaluate
the PIML approach over an approach that only uses fragility
curves based on the structural analysis. Both modeling
methodologies are described below.

1) FRAGILITY CURVE APPROACH
An outage modeling approach that uses the mean pole
fragility scores for each circuit, the number of overhead
line spans in each circuit, the cumulative density function
(CDF) of the binomial distribution, and quantile mappingwas
developed to evaluate the predictive power of the fragility
scores alone over the occurrence of weather related power
outages.The binomial distribution was chosen as it is a good
representation of the system. The infrastructure has two
potential states: damaged or not, and the fragility curves
describe the probability of damage. The CDF of the binomial
distribution used is defined as:

F(x; p, n) =

x∑
i=0

(
n
i

)
(p)i(1 − p)n−i (3)

where p is the probability of success, and n is the number
of draws or attempts made, which in this case was the mean
fragility score of a circuit, and the number of overhead
wire spans in that circuit respectively. This produced a
function for the probability of different levels of damage
in each circuit for each storm event. For this modeling
method to produce deterministic predictions of the number
of damage locations, a specific probability to sample
the CDF needed to be determined. This allowed us to
effectively tune the sensitivity of the deterministic damage
predictions based on the event probability used. Many event
probabilities were considered when developing this model,
including some very low probabilities to compensate for
the typically very low fragility scores and improve the
sensitivity to storm events with low and moderate wind gust
speeds.

Also due to the bias expected because of the limitations
of the fragility curves described in the Introduction, quantile
mapping was applied to the deterministic fragility curve
outage predictions produced via the method described above.
More specifically, the qmap library was used to fit parametric
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transformations of the predicted outage to more closely
match the statistical distribution of the actual outages [55].
The quantile mapping was applied in a leave-one-storm-
out manner, to prevent overfitting and produce results
comparable to the cross-validation results of the PIML outage
model.

2) MACHINE LEARNING APPROACH
In the course of developing the PIML model, many variables
were considered for inclusion, but the full set of candidate
predictor variables was reduced down to the final set of 31,
as described in Table 2, by a multi-stage variable selection
process in an effort to improve the simplicity and inter-
pretability of the model. Variables were primarily removed
from use for weak variable importance (as described below),
or being strongly correlated to other predictor variables. This
was particularly problematic if there were correlations with
the amount of infrastructure in each circuit because of the
strong influence the amount of infrastructure has on amount
of outages. Whereas all correlates were not removed from the
final list of predictor variables, the accuracy of the algorithms
used for modeling is not adversely affected by their inclusion.
However, minimizing cross-correlations improves how well
we can interpret model sensitives and demonstrate that the
model produces consistent and reasonable results for various
infrastructural and environmental scenarios. Table 2 also
describes the sources of the data for each variable used,
and states whether each variable is ‘‘Static,’’ with values
associated with a particular power circuit which does not vary
in time, or ‘‘Dynamic,’’ consisting of values that vary from
storm to storm.

For outage modeling, we used a Gradient Boosted Tree
Model (GBM) configured with a set of tuned hyperparam-
eters. Other algorithms common in ML outage prediction
were assessed including Random Forest (RF) and Bayesian
Additive Regression Trees (BART), but GBM was selected
due to its optimal combination of accuracy and computational
efficiency. GBM is a popular tree-based machine learning
algorithm that uses a series of simple decision trees to
optimize the weights of a larger tree-based model. It does
this iteratively, adjusting the model weights based on each
subsequent decision tree created, in a way that is very
similar to common optimization algorithms [56]. The training
process, and thus the fit of the model, is primarily controlled
by three hyperparameters: the number of trees used in
training, the depth of those trees, and the learning rate used
to calculate the optimized weights. Optimal hyperparameters
were determined via a search process performed by a differ-
ential evolution optimization algorithm [57], as well as an
evaluation of model sensitivities to ensure it was consistently
fitting the variable space. The model implementation used
was from the gbm library for R [58] and the hyperparameter
search was performed with DEoptim [59]. The results from
the search are shown in Table 3.
Because of the distortion of the log transformation previ-

ously applied to the outages, the predictions from themachine

learning model were re-transformed into linear space, and
then adjusted using a conditional bias correction. The bias
correction consists of a scaling factor applied to storm
predictions with a predicted combined impact larger than
an optimized threshold. The scaling factors were calculated
separately for each storm, only considering the predictions
of other storms, such that each bias-correction factor was
determined using only out-of-sample information, simulating
the accuracy of what a forecast would be for an unknown
storm. This is the same type of bias correction used in related
work [44], and serves specifically to correct the expected
under-prediction of the model for extreme events, which
results from the log transformation applied to the outage
variable. The log transformation helps manage the extreme
distribution of outages by reducing the distance between the
most extreme events and the most common events, which
improves how the model predicts moderate cases. However,
this usually comes at the cost of underestimating the extreme
events. In this specific case, scaling factors were only applied
to the strongest seven out of the 173 storms considered, and
the calculated scaling factors averaged around 4.15, with a
relatively tight standard deviation of 0.44.

D. EVALUATION METHODS
Several methods were used to evaluate the developed
outage models. Firstly, to evaluate the PIML model’s fit
to the data and its overall predictive ability, we performed
cross-validation and evaluated its predictions. Specifically,
we performed a leave-one-storm-out cross validation (LOSO
CV), where the data from one storm is removed from
the training data, the model is fit on the remaining data,
and then the trained model is evaluated by predicting the
outcome of the storm that was removed. This process is then
repeated for all storms in the training data. The results closely
simulate the performance of what we would expect from
an operational outage prediction system because it issues
predictions for events that the model has not been trained
on, and comprehensively evaluates the model on all available
storms. It has the additional benefit of preventing data
leakage due to the spatial correlations within each storm [13],
which is not done in random k-fold cross-validation. These
cross-validation results were compared against the quantile
mapped predictions of the fragility curve model, which were
developed in a similar leave-one-storm-out fashion.

Secondly, to establish the importance of the new predictor
variables, we performed an evaluation of the variable
importance for the model. This is performed with a model
that is trained on all available data. Then for each variable,
the information of that variable is destroyed by randomizing
the order of the entries, and in-sample model prediction
performance is measured with an error metric generically
called drop-out loss, but in this case we used the Root
Mean Squared Logarithmic Error (RMSLE). Any observed
decrease in performance can be attributed to that variable’s
individual contribution to the predictive skill in the model,
and variables with higher dropout loss are interpreted as
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TABLE 2. Description and source of information for variables used for outage prediction model.

TABLE 3. Tuned hyperparameter values for GBM algorithm in PIML
model.

being more important. This process, and the theory behind
it is described in Robnik-Sikonja and Kononenko [60].
Because the gradient boosted tree model training process
has a randomized component, the outage model was trained
100 times, and an average dropout loss and corresponding
95% confidence intervals were calculated for each variable.
These variable importances were calculated using the DALEX
library for R [61].
Thirdly, to evaluate the PIML model’s sensitivity to

different variables, we developed a series of one dimensional
partial dependence profiles. Partial dependence profiles
(PDPs), also known as partial dependence plots, are used to
map out the model’s sensitivity to different variable values.
PDPs are effectively an overall average of the dynamics of
a particular variable based on all observations in a dataset.
The other model input variables are effectively fixed, and the
individual variable sensitivity is tested by forcing the model
with a range of values of the variable being tested. This
method was originally developed by Jerome Friedman, and
has since become quite popular [56], [62]. Because a PDP is
aggregated from all observations in a dataset, the results do
not represent interactions between variables particularly well.

To quantify the range and distribution of possible model fits,
the partial dependence profiles were calculated separately for
100 different model trainings. All PDPs were generated in R
using the pdp library [63].

E. ERROR METRICS
For evaluating model accuracy for various analyses, we used
several different error metrics: Absolute Percent Error
(APE), Root Mean Squared Logarithmic Error (RMSLE),
Nash-Suttcliffe Efficiency (NSE), and the Coefficient of
Determination (R2). Equations for these metrics are included
below, where actual outages (A) are evaluated against
predicted values (P). APE was calculated for first, second,
and third quartiles, as well as the mean (Q1 APE, Q2 APE,
Q3 APE, MAPE). Also, it should be noted that RMSLE
has several beneficial proprieties for evaluating this type of
model: firstly, it accepts zero values in both the actual and
predicted values, making it appropriate for evaluating circuit
level accuracy, which is zero-inflated; and secondly, it is less
sensitive to the influence of the extreme events present in
the data. NSE is also a useful metric for quantifying the
predictive power of a model. It shares many properties with
R2, but is generally considered a more sensitive metric [64].
Possible values range from negative infinity to 1, with higher
values being better, and 0 being produced when predictions
are comparable to the accuracy of a naive average of
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FIGURE 2. Example fragility curve density plot of several thousand
sample line segments, showing that the probability of damages in
distribution circuits is only significant when wind gusts are very high
according to the structural vulnerability analysis conducted.

actual outages.

APE =
|P−A|

A
× 100 (4)

MAPE =
1
N

N∑
i=1

|P−A|

A
× 100 (5)

RMSLE =

√√√√ 1
N

N∑
i=1

(log(Pi + 1) − log(Ai + 1))2 (6)

NSE = 1 −

∑N
i=1(Pi − Ai)2∑N
i=1(Pi − Ā)2

(7)

R2
=

 ∑N
i=1(Pi − P̄)(Ai − Ā)√∑N

i=1(Pi − P̄)2
∑N

i=1(Ai − Ā)2

2

(8)

IV. RESULTS
A. FRAGILITY CURVES
Fig. 2 shows a density plot of the variation in the fragility
curves for different sample line segments. The bulk of the
fragility curves see failure probabilities begin to increase
rapidly around wind gusts of 40 to 50 m/s. However, due
to combinations of aging infrastructure and less reliable
designs, some segments are more fragile and could see
high failure probabilities with gusts well below 40 m/s.
These results suggest that the fragility curves are able to
identify segments of the power distribution system that are
particularly vulnerable to structural damage, which would be
novel information for the power outage prediction model.

B. MODEL PREDICTIONS
Based on the metrics in Table 4 and Fig. 3, the predictive
accuracy for both outage prediction models can be evaluated.
Results from the best performing fragility curve model, after
developing deterministic predictions at various probabilities
of occurrence, are presented here. Using the number of
damage locations that had probability of 0.1% of occurring
produced predictions with the best balance of NSE and

MAPE. This low event probability was required to increase
the sensitivity of fragility curve model, and prevent severe
under-prediction of events. Even lower probabilities were
also considered (down to 1 · 10−10%), which continued to
reduce under-prediction, but this also resulted in more over-
predicted cases, and higher MAPE. The quantile mapping
process proved to very effective at improving the raw
deterministic outage predictions of this model, and allowed
us produce outage predictions with positive NSE values at
much higher event probabilities than otherwise. The results
from the fragility curve outage model would likely be better
if the fragility curve model was more sensitive to lower
impact events, or our analysis focused on high impact
events. As shown in Figure IV-A this lack of sensitivity to
certain events in the fragility curve model is associated with
impactful events with lowerwind gust speeds. This is intuitive
because fragility scores are a function of wind gust speeds,
and if a storm was not associated with elevated wind guts the
fragility model will not predict outages.

The results of the PIML model are superior to the fragility
curve outage model by every metric considered, and are
comparable with that of similar ML-based outage models.
As shown in Table 4, this model has better MAPE and Q2
APE than all of the models evaluated in Watson et al. [10],
similar Q2 APE as the model presented in Wanik et al. [11],
and similar MAPE and Q2 APE scores as the model from
Yang et al. [37]. Whereas this model has many similarities to
the one presented in Taylor et al. [19], it demonstrates better
performance than their leave-one-storm-out cross-validated
model. Also, it is important to note that the PIML model has
the largest dynamic range of any of these models.

It should also be noted that optimizing model accuracy
is not necessarily the primary goal for the PIML model.
To be applicable for estimating the outcomes of theoretical
scenarios, it is also important that this model fits the
variables in an explainable way, and its various sensitivities
can be shown to be reasonable. This is often challenging
for machine-learning models, because it is not possible to
directly control how the machine learning algorithm fits the
data, but is important for the proposed applications of this
model to clearly represent how the various dimensions of
power outage risk combine and interact to produce different
outcomes.

C. VARIABLE IMPORTANCE
Individual variable importance in the PIML model is shown
in Fig. 5. These results are consistent with other outage pre-
diction models where infrastructure, wind, humidity, and leaf
stress are evaluated as important [44]. Also, it should be noted
that the variables most closely associated with resilience
upgrades that power utilities might implement (percETT
& fragilitymu) are also moderately important. Because
the training data encompasses examples of very strong and
very weak storms, as well as large, expansive power circuits
and small ones, it makes sense that the variables that best
describe the severity of the storm, as well as the amount of
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FIGURE 3. Scatterplots of the number of actual damage locations plotted against the predictions of the best performing fragility curve outage
model (Green) and the cross-validation predictions of the PIML outage model (Blue). The black diagonal line indicates perfect accuracy, and the
solid red diagonal lines indicate an interval of ± 50% error.

TABLE 4. Event-level error metrics from fragility score model with best performing probability of occurrence and PIML cross-validation results. Also
includes reported error metrics from related ML models from literature. Asterisks (*) indicate values approximated from figures.

FIGURE 4. Overlapping histograms of maximum wind gust speeds
separated by magnitude of fragility model predictions by event.

infrastructure present, are the most influential. However, the
percETT and fragilitymu variables have comparable
importance to that of avgCanopy, which is the only variable
present that describes the risks associated with proximity to
vegetation, so the influence of these structural and resilience
related variables appears significant.

However, the reader should note that straightforward
interpretation of these results can be difficult when predictor
variables have correlations between themselves, as is the
case for some variables in this model. This is because

the information within those variables is not completely
destroyed in the importance evaluation process because
some other unaltered correlated variable holds similar
information. For example, because MEANGust, MAXGust,
MEANWind10m, MAXWind10m, and the other wind-related
variables are significantly correlated, the influence of each of
these variable on the model is diffuse, and it is very likely that
the overall influence of winds and gusts on model predictions
is greater than what Fig. 5 may imply.

Similarly, this consideration can extended to evaluating the
importance of the fragilitymu variable. The observed
dropout loss of fragilitymu can be interpreted as the
importance of the unique information that it provides to
the model, and fragility scores are a function of wind gust
speed and the structural characteristics of the infrastructure.
Because other sources of information related to magnitude
and duration of winds are present, we can surmise that the
measured importance of fragilitymu is primarily related
to its unique contribution to the model, which would be
related to the structural fragility of the infrastructure.

D. PARTIAL DEPENDENCE
As shown in Fig. 6, the individual variable partial dependence
profiles (PDP) indicate that the PIML model fits the variable
space in a largely intuitive way. Because the X axes are
in quantiles, it may be difficult to associate the patterns
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FIGURE 5. Dropout loss indicative of variable importance to the PIML
outage prediction model. 95% Confidence intervals are shown based on
100 trainings of the model.

shown PDPs with particular values of each variable, but
each plot is comparable to others despite differences in the
statistical distributions of each variable. Of the included
PDPs, MAXSpecHum, MAXGust, KEprox, poleCounts,
pOHlength, avgCanopy, and fragilitymu all seem
to have a similar dynamic pattern, where the influence of
the variable is negligible until about the second quartile,
after which impacts increase exponentially. Also the machine
learning algorithm appears to very consistently fit the
variables, and dynamic patterns appear very consistent across
all 100 model trainings. Some extreme values, however are
more uncertain: for MAXGust, the model fits in divergent
ways for the highest values. This effect may be related
to interactions with MEANGust, which is significantly
correlated, or to the relative rarity of extreme winds.

It is interesting to note how much more sensitive the
machine learning outage model is to wind speeds than
the structural models used to develop the fragility curves.
As shown in Fig. 2, the probability of damages in the
structural models are very low until high wind gust speeds,
40 m/s as previously mentioned, which are very rare. So rare
that values of wind gusts that high are not present in the
storms used in this outage model, with the maximum wind
gust value in our dataset is 37.7 m/s. Based on the PDPs
in Fig. 6, the machine learning outage model demonstrates
a greater sensitivity to wind gust speed. The Max Wind
Gust speed shows increasing outages starting around the
80th percentile, which corresponds to gust of only about

21 m/s. This discrepancy between the ML outage model
and the structural vulnerability analysis can be attributed to
the additional in-situ risk factors facing operational power
infrastructure that are not accounted for in the idealized
simulations used in the structural vulnerability analysis.

V. DISCUSSION
Despite the additional complexity, data processing, and
simulation required to develop information about the struc-
tural characteristics of power distribution infrastructure using
structural vulnerability analysis, when it is incorporated
into a machine-learning based outage prediction model, the
results demonstrate that we have been able to create a
PIML outage model that is sensitive to various infrastructural
configurations, and has superior accuracy over a model that
only uses information from fragility curves produced from
structural analysis. The variable sensitivities of the PIML
model appear to be consistent, have intuitive dynamics, and
have a significant influence on outage predictions. This
model has realistic sensitives to variables like the average
fragility score, the amount of Enhanced Tree Trimming, the
percentage of tree canopy coverage, the length of primary
overhead conductor, the length of secondary overhead
conductor, and the number of utility poles. With these
variables we can describe a range of different infrastructural
characteristics in power infrastructure: utility poles of
different ages and classes, various vegetation management
practices, or different amounts of overhead infrastructure.

However, it must be noted that the empirical approach
used for this model is both a strength and a weakness.
Instead of relying on idealized or theoretical frameworks
to estimate the occurrence of power outages, this approach
uses observed in-situ failures to estimate the risk of outages
for various meteorological and environmental conditions as
well as infrastructural configurations. By learning from the
diversity of conditions that already exists in the distribution
grid, this model is able to produce estimates of outage risk
that are grounded in reality.

This means the PIMLmodel is also limited by the available
data and can only predict with confidence when conditions
are represented in the original training data. Extrapolation
of findings from this model should be done cautiously. For
example, because the training data for this model is limited to
Connecticut, and does not include examples of winter storms,
one should not make confident conclusions about outage risk
in different places or meteorological conditions. This does
not mean that the methodology presented would only work
under these conditions or generalizability of the presented
findings are limited. As discussed in the Introduction, data-
driven impact models have been applied successfully under
various conditions. It should also be noted that where as
Connecticut is a small state, it includes urban, suburban,
and rural areas which have a range of different vegetation
conditions and infrastructural densities, as shown in the
histograms of Figure 7. This means that conclusions derived
from this model about the processes that contribute to
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FIGURE 6. Partial dependence profiles for select variable quantiles. Individual model trainings are shown as colored lines, and average
values for all 100 trainings are shown in black. The ML algorithm appears to fit the data in a consistent and intuitive manner.

FIGURE 7. Histograms of select environmental and infrastructural
variables from the training dataset, including: Mean pole age (Red),
percent canopy (Green), percent developed, open space (Yellow), length
of primary OH lines (Blue).

weather-related power outages could have some degree of
generalizability to similar areas with similar infrastructure,
but further investigation and validation is required.

The availability of a wide range of training examples
is also a concern for some of the predictor variables
used. percETT has limited examples of high levels of
trimming, especially on circuits with large amounts of
infrastructure [19], [52]. This could be why the outage
reduction associated with this variable appears to level
off around the 55th quantile as seen in Figure 6, and its
possible that higher levels of ETT could produce further
improvements in grid reliability. However without more
examples of high ETT levels in larger circuits we cannot
be conclusive. But this is not a problem for all variables.
For example, because it is a function of both the structural
characteristics of the infrastructure and the maximum wind
gusts for each storm, the range of fragilitymu values are
quite well represented for circuits of all sizes. This allows for
confident quantitative predictions of different infrastructural
configurations where fragilitymu is varied, as long as
it remains within the bounds of the maximum and minimum
values.
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Whereas the generalizability of ML outage models to
different types of storms and various places has been demon-
strated [10], [16], [17], expansion of this particular PIML
modeling approach is limited to service territories that have
detailed records of the locations and technical specifications
of their infrastructural assets. However, as more and more
of asset management practices are digitized, the empirical
nature of this analysis will become less and less of a
barrier. Indeed, one potential side-benefit of the proposed
US government spending on updating the power distribution
grid is the generation of additional data about the grid that
could be used to validate this data-driven approach. If high-
quality and detailed information about federally-funded
infrastructural improvements are maintained, it is likely that
this methodology can be applied more widely and more
comprehensively validated.

As previously stated, because of the interpretability and
intuitive sensitivities of this model, it can be used to better
understand the processes that contribute to weather-related
power outages, as well as quantify outage risk for a range
of different meteorological and infrastructural scenarios. This
has particular applications in evaluating the effectiveness of
various grid hardening measures that power utilities may

plan on implementing. Because of the complexities of the
system, it is particularly difficult to evaluate how changes
or upgrades to the infrastructure influence outage risk. This
model could be used for such evaluations, and could be
a foundation for cost-benefit analysis and optimization of
such measures. For example, if we test the model presented
above with a scenario where 10% of the existing utilities
poles are upgraded to a larger class, the predicted number
outages are reduced by more than 30% in some of the
largest storms. This type of information could be extremely
important information for electrical utilities planning to
upgrade their infrastructure, but are not sure how or where
would be most effective. Models like the one presented above
have the potential to be the foundation of a decision making
support tool that enables the optimization of reliability
upgrades to the power grid, which would help us ensure
that our infrastructure will remain reliable even as climate
change affects the frequency and severity of severe weather
events.

APPENDIX
VARIABLES EVALUATED FOR MODELING

TABLE 5. Description of variables evaluated for inclusion in PIML model.
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TABLE 5. (Continued.) Description of variables evaluated for inclusion in PIML model.
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