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ABSTRACT Selecting the right Biometric-Based Attendance Device (BBAD) is pivotal for enhancing
security, operations, and compliance in today’s dynamic environment of identity authentication.Addressing
the complexities arising from uncertainty and periodicity, the Complex Fermatean Fuzzy Set (CFFS) theory
emerges as adept, encapsulating comprehensive problem specifications. This study introduces two innovative
aggregation operators within the CFFS framework: the Complex Fermatean Fuzzy Dynamic Weighted
Averaging (CFFDWA) and the Complex Fermatean Fuzzy Dynamic Weighted Geometric (CFFDWG)
operators. Some important characteristics of the newly defined operators are established. The shortcomings
in the existing score function are rectified along with the introduction of a novel enhanced score function
under complex Fermatean fuzzy environment. Moreover, these operators contribute to a systematic frame-
work for handling Multiple Attribute Decision Making (MADM) problems involving complex Fermatean
fuzzy information. The article exemplifies their application in resolving a MADM problem, determining
the optimal model of BBAD. Finally, to validate the derived methodologies, a thorough comparison
study is carried out, demonstrating the superiority of the presented operators against various existing
operators.

INDEX TERMS Complex Fermatean fuzzy set, CFFDWA operator, CFFDWG operator, optimization,
decision making.

I. INTRODUCTION
Multi-attribute Decision Making (MADM) is vital in modern
decision science, integrating preferences to select opti-
mal options from limited alternatives. Kahne’s approach
involves the assessment of alternatives based on a variety
of characteristics, utilizing concise set theory along with

The associate editor coordinating the review of this manuscript and
approving it for publication was Qi Zhou.

logical connectors such as conjunction and disjunction [1].
Supported by aggregation operators, MADM’s effectiveness
is implemented in numerous disciplines. The limitations of
precise sets are, however, highlighted by the unpredictability
of human decision making. Fuzzy Set (FS) theory, which
Zadeh introduced [2], facilitated ambiguity and impreci-
sion and significantly enhanced the quality of decisions in
the social sciences and production management [3], [4],
[5]. Utilizing membership functions to manage uncertainty,

75396

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0002-8330-2818
https://orcid.org/0000-0002-1898-4082
https://orcid.org/0009-0008-7201-2365
https://orcid.org/0000-0002-7845-7751
https://orcid.org/0000-0002-8269-8822
https://orcid.org/0000-0002-6178-8538


D. Alghazzawi et al.: Dynamic Aggregation Operators for Optimal BBAD Selection

FS involves degree of membership. However, a discrepancy
between logical and verbal negations led Atanassov to pro-
pose Intuitionistic Fuzzy Sets (IFS) [6]. IFS expands FS by
introducing a non-membership function, representing dis-
contentment with human decisions within the [0,1] range.
Dual values—the degree of membership and the degree
of non-membership—are distinctive features of IFSs. The
efficacy of these IFSs has been demonstrated in numerous
domains, including medical diagnosis, image segmentation,
pattern recognition, and fuzzy time series forecasting [7],
[8]. The sum of the membership and non-membership
degrees must lie within the unit interval. For example, if we
encounter a circumstance where the membership degree is
0.7 and the non-membership degree is 0.6, then 0.7 + 0.6
> 1 indicates that the IFS is incapable of handling this
scenario.

To address the aforementioned deficiencies of IFS,
Yager [9], [10] defined the Pythagorean Fuzzy Set (PFS)
in which the sum of the squares of membership and
non-membership degrees falls within [0,1]. In solving real-
world problems, PFS offers more advantages than IFS.
Examples include pattern recognition, supplier selection,
early warning of industrial accidents, and recommender sys-
tems [11], [12], [13], [14]. The PFS system provides a more
extensive collection of resources. The case in which the
membership degree is 0.7 and the non-membership degree
is 0.6, which IFS fails to handle, can be addressed through
PFS as 0.72 + 0.62 ≤ 1. Thus, PFS is a more effective tool
for decision-making than IFS. Nonetheless, PFS theory also
fails if the membership degree is 0.8 and the non-membership
degree is 0.7 because 0.82 + 0.72 = 1.13 > 1.

Senapati and Yager [15] proposed the Fermatean Fuzzy
Set (FFS) theory, which represents a more comprehensive
model compared to the existing theories of IFS and PFS.
The FFS theory imposed a condition that the cubic sum of
the membership degree and non-membership degree must
lie within the unit interval. FFS has the capability to deal
with a greater degree of imprecision and ambiguity, hence
providing more accurate outcomes within a decision-making
framework.

Aggregation operators are tools used to convert n-tuple
data into a singular useful form. aggregation operators are
widely used in the decision-making process. The definition
of geometric aggregation operators based on intuitionistic
fuzzy sets is provided in [16]. Xu [17] devised arithmetic
aggregation operators for the IFS. Rahman et al. [18], [19],
[20] designed various aggregation operators in the framework
of PFS. In addition, it is essential to note that researchers
acknowledge dynamic aggregation operators as a highly
effective method for solvingMADM issues. Garg and Akram
proposed aggregation operator in FFS. For FFS Rani intro-
duced Einstein aggregation and Aydemir proposed Dombi
aggregation operator in [21], [22], [23]. Xu and Yager,
WG Wei, S Gumus and Y Liu and J Liu developed the
dynamic intuitionistic fuzzy aggregation operator for sit-

uations involving intuitionistic fuzzy numbers or interval
valued intuitionistic fuzzy numbers to represent attribute
decision information in [24], [25], [26], and [27]. Soft aggre-
gation operators on q-rung orthopair fuzzy environment was
presented in [28] and [29].

The models discussed above did not apply to two-
dimensional problems. Thus, the Complex fuzzy set (CFS)
was created by Ramot et al. [30]. It was suggested by the
developing relationship between complex and FS theory, with
the range of membership function being the complex unit
circle. This allows the CFS to accommodate 2-dimensional
information, including amplitude and phase components.
The amplitude and phase components are both real-valued
functions that can accept values from the unit interval to
demonstrate the ambiguity of both dimensions. Using the idea
of CFS, numerous physical problems have been effectively
solved. The present theory is of substantial importance in
numerous domains, specifically in the prediction of periodic
events and advanced control. These events encompass numer-
ous fuzzy variables that are related in a way that conventional
fuzzy operations are unable to sufficiently identify. The
notions of Complex Intuitionistic Fuzzy Set (CIFS) and com-
plex cubic intuitionistic fuzzy set were defined in [31] and
[32]. Dynamic aggregation operators on CIF was presented
in [33]. Frank aggregation operators on CIFS was proposed
in [34]. Chinnadurai et al. [35] designed the operations of the
complex Interval-valued Pythagorean fuzzy sets. Akram and
Naz [36] introduced a novel decision making approach based
onComplex Pythagorean Fuzzy Set (CPFS) theory. This set is
an extension of CFS and CIFS. The complex fuzzy geometric
aggregation operators and complex fuzzy arithmetic aggre-
gation operators were defined in [37] and [38] respectively.
In [39], Garg and Rani defined CIF arithmetic and geometric
aggregation operators. In the context of the CPFS environ-
ment, many operators such as Einstein geometric operators,
Dombi operators, prioritized weighted operators, and Yagers
aggregation operators have been created [40], [41], [42], [43],
[44]. In 2021, Chinnadurai et al. [45] defined the concept
of Complex Fermatean Fuzzy Set (CFFS) and also defined
aggregation operators in this environment.

The Biometric Behavioral Authentication and Recognition
(BBAD) is an essential component of contemporary biomet-
ric technology, providing a highly efficient and adaptable
method for authenticating and identifying individuals based
on their unique behavioral patterns. Amidst the rising wor-
ries surrounding security and privacy, BBAD emerges as an
invaluable solution. This system captures and evaluates a
wide range of behavioral characteristics, such as keystroke
dynamics, cursor movement, signature dynamics, and voice
patterns. Biometric profiles that are incredibly difficult to
copy or fake are made possible by this advanced analysis.
We use this phenomenon in the field of dynamic CFF because
it is more significant than traditional password-based security
measures. It provides a non-intrusive and continuous method
of authentication. It operates invisibly in the background,
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identifying users based on their natural interactions with
technology. Additionally, BBAD systems have shown their
effectiveness at different times in protecting sensitive data
and resources from unauthorized access, fraud, and identity
theft. An assortment of biometric techniques are designed
to detect and distinguish various physical attributes. The
biometric community uses the term ‘‘modalities’’ to denote
these various applications. Emerging biometric modalities
are discussed in [46]. In [47], models of legal regulation
pertaining to biometric identification and authentication uti-
lizing facial recognition technology were delineated with
the intention of formulating proposals to enhance the data
security of individuals. The biometric technology system,
its design, and its performance evaluation were defined
in [48], [49], [50], [51], and [52]. These devices ensure
that employees are unable to sign in for one another, pre-
venting employee time theft. In view of the aforementioned
characteristics of BBAD, Bharat Sanchar Nagar Limited,
an agency headquartered in New Delhi, India, has made
the strategic decision to implement BBAD across all of its
country branches. In order to accomplish this objective, the
Bharat Sanchar Nagar Limited authority gathers a group of
decision-makers in a conference to evaluate and choose the
most efficient model from a set of four alternatives. Decision-
makers assign membership and non-membership degrees
according to their own choice at three different time periods
because, with the passage of time, the version of technology
has improved and becomes more efficient and accurate day
by day. There are different types of models used for the bio-
metric identification of individuals. In this study, we describe
a systematic methodology for the purpose of identifying
the optimal alternative using CFF dynamic aggregation
operators.

CFFS theory is more capable of handling higher levels
of uncertainty compared to IFS, PFS, CIFS, and CPFS.
It is more suitable for addressing circumstances that involve
greater ambiguity and complexity. For instance, CFFS the-
ory has the ability to cope with two-dimensional data, but
IFS, PFS, and FFS cannot handle such data. Moreover, the
theories of CIFS and CPFS do not entertain situations where
the sum of the squares of membership and non-membership
degrees exceeds 1. However, CFFS easily handles such sce-
narios. This study distinguishes itself from previous research
due to its particular focus on utilizing time periods. It is
important to design robust, efficient dynamic aggregation
operators that can handle decision-making scenarios with
evolving ambiguity, imprecision, and vagueness. By facil-
itating the accumulation of information from various time
periods, the proposed research enables an extensive com-
prehension of the issues by generating a precise depiction.
Therefore, it is critical to undertake an investigation that
specifically targets the challenges associated with dynamic
complex fuzzyMADM. These aspects motivate us to propose
dynamic operators in the framework of the CFF environment
and present a solution to the MADM problem of selecting the
optimal model of BBAD.

Dynamic aggregation operators are employed to handle
uncertainties and imprecise information that evolves over
time. Current research pertaining to CFF is unable to assess
information that is time-dependent. It is also important to
note that changes in the significance or value of different data
pointsmay not be effectively reflected in the aggregated result
without involving the time factor. This lack of sensitivity
can lead to inaccurate outcomes, particularly in situations
where the importance of data elements varies over time.
Dynamic weighted aggregation operators are well suited
for situations that necessitate instantaneous decision-making.
Their ability to adjust rapidly to changes in the environment
or input data makes them highly suitable for time-sensitive
decision-making processes. However, in various contexts
of decision-making, including dynamic medical diagnostics,
multi-period investment decision-making, dynamic assess-
ment of the effectiveness of defense mechanisms, and
personnel dynamic evaluation, the essential information per-
taining to decisions are frequently acquired at different points
in time.

Our primary objective is to devise and evaluate opera-
tors designed to the unique characteristics of CFFS. These
operators are expressly crafted to enhance adaptability and
dynamism in decision-making amidst intricate and unpre-
dictable scenarios. Their incorporation empowers the system
to dynamically adjust membership functions and aggregation
procedures in response to evolving conditions, fluctuating
data, and shifting decision-maker preferences. This flexibil-
ity proves invaluable in navigating scenarios with varying
levels of uncertainty, rendering conventional static operators
comparatively less efficient. Our study aims to unveil these
dynamic operators, showcasing their efficacy across diverse
contexts, thereby advancing CFFS’s utility in addressing
complex and dynamic decision environment.

Our research concentrates on the following key objectives
of the theoretical framework:
1. Analyze the deficiencies in the current score function

and develop an improved score function that strengthens
the CFF system. It develops a grading system that is
more dependable and precise.

2. Present two novel aggregation operators, namely
CFFDWA and CFFDWG operators, developed for
decision-making situations that incorporate complex
Fermatean fuzzy information and time intervals.

3. Establish a dynamic operational system that is nec-
essary for the execution of CFFSs. This involves the
formation of mathematical models that depict the rela-
tionships between different complex Fermatean fuzzy
numbers.

4. Develop a systematic approach to address the MADM
problem involving complex Fermatean fuzzy: data at
various time intervals.

5. Utilize the recently proposed approach to determine the
optimal model for BBAD in the field of biometric tech-
nology: This will include the application of the proposed
algorithm in various scenarios.
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6. Conduct a comprehensive analysis of CFFDWA
and CFFDWG operators, establishing their unique
attributes and specific applications to foster a deeper
comprehension of their capabilities.

The remaining part of the manuscript is structured as fol-
lows: An overview of basic definitions is given in Section II.
Section III identifies deficiencies in the existing score func-
tion within the CFF environment and introduces a novel
score function to address these shortcomings. The Section IV
introduces dynamic aggregation operators designed for CFFS
and develops their important features. In Section V, the newly
defined operators are applied to determine the optimal model
of BBAD. Furthermore, a comparative analysis is presented,
showcasing the efficacy and practicality of this innovative
approach vis-à-vis established techniques. The conclusion is
summarized in Section V-A, which also addresses the broader
implications of the main findings.

II. PRELIMINARIES
This section provides fundamental definitions which are cru-
cial for comprehending the content presented in this article.
Throughout our discourse Γ denotes the universal set.
Definition 1 [30]: A CFS is characterized by a member-

ship function A, which maps each element in the universal set
Γ to points within the closed unit disc in the complex plane.
Mathematically, it is expressed as A(w) = µA(w)ei2πθA(w),
where µA represents a real-valued function defined on Γ
mapping its elements to the closed-unit interval [0, 1] and
ei2πθA represents a periodic function with a periodic law
having a principal period of 2π and θA(w) constrained within
the range of 0 to 1.
Definition 2 [31]: A CIFS A defined on a universal set Γ ,

can be represented as follows: A = {(w, γA(w), qA(w)) : w ∈

Γ }. In this representation, γA and qA are complex-valued
functions from Γ to the set {w : |w| ≤ 1}.
For w ∈ Γ , the membership function γA(w) is expressed

as γA(w) = µA(w)ei2πθA(w) and the nonmembership function
qA(w) is defined as qA(w) = vA(w)ei2πϕA(w). The real-valued
functionsµA, vA, θA and ϕA are confined to the interval [0, 1],
subject to the conditions 0 ≤ µA(w) + vA(w) ≤ 1 and 0 ≤

θA(w) + ϕA(w) ≤ 1.
Definition 3 [42]: A CPFS is an object of the form

A = {(w, γA(w), qA(w)) : w ∈ Γ }, where the complex-valued
functions γA and qA, are complex-valued functions from Γ
to the set {u : |u| ≤ 1}. For w ∈ Γ , the membership
function γA(w) is expressed as γA(w) = µA(w)ei2πθA(w) and
the non-membership function qA(w) is defined as qA(w) =

vA(w)ei2πϕA(w). These functions are subject to the conditions
0 ≤ µ2

A(w) + v2A(w) ≤ 1 and 0 ≤ θ2A(w)+ ϕ2
A(w) ≤ 1.

Additionally, the degree of hesitancy functions HA(w) =

h̄(w).ei2πα(w), where h̄(w) =

√
1 − µ2

A(w) − v2A(w)

and α(w) =

√
1 − θ2A(w) − ϕ2

A(w)
Definition 4 [11]: An FFS F in Γ is defined as:

A = {(w, µA(w), vA(w)) : w ∈ Γ }, where µA, vA : Γ →

[0, 1] represent the membership degree and non-membership

degree functions satisfying 0 ≤ µ3
A(w) + v3A(w) ≤

1 for all w ∈ Γ . Furthermore, the indeterminacy degree
of the FFS, denoted as ϖA(w), is defined as ϖA(w) =

3
√
1 − µ3

A(w) − v3A(w)
Definition 5 [42]:ACFFS denoted asA is defined as,A =

{(w, γA(w), qA(w)) : w ∈ Γ }. Within this framework, γA and
qA are complex-valued functions from Γ to the closed unit
disc.

For w ∈ Γ , the membership function γA(w) is defined as
γA(w) = µA(w)ei2πθA(w) and the nonmembership function
qA(w) is expressed as qA(w) = vA(w)ei2πϕA(w), subject to
the conditions 0 ≤ µ3

A(w)+ v3A(w) ≤ 1 and 0 ≤ θ3A(w) +

ϕ3
A(w) ≤ 1.
Moreover, the term HA(w) = h̄(w) · ei2πα(w), such

that h̄(w) =
3
√
1 − µ3

A(w) − v3A(w) and α(w) =

3
√
1 − θ3A(w) − ϕ3

A(w) define the hesitancy degree of w.
Throughout the remainder of the article, the representation

of membership and non-membership degrees of σ ∈ Γ
is denoted as σ = ((µ, θ), (v, ϕ)) and is called Complex
Fermatean Fuzzy Number (CFFN).
Definition 6 [42]: Let σj =

((
µj, θj

)
,
(
vj, ϕj

))
for j =

1, 2, 3, . . . , n be a collection of n CFFNs and let ω =

[ω1, ω2, . . . , ωn]T represent the weight vector associated
with σj such that, ωj ∈ [0, 1] and

∑n
j=1 ωj = 1. Then,

a Complex Fermatean Fuzzy Weighted Averaging (CFFWA)
operator is a function CFFWA: σ n → σ , defined as:

CFFWA (σ1, σ2, . . . , σn)

=

((∑n

j=1
ωjµj,

∑n

j=1
ωjθj

)
,
(∑n

j=1
ωjvj,

∑n

j=1
ωjϕj

))
Definition 7 [42]: Let σj =

((
µj, θj

)
,
(
vj, ϕj

))
for j =

1, 2, 3, . . . , n be n CFFNs and ω = [ω1, ω2, . . . , ωn]T be
the weight vector of σj with ωj ∈ [0, 1] and

∑n
j=1 ωj = 1.

Then the Complex Fermatean Fuzzy Weighted Geometric
(CFFWG) operator is a function : σ n → σ , defined as:

CFFWG (σ1, σ2, . . . , σn)

=

(
n∏
j=1

µ
ωj
j ,

n∏
j=1

θ
ωj
j ), (

n∏
j=1

v
ωj
j ,

n∏
j=1

ϕ
ωj
j )


Definition 8 [42]: For any CFFN σ = ((µ, θ), (ν, ϕ)) the

score function of σ is defined as

S(σ ) =
1
2

[(
µ3

− v3
)

+

(
θ3 − ϕ3

)]
, where S(σ )ϵ[−1, 1]

The accuracy function of σ is defined as

ac(σ ) =
1
2

[(
µ3

+ v3
)

+

(
θ3 + ϕ3

)]
, where ac(σ )ϵ[0, 1]

For any two CFFNs σ1, σ2, satisfy the following
comparison laws
i. If S (σ1) < S (σ2) , then σ1 < σ2
ii. If S (σ1) > S (σ2) , then σ1 > σ2

iii. If S (σ1) = S (σ2) , then ac (σ1) < ac (σ2) ⇒ σ1 <

σ2, a c (σ1) < ac (σ2) ⇒ σ1 < σ2 and ac (σ1) =

ac (σ2) ⇒ σ1 ∼ σ2
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iv. If S (σ1) = S (σ2), then ac (σ1) < ac (σ2) ⇒ σ1 <

σ2, a c (σ1) < ac (σ2) ⇒ σ1 < σ2 and ac (σ1) =

ac (σ2) ⇒ σ1 ∼ σ2

The definitions presented in this section serve as essential
building blocks for understanding the subsequent content
elucidated within this article.

III. ENHANCEMENT OF THE EXISTING SCORE FUNCTION
OF COMPLEX FERMATEAN FUZZY NUMBERS
This section consists of an analysis of the deficiencies present
in the score function of CFFNs developed in [42], followed
by the proposed improvements.
Example 1: Consider two CFFNs σ1 and σ2, defined as

follows:
σ1 =

((
(0.5)

1
3 , (0.3)

1
3

)
,
(
(0.45)

1
3 , (0.55)

1
3

))
and σ2 =((

(0.6)
1
3 , (0.2)

1
3

)
,
(
(0.35)

1
3 , (0.65)

1
3

))
.

The application of Definitions 8 to CFFNs σ1 and σ2 yields
that S (σ1) = S (σ2) = −0.1 and ac (σ1) = ac (σ2) = 0.9.
Property (iii) of Definitions 8 shows that CFFNs σ1 and σ2
are incomparable.

The aforementioned example highlights the drawbacks
of the current score function. This motivates us to formu-
late a novel score function, as expounded in the subsequent
definition.
Definition 9: For anyCFFNdenoted as σ = ((µ, θ), (ν, ϕ)),

we introduce the modified score function, defined as Ω(σ ) =
1
2

[(
µ3

− v3
)
+
(
θ3 − ϕ3

)
+ µ3v3

]
, whereΩ(σ )ϵ[−1, 1].

Notably, the modified score function adheres to the compari-
son law for any pair of CFFNs, σ1 and σ2 : Ω (σ1) < Ω (σ2)

implies σ1 < σ2, Ω (σ1) > Ω (σ2) implies σ1 > σ2 and
Ω (σ1) = Ω (σ2) implies σ1 ∼ σ2.

Additionally, we define the modified accuracy function for
Γ as H(σ ) =

1
2

[(
µ3

+ v3
)
+
(
θ3 + ϕ3

)
− µ3v3

]
, where

H(σ ) ∈ [0, 1]. Similarly, the accuracy function also complies
with the comparison law for any two CFFNs, σ1 and σ2 :

S (σ1) < H (σ2) implies σ1 < σ2, H (σ1) > H (σ2) implies
σ1 > σ2 and H (σ1) = H (σ2) implies σ1 ∼ σ2.
To demonstrate the efficacy of the proposed score function

for CFFNs, we consider the following illustrative example.
Example 2:Consider twoCFFNs σ1 =

((
(0.5)

1
3 , (0.3)

1
3

)
,(

(0.45)
1
3 , (0.55)

1
3

))
and σ2 =

((
(0.6)

1
3 , (0.2)

1
3

)
,(

(0.35)
1
3 , (0.65)

1
3

))
.

The application of Definition 9 to these CFFNs yields
that C (σ1) = 0.0125 and C (σ2) = 0.005. Consequently,
in accordance with property 1 of Definition 9, we deduce
that σ1 < σ2. This finding indicates that σ2 exhibits superior
qualities compared to σ1.
The efficacy of the proposed score function is demon-

strated through Example 2, where the application of
Definition 9 successfully evaluates and compares the two
complex Fermatean fuzzy numbers (CFFNs), a task that
the existing score function was unable to accomplish in
Example 1. Example 2 demonstrates its effectiveness in
accurately evaluating and distinguishing between CFFNs,

indicating improved reliability and accuracy compared to the
previous scoring method.

IV. DYNAMIC AGGREGATION OPERATORS ON COMPLEX
FERMATEAN FUZZY NUMBERS
In this section, our aim is to develop dynamic aggregation
operators in CFF environment.
Definition 10: Let t denote the time variable. A CFF

variable is represented as σt = ((µt , θt) , (vt , ϕt)), where
µt , θt , vt , ϕt ∈ [0, 1], subject to the conditions 0 ≤ µ3

t +

v3t ≤ 1 and 0 ≤ θ3t + ϕ3
t ≤ 1. For the CFF variable σt ,

if t =
(
t1, t2, . . . , tp

)
, then σt1 , σt2 , . . . , σtp indicate p CFFNs

collected at p different periods.
Definition 11: Consider two CFFNs, σt1 =((
µt1 , θt1

)
,
(
vt1 , ϕt1

))
and σt2 =

((
µt2 , θt2

)
,
(
vt2 , ϕt2

))
. The

essential ordering principal governing their interaction are as
follows:

σt1 ≤ σt2 if µt1 ≤ µt2 , vt1 ≥ vt2 and θt1 ≤ θt2 , ϕt1 ≥ ϕt2
σt1 = σt2 if and only if σt1 ⊆ σt2 and σt2 ⊆ σt1
Definition 12: Let σt = ((µt , θt) , (vt , ϕt)), σt1 =((
µt1 , θt1

)
,
(
vt1 , ϕt1

))
and σt2 =

((
µt2 , θt2

)
,
(
vt2 , ϕt2

))
be

three CFFNs, and λt > 0. The dynamic operational laws for
these CFFNs are defined as follows:

1. σt1 ⊕ σt2

=

((
3
√

µ3
t1 + µ3

t2 − µ3
t1µ

3
t2 ,

3
√

θ3t1 + θ3t2 − θ3t1θ
3
t2

)
,

(νt1νt2 , ϕt1ϕt2 )
)

2. σt1 ⊗ σt2

=

(µt1µt2. , θt1θt2
)
,(

3
√

ν3t1 + ν3t2 − ν3t1ν
3
t2 ,

3
√

ϕ3
t1 + ϕ3

t2 − ϕ3
t1ϕ

3
t2

)
3. λtσt =


(

3
√
1 −

(
1 − µ3

t
)λt

,
3
√
1 −

(
1 − θ3t

)λt)
,

(νλt
t , ϕ

λt
t )


4. σ

λt
t =

(µλt
t , θ

λt
t

)
, ( 3
√
1 −

(
1 − ν3t

)λt
,

3
√
1 −

(
1 − ϕ3

t
)λt )


In the subsequent definition, we introduce CFFDWA

operator.
Definition 13: Consider a collection of CFFNs denoted as

σtk =
((

µtk , θtk
)
,
(
vtk , ϕtk

))
, for k = 1, 2, . . . , p, at distinct

time periods tk . Furthermore, let λtk =
[
λt1 , λt2 , . . . , λtp

]T be
the weight vector that is linked to time periods tk , subject to
the conditions λtk ∈ [0, 1] and

∑p
k=1 λtk = 1. The CFFDWA

operator, denoted as CFFDWA: σ p → σ defined as follows:

CFFDWA
(
σt1 , σt2 , . . . , σtp

)
= ⊕

p
k=1

(
λtk .σtk

)

 3
√
1 −

∏p
k=1 (1 − µ3

tk )
λtk ,

3
√
1 −

∏p
k=1 (1 − θ3tk )

λtk

 ,(∏p
k=1 ν

λtk
tk ,

∏p
k=1 ϕ

λtk
tk

)
 .

Theorem 1: Let σtk =
((

µtk , θtk
)
,
(
vtk , ϕtk

))
for k =

1, 2, . . . , p, represent a collection of CFFNs at p different
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time periods tk . Additionally, consider the weight vector with
p time period λtk =

[
λt1 , λt2 . . . , λtp

]T , where λtk ∈ [0, 1]
and

∑p
k=1 λtk = 1. The aggregated value of these CFFNs

using the CFFDWA operator is itself a CFFN, expressed as:
CFFDWA

(
σt1 , σt2 , . . . , σtp

)
=

(
3
√
1−

∏p
k=1

(
1−µ3

tk

)λtk , 3
√
1 −

∏p
k=1

(
1 − θ3tk

)λtk) ,(∏p
k=1 v

λtk
tk ,

∏p
k=1 ϕ

λtk
tk

)
 .

Proof: The mathematical induction is employed to
demonstrate the proof of this result.

Let p = 2;

CFFDWA
(
σt1 , σt2

)
= λt1 · σt1 ⊕ λt2 · σt2

where;

λt1 .σt1 =


(

3
√
1 − (1 − µ3

t1 )
λt1 ,

3
√
1 −

(
1 − θ3t1

)λt1) ,(
ν

λt1
t1 , ϕ

λt1
t1

)


λt2 .σt2 =


(

3
√
1 − (1 − µ3

t2 )
λt2 ,

3
√
1 −

(
1 − θ3t2

)λt2) ,(
ν

λt2
t2 , ϕ

λt2
t2

)


Therefore

λt1 .σt1 ⊕ λt2 .σt2

=



(

3
√
1 − (1 − µ3

t1 )
λt1 ,

3
√
1 −

(
1 − θ3t1

)λt1) ,(
ν

λt1
t1 , ϕ

λt1
t1

)


⊕


(

3
√
1 − (1 − µ3

t2 )
λt2 ,

3
√
1 −

(
1 − θ3t2

)λt2) ,(
ν

λt2
t2 , ϕ

λt2
t2

)



=


 3
√
1 −

(
1 − µ3

t1

)λt1 (1 − µ3
t2

)λt2 ,
3
√
1 −

(
1 − θ3t1

)λt1 (1 − θ3t2

)λt2
 ,(

ν
λt1
t1 ν

λt2
t2 , ϕ

λt1
t1 ϕ

λt2
t2

)


Consequently,

CFFDWA
(
σt1 , σ t2

)
=


 3
√
1 −

∏2
k=1

(
1 − µ3

tk

)λtk ,
3
√
1 −

∏2
k=1

(
1 − θ3tk

)λtk
 ,(∏2

k=1 ν
λtk
tk ,

∏2
k=1 ϕ

λtk
tk

)


Hence, the base case is proven for p = 2.
Suppose that the statement holds for p = n > 2, we can

express it as follows.

CFFDWA
(
σt1 , σ t2 , . . . , σtn

)
= ⊕

n
k=1λtkσtk =


 3
√
1 −

∏n
k=1

(
1 − µ3

tk

)λtk ,
3
√
1 −

∏n
k=1

(
1 − θ3tk

)λtk
 ,(∏n

k=1 ν
λtk
tk ,

∏n
k=1 ϕ

λtk
tk

)


Moreover, if p = n+ 1, then

CFFDWA
(
σt1 , σ t2 , . . . , σ tn , σtn+1

)
= λt1σt1 ⊕ λt2σt2 . . . ⊕ λtnσtn ⊕ λtn+1σtn+1

=


 3
√
1 −

∏n
k=1 (1 − µ3

tk )
λtk ,

3
√
1 −

∏n
k=1

(
1 − θ3tk

)λtk
 ,(∏n

k=1 ν
λtk
tk ,

∏n
k=1 ϕ

λtk
tk

)


⊕


(

3
√
1 − (1 − µ3

tn+1
)
λtn+1 ,

3
√
1 − (1 − θ3tn+1

)
λtn+1

)
,(

ν
λtn+1
tn+1

, ϕ
λtn+1
tn

)


This means that:

CFFDWA
(
σt1 , σ t2 , . . . , σtn+1

)
=


 3
√
1 −

∏n+1
k=1

(
1 − µ3

tk

)λtk ,
3
√
1 −

∏n+1
k=1 (1 − θ3tk )

λtk

 ,(∏n+1
k=1 ν

λtk
tk ,

∏n+1
k=1 ϕ

λtk
tk

)


Consequently, we may conclude that the claim is true for any
positive integer p.
Example 3: Let us examine CFFNs σt1 = ((0.9, 0.8),

(0.2, 0.5)), σt2 = ((0.6, 0.3), (0.5, 0.8)) and σt3 =

((0.4, 0.6), (0.6, 0.8)) each linked to a weight vector λtk =

(0.2, 0.3, 0.5)T for the respective time intervals t1, t2, and t3.
We perform the following calculations:

∏3
k=1(1− µ3

tk

)λtk =

0.6926,
∏3

k=1
(
1 − θ3tk

)λtk = 0.7608,
∏3

k=1 v
λtk
tk =

0.4560 and
∏3

k=1 ϕ
λtk
tk = 0.7282;

By applying Definition 13, we have:

CFFDWA
(
σt2 , σt2 , σt3

)
= ⊕

3
k=1

(
λtk · σtk

)
= ((0.6748, 0.6207), (0.4560, 0.7282))

Thus, Theorem 1 is validated.
The subsequent theorem investigates the idempotent char-

acteristic of the CFFDWA operator.
Theorem 2: Consider a set of CFFNs σtk =((
µtk′ , θtk′ ,

(
vtk′ , ϕtk

))
, where k = 1, 2, . . . , p. If σtk =

σtj for all k and some j ∈ {1, 2, . . . , p}, where σtj =((
µtj , θtj ,

(
vtj , ϕtj

))
and λtk =

[
λt1 , λt2 . . . , λtp

]T rep-
resents the weight vector associated with time periods
tk , such that λtk ∈ [0, 1] and

∑p
k=1 λtk = 1, then

CFFDWA
(
σt1 , σt2 , . . . , σtp

)
= σtj .

Proof: Given that σtk = σtj for all k = 1, 2, . . . , p and
some j ∈ {1, 2, . . . , p}, we can deduce that µtk = µtj , θtk =

θtj , vtk = vtj and ϕtk = ϕtj .
Now, let us delve into the mathematical formulation of
CFFDWA:

CFFDWA
(
σt1 , σt2 , . . . , σtp

)
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=


 3
√
1 −

∏p
k=1

(
1 − µ3

tk

)λtk ,
3
√
1 −

∏p
k=1 (1 − θ3tk )

λtk

 ,

(
∏p

k=1 ν
λtk
tk ,

∏p
k=1 ϕ

λtk
tk )



=


(

3

√
1−

(
1 − µ3

tj

)∑p
k=1 λtk

,
3

√
1 −

(
1 − θ3tj

)∑p
k=1 λtk

)
,

(ν
∑p

k=1 λtk
tj , ϕ

∑p
k=1 λtk

tj )


=

((
3
√
1 − (1 − µ3

tj ),
3
√
1 − (1 − θ3tj )

)
, (νtj , ϕtj )

)
=

((
3
√

µ3
tj ,

3
√

θ3tj

)
, (νtj , ϕtj )

)
=
((

µtj , θtj
)
,
(
νtj , ϕtj

))
=
((

µtj , θtj
)
,
(
νtj , ϕtj

))
Consequently,

CFFDWA
(
σt1 , σt2 , . . . , σtp

)
= σtj .

The subsequent theorem investigates the boundedness
characteristic of the CFFDWA operator.

Theorem 3: Let σ−
t =

(
(min
tk

{
µtk
}
,

min
tk

{
θtk
}
), (max

tk

{
vtk
}
,max

tk

{
ϕtk
}
)
)

and

σ+
t =

(
(max
tk

{
µtk
}
,max

tk

{
θtk
}
), (min

tk

{
vtk
}
,min

tk

{
ϕtk
}
)
)

be the lower and upper bound of the CFFNs σtk =((
µtk , θtk

)
,
(
vtk , ϕtk

))
, where k = 1, 2, 3, . . . , p. Let λtk =[

λt1 , λt2 , . . . , λtp
]T be the weight vector corresponding to tk ,

such that λtk ∈ [0, 1] and
∑p

k=1 λtk = 1. Then,

σ−
t ≤ CFFDWA

(
σt1 , σt2 , . . . , σtp

)
≤ σ+

t

Proof: Consider the result of applying the CFFDWA
operator to the collection of CFFNs, denoted as

CFFDWA
(
σt1 , σt2 , . . . , σtp

)
= ((µt , θt) , (vt , ϕt)) .

For each µtk ,

min
tk

{
µtk
}

≤ µtk ≤ max
tk

{
µtk
}

⇒ min
tk

{
µ3
tk

}
≤ µ3

tk ≤ max
tk

{
µ3
tk

}
⇒ 1 − max

tk

{
µ3
tk

}
≤ 1 − µ3

tk ≤ 1 − min
tk

{
µ3
tk

}
⇒

∏p

k=1

(
1 − max

tk

{
µ3
tk

})λtk

≤

∏p

k=1

(
1 − µ3

tk

)λtk

≤

∏p

k=1

(
1 − min

tk

{
µ3
tk

})λtk

⇒

(
1 − max

tk

{
µ3
tk

})∑p
k=1 λtk

≤

∏p

k=1

(
1 − µ3

tk

)λtk

≤

(
1 − min

tk

{
µ3
tk

})6
p
k=1λtk

⇒

(
1 − max

tk

{
µ3
tk

})
≤

∏p

k=1

(
1 − µ3

tk

)λtk
≤

(
1 − min

tk

{
µ3
tk

})

⇒ min
tk

{
µ3
tk

}
≤ 1 −

∏p

k=1

(
1 − µ3

tk

)λtk
≤ max

tk

{
µ3
tk

}
⇒ 3

√
min
tk

{
µ3
tk

}
≤

3

√
1 −

∏p

k=1

(
1 − µ3

tk

)λtk ≤ 3

√
max
tk

{
µ3
tk

}
So,

min
tk

{
µtk
}

≤ µt ≤ max
tk

{
µtk
}

For each θtk , we have

min
tk

{
θtk
}

≤ θtk ≤ max
tk

{
θtk
}

⇒ min
tk

{
θ3tk

}
≤ θ3tk ≤ max

tk

{
θ3tk

}
⇒ 1 − max

tk

{
θ3tk

}
≤ 1 − θ3tk ≤ 1 − min

tk

{
θ3tk

}
⇒

∏p

k=1

(
1 − max

tk

{
θ3tk

})λtk

≤

∏p

k=1

(
1 − θ3tk

)λtk

≤

∏p

k=1

(
1 − min

tk

{
θ3tk

})λtk

⇒

(
1 − max

tk

{
θ3tk

})6
p
k=1λtk

≤

∏p

k=1

(
1 − θ3tk

)λtk

≤

(
1 − min

tk

{
θ3tk

})6
p
k=1λtk

⇒

(
1 − max

tk

{
θ3tk

})
≤

p∏
k=1

(
1 − θ3tk

)λtk
≤

(
1 − min

tk

{
θ3tk

})
⇒ min

tk

{
θ3tk

}
≤ 1 −

∏p

k=1

(
1 − θ3tk

)λtk
≤ max

tk

{
θ3tk

}
⇒ 3

√
min
tk

{
θ3tk

}
≤

3

√
1 −

∏p

k=1

(
1 − θ3tk

)λtk ≤ 3

√
max
tk

{
θ3tk

}
Therefore,

min
tk

{
θtk
}

≤ θt ≤ max
tk

{
θtk
}

Moreover,

min
tk

{
vtk
}

≤ vtk ≤ max
tk

{
vtk
}

⇒

∏p

k=1

(
min
tk

{
vtk
})λtk

≤

∏p

k=1

(
vtk
)λtk

≤

∏p

k=1

(
max
tk

{
vtk
})λtk

⇒

(
min
tk

{
vtk
})∑p

k=1 λtk

≤

∏p

k=1

(
vtk
)λtk ≤

(
max
tk

{
vtk
})∑p

k=1 λtk

⇒ min
tk

{
vtk
}

≤ vt ≤ max
tk

{
vtk
}
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Furthermore

min
tk

{
ϕtk
}

≤ ϕtk ≤ max
tk

{
ϕtk
}

⇒

∏p

k=1

(
min
tk

{
ϕtk
})λtk

≤

∏p

k=1

(
ϕtk
)λtk

≤

∏p

k=1

(
max
tk

{
ϕtk
})λtk

⇒

(
min
tk

{
ϕtk
})∑p

k=1 λtk

≤

∏p

k=1

(
ϕtk
)λtk ≤

(
max
tk

{
ϕtk
})∑p

k=1 λtk

⇒ min
tk

{
ϕtk
}

≤ ϕt ≤ max
tk

{
ϕtk
}

Hence by employing Definition 13, we obtain that

σ−
t ≤ CFFDWA

(
σt1 , σt2 , . . . , σtp

)
≤ σ+

t

The subsequent theorem investigates the monotonic char-
acteristic of the CFFDWA operator.
Theorem 4: Consider sets of two CFFNs, denoted as σtk =((
µtk , θtk

)
,
(
vtk , ϕtk

))
and σ ′

tk =

((
µ′
tk , θ

′
tk

)
,
(
v′tk′ , ϕ

′
tk

))
,

where k = 1, 2, 3, . . . , p. Let λtk =
[
λt1 , λt2 , . . . , λtp

]T
represents the weight vector associated with time periods tk ,
such that λtk ∈ [0, 1] and

∑p
k=1 λtk = 1. If for each tk :

µtk ≤ µ′
tk , θtk ≤ θ ′

tk , and vtk ≥ v′tk , ϕtk ≥ ϕ′
tk

Then,

CFFDWA
(
σt1 , σt2 , . . . , σtp

)
≤ CFFDWA

(
Gt1 ,Gt2 , . . . ,Gtp

)
Proof: Based on the provided description σtk and σ ′

tk ,
we have
CFFDWA

(
σt1 , σt2 , . . . , σtp

)
= ((µt , θt) , (vt , ϕt)) and

CFFDWA
(
σ ′
t1 , σ

′
t2 , . . . , σ

′
tp

)
=
((

µ′
t , θ

′
t
)
,
(
v′t , ϕ

′
t
))
.

Since µtk ≤ µ′
tk , which implies that µ3

tk ≤ µ′3
tk , we can

deduce that

1 − µ3
tk

≥ 1 − µ′3
tk

⇒

∏p

k=1

(
1 − µ3

tk

)λtk
≥

∏p

k=1

(
1 − µ′3

tk

)λtk

⇒ 1 −

∏p

k=1

(
1 − µ3

tk

)λtk
≤ 1 −

∏p

k=1

(
1 − µ′3

tk

)λtk

⇒
3

√
1 −

∏p

k=1

(
1 − µ3

tk

)λtk ≤
3

√
1 −

∏p

k=1

(
1 − µ′

tk

)λtk
Hence, we can conclude that

µtk ≤ µ′
tk ⇒ µt ≤ µ′

t

Similarly, by considering θtk ≤ θ ′
tk we derive,

3

√
1 −

∏p

k=1

(
1 − θ3tk

)λtk ≤
3

√
1 −

∏p

k=1

(
1 − γ 3

tk

)λtk

θt ≤ γt

By adopting the above procedure, we obtain the following
inequalities,

vt ≥ v′t
ϕt ≥ ϕ′

t

Therefore, utilizing Definition 13, we obtain that

CFFDWA
(
σt1 , σt2 , . . . , σtp

)
≤ CFFDWA

(
σ ′
t1 , σ

′
t2 , . . . , σ

′
tp

)
Thus, the monotonicity property is established.

In the ensuing definition, we present a dynamic geomet-
ric aggregation operator developed for the CFFNs, namely
CFFDWG operator.
Definition 14: Let σtk =

((
µtk , θtk

)
,
(
vtk , ϕtk

))
, for k =

1, 2, . . . , p, be a collection of CFFNs at p different peri-
ods tk . Moreover, λtk =

[
λt1 , λt2 , . . . , λtp

]T , where λtk ∈

[0, 1], represent the weight vector of the time periods tk and∑p
k=1 λtk = 1. A CFFDWGoperator is a functionCFFDWG:

σ p → σ , defined as:

CFFDWG
(
σt1 , σ t2 , . . . , σtp

)
= ⊗

p
k=1σ

λtk
tk

=


(∏p

k=1 µ
λtk
tk ,

∏p
k=1 θ

λtk
tk

)
,(

3
√
1−

∏p
k=1 (1−ν3tk )

λtk ,
3
√
1−

∏p
k=1 (1 − ϕ3

tk )
λtk

) ,

Theorem 5: Let σtk =
((

µtk , θtk
)
,
(
vtk′ , ϕtk

))
for k =

1, 2, . . . , p, represent a collection of CFFNs at p different
time periods tk . Additionally, consider the weight vector
λtk =

[
λt1 , λt2 . . . , λtp

]T , where λtk ∈ [0, 1] and
∑p

k=1 λtk =

1. The aggregated value of these CFFNs using the CFFDWG
operator is itself a CFFN, expressed as:

CFFDWG
(
σt1 , σ t2 , . . . , σtp

)
=


(∏p

k=1 µ
λtk
tk ,

∏p
k=1 θ

λtk
tk

)
,(

3
√
1 −

∏p
k=1 (1 − ν3tk )

λtk ,
3
√
1 −

∏p
k=1 (1 − ϕ3

tk )
λtk

)
Proof:We will use mathematical induction to prove this

theorem. Let p = 2, then

CFFDWG
(
σt1 , σt2

)
= σ

λt1
t1 ⊗ σ

λt2
t2

Exploring the components,

σ
λt1
t1

=

((
µ

λt1
t1 , θ

λt1
t1

)
,

(
3
√
1 −

(
1 − v3t1

)λt1 , 3
√
1 −

(
1 − ϕ3

t1

)λt1))
σ

λt2
t2

=

((
µ

λt2
t2 θ

λt2
t2

)
,

(
3
√
1 −

(
1 − v3t2

)λt2 , 3
√
1 −

(
1 − ϕ3

t2

)λt2))
Then,

σ
λt1
t1 ⊗ σ

λt2
t2
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=

((
µ

λt1
t1 , θ

λt1
t1

)
,

(
3
√
1 −

(
1 − v3t1

)λt1 , 3
√
1 −

(
1 − ϕ3

t1

)λt1))
⊗

((
µ

λt2
t2 , θ

λt2
t2

)
,

(
3
√
1 −

(
1 − v3t2

)λt2 , 3
√
1 −

(
1 − ϕ3

t2

)λt2))
CFFDWG

(
σt1 , σt2

)
=


(∏2

k=1 µ
λtk
tk ,

∏2
k=1 θ

λtk
tk

)
, 3

√
1 −

∏2
k=1 (1 − ν3tk )

λtk ,

3
√
1 −

∏2
k=1 (1 − ϕ3

tk )
λtk




Hence, the assertion holds true for p = 2.
Next, we suppose the theory is valid p = n > 2, then:

CFFDWG
(
σt1 , σ t2 , . . . , σtn

)
= ⊗

n
k=1σ

λtk
tk

=


(∏n

k=1 µ
λtk
tk ,

∏n
k=1 θ

λtk
tk

)
, 3

√
1 −

∏n
k=1 (1 − ν3tk )

λtk ,

3
√
1 −

∏n
k=1 (1 − ϕ3

tk )
λtk




Next, if p = n+ 1, then

CFFDWG
(
σt1 , σ t2 , . . . , σtn , σtn+1

)
= σ

λt1
t1 ⊗ σ

λt2
t2 ⊗ . . . ⊗ σ

λtn
tn ⊗ σ

λtn+1
tn+1

=


(∏n

k=1 µ
λtk
tk ,

∏n
k=1 θ

λtk
tk

)
, 3

√
1 −

∏n
k=1 (1 − ν3tk )

λtk ,

3
√
1 −

∏n
k=1 (1 − ϕ3

tk )
λtk




⊗

 (µ
λtn+1
tn+1

, θ
λtn+1
tn+1

),(
3
√
1 −

(
1 − ν3tn+1

)λtn+1 ,
3
√
1 −

(
1 − ϕ3

tn+1

)λtn+1

)
CFFDWG

(
σt1 , σ t2 , . . . , σtn+1

)
=


(∏n+1

k=1 µ
λtk
tk ,

∏n+1
k=1 θ

λtk
tk

)
, 3

√
1 −

∏n+1
k=1 (1 − ν3tk )

λtk ,

3
√
1 −

∏n+1
k=1 (1 − ϕ3

tk )
λtk




This illustrates that the theorem holds for p = n + 1. As a
result, we can conclude that statement true for all positive
integers p.
Example 4: Consider the CFFNs

σt1 = ((0.5, 0.9), (0.7, 0.3)), σt2 = ((0.7, 0.4), (0.5, 0.7)) and
σt3 = ((0.6, 0.5), (0.7, 0.9)) and associated weight vector is
λtk = (0.2, 0.3, 0.5)T of the periods At , where k = 1, 2, 3.
Then, ∏3

k=1
µ

λtk
tk = 0.605,

∏3

k=1
θ

λtk
tk = 0.525∏3

k=1

(
1 − v3tk

)λtk
= 0.715,

∏3

k=1

(
1 − ϕ3

tk

)λtk
= 0.456.

This implies that

CFFDWG
(
σt1 , σt2 , . . . , σtp

)

=

⊗p

k=1
σ

λtk
tk = ((0.605, 0.4), (0.658, 0.816)).

Thus, Theorem 5 is validated.
The subsequent theorem investigates the idempotent char-

acteristic of the CFFDWG operator.
Theorem 6: Consider a set of CFFNs σtk =((
µtk , θtk ,

(
vtk , ϕtk

))
. If σtk = σtj =

((
µtj , θtj ,

(
vtj , ϕtj

))
for

all k = 1, 2, . . . , p, and some j ∈ {1, 2, . . . , p}. Let λt =[
λt1 , λt2 . . . , λtp

]T represent the weight vector associated
with time period tk , such that λtk ∈ [0, 1] and

∑p
k=1 λtk = 1,

then CFFDWG
(
σt1 , σt2 , . . . , σtp

)
= σtj .

Proof: Proof can be obtained by using the same approach
employed in theorem 2.
The subsequent theorem investigates the boundedness

characteristic of the CFFDWG operator.

Theorem 7: Let σ−
t =

( (min
tk

{
µtk

}
,min
tk

{
θtk

})
,

(
max
tk

{
vtk
}
,max
tk

{
ϕtk

})) and σ+
t =

((max
tk

{
µtk

}
,max
tk

{
θtk

})
,

(
min
tk

{
vtk
}
,min
tk

{
ϕtk

})) be the lower and upper bound of the

CFFNs σtk =
((

µtk , θtk
)
,
(
vtk , ϕtk

))
, where k takes on values

from 1 to p. Let λtk =
[
λt1 , λt2 , . . . , λtp

]T be the associated
vector of these CFFNs, such that λtk ∈ [0, 1], satisfying∑p

k=1 λtk = 1. Then,

σ−
t ≤ CFFDWG

(
σt1 , σt2 , . . . , σtp

)
≤ σ+

t

Proof: Let us apply CFFDWG operator on CFFNs σtk
for all k .

CFFDWG
(
σt1 , σt2 , . . . , σtp

)
= ((µt , θt) , (vt , ϕt)) .

For each µtk ,

min
tk

{
µtk
}

≤ µtk ≤ max
tk

{
µtk
}

⇒

∏p

k=1

(
min
tk

{
µtk
})λtk

≤

∏p

k=1

(
µtk
)λtk

≤

∏p

k=1

(
max
tk

{
µtk
})λtk

⇒

(
min
tk

{
µtk
})∑p

k=1 λtk

≤

∏p

k=1

(
µtk
)λtk ≤

(
max
tk

{
µtk
})∑p

k=1 λtk

⇒ min
tk

{
µtk
}

≤ µt ≤ max
tk

{
µtk
}

For each θtk ,

min
tk

{
θtk
}

≤ θtk ≤ max
tk

{
θtk
}

⇒

∏p

k=1

(
min
tk

{
θtk
})λtk

≤

∏p

k=1

(
θtk
)λtk

75404 VOLUME 12, 2024



D. Alghazzawi et al.: Dynamic Aggregation Operators for Optimal BBAD Selection

≤

∏p

k=1

(
max
tk

{
θtk
})λtk

⇒

(
min
tk

{
θtk
})∑p

k=1 λtk

≤

∏p

k=1

(
θtk
)λtk ≤

(
max
tk

{
θtk
})∑p

k=1 λtk

⇒ min
tk

{
θtk
}

≤ θt ≤ max
tk

{
θtk
}

Moreover,

min
tk

{
vtk
}

≤ vtk ≤ max
tk

{
vtk
}

⇒ min
tk

{
v3tk

}
≤ v3tk ≤ max

tk

{
v3tk

}
⇒ 1 − max

tk

{
v3tk

}
≤ 1 − v3tk ≤ 1 − min

tk

{
v3tk

}
⇒

∏p

k=1

(
1 − max

tk

{
v3tk

})λtk

≤

∏p

k=1

(
1 − v3tk

)λtk

≤

∏p

k=1

(
1 − min

tk

{
v3tk

})λtk

⇒

(
1 − max

tk

{
v3tk

})∑p
k=1 λtk

≤

∏p

k=1

(
1 − v3tk

)λtk

≤

(
1 − min

tk

{
v3tk

})6
p
k=1λtk

⇒

(
1 − max

tk

{
v3tk

})
≤

∏p

k=1

(
1 − v3tk

)λtk
≤

(
1 − min

tk

{
v3tk

})
⇒ min

tk

{
v3tk

}
≤ 1 −

∏p

k=1

(
1 − v3tk

)λtk
≤ max

tk

{
v3tk

}
⇒ 3

√
min
tk

{
v3tk
}

≤
3

√
1 −

∏3

k=1

(
1 − v3tk

)λtk ≤ 3

√
max
tk

{
v3tk
}

Therefore,

min
tk

{
vtk
}

≤ vt ≤ max
tk

{
vtk
}

Furthermore,

min
tk

{
ϕtk
}

≤ ϕtk ≤ max
tk

{
ϕtk
}

⇒ min
tk

{
ϕ3
tk

}
≤ ϕ3

tk ≤ max
tk

{
ϕ3
tk

}
⇒ 1 − max

tk

{
ϕ3
tk

}
≤ 1 − ϕ3

tk ≤ 1 − min
tk

{
ϕ3
tk

}
⇒

∏p

k=1

(
1 − max

tk

{
ϕ3
tk

})λtk

≤

∏p

k=1

(
1 − ϕ3

tk

)λtk

≤

∏p

k=1

(
1 − min

tk

{
ϕ3
tk

})λtk

⇒

(
1 − max

tk

{
ϕ3
tk

})∑p
k=1 λtk

≤

∏p

k=1

(
1 − ϕ3

tk

)λtk

≤

(
1 − min

tk

{
ϕ3
tk

})6
p
k=1λtk

⇒

(
1 − max

tk

{
ϕ3
tk

})
≤

∏p

k=1

(
1 − ϕ3

tk

)λtk

≤

(
1 − min

tk

{
ϕ3
tk

})
⇒ min

tk

{
ϕ3
tk

}
≤ 1 −

∏p

k=1

(
1 − ϕ3

tk

)λtk
≤ max

tk

{
ϕ3
tk

}
⇒ 3

√
min
tk

{
ϕ3
tk

}
≤

3

√
1 −

∏p

k=1

(
1 − ϕ3

tk

)λtk
≤ s

√
max
tk

{
ϕ3
tk

}
This implies that,

min
tk

{
ϕtk
}

≤ ϕt ≤ max
tk

{
ϕtk
}

Hence by employing Definition 14, we obtain that

σ−
t ≤ CFFDWG

(
σt1 , σt2 , . . . , σtp

)
≤ σ+

t

The subsequent theorem investigates the monotonic char-
acteristic of the CFFDWG operator.
Theorem 8: Consider two sets of CFFNs σtk =((
µtk , θtk

)
,
(
vtk , ϕtk

))
and Gtk =

((
ϖtk , γtk

)
,
(
ξtk , δtk

))
,

where k = 1, 2, 3, . . . , p. Let λtk =
[
λt1 , λt2 , . . . , λtp

]T
represent the weight vector associated with time periods tk ,
such that λtk ∈ [0, 1] and

∑p
k=1 λtk = 1. If for each tk ,

µtk ≤ ηtk , θtk ≤ γtk , vtk ≥ ξtk and ϕtk ≥ δtk

Then,

CFFDWG
(
σt1 , σt2 , . . . , σtp

)
≤ CFFDWG(

(
Gt1 ,Gt2 , . . . ,Gtp

)
Proof: Proof of this theorem is similar to theorem 4.

REMARK: Linguistic and Metaphysical Interpretation of
above Theorems: In theorems 1 and 5, it is proved that when
we apply DWA and DWG operators to a finite collection of
CFFNs, their aggregated value gives a CFFN. Theorems 2 to 6
verify the idempotency property; this property ensures that
applying the weighted aggregation operator to the same input
CFFS multiple times produces the same result as applying it
once. This consistency and stability are essential in decision-
making processes, providing predictability and reliability in
the aggregate outcome. Theorems 3 and 7 satisfy the mono-
tonicity property; this property ensures that the output of the
aggregation operation behaves consistently with changes in
the input fuzzy sets’ membership and non-membership val-
ues. This property also guarantees the preservation of order in
the aggregation process. If the input CFFS exhibits a certain
order in terms of their membership and non-membership
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values, the monotonicity property ensures that the order
is maintained in the aggregated output. The boundedness
property is established by Theorems 4 and 8. This prop-
erty guarantees that the results generated by the weighted
aggregation operator are contained within specific limits. It is
important to ensure that the aggregation process produces
meaningful and precisely defined outcomes.

V. APPLICATION OF NEWLY DEFINED COMPLEX
FERMATEAN FUZZY DYNAMIC WEIGHTED AGGREGATION
OPERATORS IN MULTI ATTRIBUTE DECISION MAKING
PROBLEM
In this section, we develop a method based on proposed
aggregation operators to deal with MADM issues.

• Let ∂i = {∂1, ∂2, . . . , ∂m} be a discrete collection of
alternatives.

• Suppose that ρj = {ρ1, ρ2, . . . , ρn} denotes the set
of attributes and ω = [ω1, ω2, . . . , ωn]T is the asso-
ciated weighted vector, where ωj ∈ [0, 1] such that∑n

j=1 ωj = 1.
• Let tk , where k = 1, 2, . . . , p, denote p number of time
periods with weight vector λtk =

[
λt1 , λt2 , . . . , λtp

]T
such that λtk ∈ [0, 1] and

∑p
k=1 λtk = 1.

• Suppose that Rtk =
[
rij(tk )

]
m×n =((

µij(tk ), θij(tk )
)
,
(
vij(tk ), ϕij(tk )

))
m×n is the CFF deci-

sion matrix at tk . Here
(
µij(tk ), θij(tk )

)
shows how

much alternative ∂i meets the requirements for attribute
ρj during time interval tk and

(
vij(tk ), ϕij(tk )

)
shows

how much ∂i doesn’t meet the requirements for
attribute ρj during time interval tk . Additionally,
µij(tk ), θij(tk ), vij(tk ), ϕij(tk ) ∈ [0, 1] such that µ3

ij(tk )
+

v3ij(tk ) ≤ 1 and θ3ij(tk )
+ ϕ3

ij(tk )
≤ 1, where i varies

from 1 to m and j varies from 1 to n.

By utilizing the aforementioned decision data, we devise
an operational approach to rank and choose the most
favorable choice.

A. PROCEDURE FOR CFFDWA
Step 1: Apply CFFDWA operator on the matrix Rtk :

Rtk = rij(tk ) =
((

µij(tk ), θij(tk )
)
,
(
vij(tk ), ϕij(tk )

))
= CFFDWA

(
rij(t1), rij(t2), . . . , rij(tp)

)
=

⊕p

k=1
λtkFtk

Apply Theorem 1 to above relationship:
rij (tk)

=

(
3
√
1 −

∏p
k=1

(
1 − µ3

tk

)λtk , 3
√
1 −

∏p
k=1

(
1 − θ3tk

)λtk)(∏p
k=1 vtk

λtk ·
∏p

k=1 ϕ
λtk
tk

)


This aggregation combines all CFF decisionmatricesRtk , as a
collective decision matrix R, where λtk =

[
λt1 , λt2 , . . . , λtp

]T
denotes the associated weight vector for the time period tk .

Step 2: Apply CFFWA operator on collective CFF infor-
mation given in matrix R as follow:

R = ri = ((µi, θi) , (νi, ϕi)) = CFFWA (ri1, ri2, . . . , rin)

=

((
3
√
1 −

∏n
j=1 (1 − µ3

i )
ωj

, 3
√
1 −

∏n
j=1 (1 − θ3i )

ωj
)

,

(
∏n

j=1 ν
ωj
i ,
∏n

j=1 ϕ
ωj
i )

)
This action derives the collective overall preference value ri
for the alternative ∂i, where ωj = [ω1, ω2, . . . , ωn]T and ωj ∈

[0, 1] are the weight vectors for the attributes.
Step 3: Use Definition 9 to calculate the scores Ω (ri) for

each ∂i.
Step 4: Rank all the alternatives ∂i and identify the optimal

one.

B. PROCEDURE FOR CFFDWG
Step1. Apply CFFDWG operator on the matrix Rtk :

Rtk = rij(tk ) =
((

µij(tk ), θij(tk )
)
,
(
vij(tk ), ϕij(tk )

))
= CFFDWG

(
rij(t1), rij(t2), . . . , rij(tp)

)
= ⊗

p
k=1Ftkλtk

Apply Theorem 1 to above relationship:

rij(tk ) =


(∏p

k=1 µ
λtk
tk ,

∏p
k=1 θ

λtk
tk

)
, 3

√
1 −

∏p
k=1 (1 − ν3tk )

λtk ,

3
√
1 −

∏p
k=1 (1 − ϕ3

tk )
λtk




This aggregation combines all CFF decisionmatricesRtk , as a
collective decision matrix R.
Step 2: Apply CFFWG operator on collective CFF infor-

mation given in matrix R as follows:

ri = ((µi, θi) , (νi, ϕi))

= CFFWG (ri1, ri2, . . . , rin)

=


(∏n

j=1 µ
ωj
i ,
∏m

i=1 θ
ωj
i

)
, 3

√
1 −

∏n
j=1

(
1 − ν3i

)ωj
,

3
√
1 −

∏n
j=1 (1 − ϕ3

i )
ωj

)

 .

This procedure yields the aggregated overall preference value
ri, for the alternative ∂i. Here, ωj = [ω1, ω2, . . . , ωn]T , with
ωj ∈ [0, 1] represents the weight vectors corresponding to the
attributes.
Step 3: Compute the scores Ω (ri) of the overall CFF

preference values ri by using Definition 9.
Step 4: Rank all the alternatives ∂i based on their compati-

bility with Ω (ri), and choose the most optimal one.

C. ILLUSTRATIVE EXAMPLE
Increasing technological advances have resulted in numerous
enhancements that are quite beneficial to the growth and
development of enterprises. Biometric technology is a promi-
nent form of technology that is currently gaining significant
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FIGURE 1. Sequential process for selecting the optimal BBAD model
using the CFFDWA operator.

popularity. Biometric technologies are used for the purpose
of identifying and verifying human traits. Each employee’s
unique fingerprint, hand shape, face shape, or iris shape is
scanned by a biometric-based attendance device, which is
gaining widespread recognition. These devices ensure that
employees are unable to sign in for one another, preventing
employee time theft. In view of the aforementioned charac-
teristics of BBAD, Bharat Sanchar Nagar Limited, an agency
headquartered in New Delhi, India, has made the strate-
gic decision to implement BBAD across all of its country
branches. In order to accomplish this objective, the Bharat
Sanchar Nagar Limited authority gathers a group conference
to evaluate and choose the most efficient model from a set
of four alternatives. In this study, we describe a systematic
methodology for the purpose of identifying the optimal alter-
native using CFF dynamic aggregation operators.

Let {∂1, ∂2, ∂3, ∂4} be the set of alternatives to choose the
most efficient variant of BBAD.

i. ∂1 : CP plus
ii. ∂2 : ESSLX990
iii. ∂3 : T60

FIGURE 2. Sequential process for selecting the optimal BBAD model
using the CFFDWG operator.

iv. ∂4 : T 60

TheBBADmodel is assessed in accordancewith four criteria.
ρ1, ρ2, ρ3, ρ4.

i. ρ1: User friendly
ii. ρ2: Provision for data backup
iii. ρ3: Battery backup
iv. ρ4: Employee tracking via GPS.

In the context of CFFNs, we allocate distinct preferences to
every alternative. The evaluation of the four potential alterna-
tives ∂1, ∂2, ∂3, ∂4 can be conducted by utilizing the CFF data
offered by the decision maker for the four attributes during
the specified time intervals t1, t2 and t3. This information is
presented in Tables 1, 2 and 3.

Define the weight vector λtk = [0.39, 0.28, 0.33]T corre-
sponding to the time intervals tk , where k = 1, 2, 3 and the
weight vector ωj = [0.32, 0.24, 0.16, 0.28]T relating to the
attributes ρj, where j = 1, 2, 3, 4.
The following steps addresses the MADM issue discussed

previously in relation to the CFFDWA operator.
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TABLE 1. Decision matrix Rt1
.

TABLE 2. Decision matrix Rt1
.

TABLE 3. Decision matrix Rt1
.

Step 1: Apply the CFFDWA operator to consolidate all the
CFF decision matrices Rtk into a unified CFF decision matrix
R displayed in Table 4.
Step 2: Use the CFFWA operator on the values of the

matrix R to obtain the overall values of all the alternatives.

∂1 = ((0.816, 0.723), (0.622, 0.627))

∂2 = ((0.622, 0.662), (0.561, 0.640))

∂3 = ((0.797, 0.513), (0.597, 0.718))

∂4 = ((0.652, 0.749), (0.734, 0.477))

Step 3: Determine the ranking of all alternatives by cal-
culating the scores Ω (∂1) , Ω (∂2) , Ω (∂3) and Ω (∂4), of the
CFF values:

Ω (∂1) = 0.282

Ω (∂2) = 0.067

Ω (∂3) = 0.082

Ω (∂4) = 0.152

Step 4: Since Ω (∂1) > Ω (∂4) > Ω (∂3) > Ω (∂2), as a
result, the following is the alternate ranking order:

∂1 > ∂4 > ∂3 > ∂2

Hence CP Plus is the best model of BBAD. Figure 1 illustrates
the sequential process for selecting the optimal BBADmodel
using the CFFDWA operator.
In a similar vein, the above-mentioned MADM problem

is resolved as follows within the context of the CFFDWG
operator:

Step 1:Apply the CFFDWG operator to consolidate all the
CFF decision matrices Rtk , in a unified CFF decision matrix
R, as delineated in Table 5.
Step 2: Use the CFFWG operator on the values of the

matrix R to obtain the overall values of all alternatives ∂i.

∂1 = ((0.775, 0.694), (0.716, 0.708))

∂2 = ((0.607, 0.566), (0.716, 0.649))

∂3 = ((0.783, 0.460), (0.610, 0.788))

∂4 = ((0.629, 0.735), (0.787, 0.609))

Step 3: Determine the ranking of all alternatives by cal-
culating the scores Ω (∂1) , Ω (∂2) , Ω (∂3) and Ω (∂4), of the
CFF values.

Ω (∂1) = 0.123

Ω (∂2) = −0.077

Ω (∂3) = −0.015

Ω (∂4) = 0.027

Step 4: Since Ω (∂1) > Ω (∂4) > Ω (∂3) > Ω (∂2), as a
result, the following is the alternate ranking order:

∂1 > ∂4 > ∂3 > ∂2

Hence CP Plus is the best model of BBAD. Figure 2 illustrates
the sequential process for selecting the optimal BBADmodel
using the CFFDWG operator.

D. COMPARATIVE ANALYSIS
In this discussion, we conduct a comparative analysis to
evaluate the effectiveness of the proposed techniques. The
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TABLE 4. Decision matrix R using CFFDWA.

TABLE 5. Decision matrix R using CFFDWG.

TABLE 6. Aggregated values obtained from existing operators.

TABLE 7. Scores and ranking of alternatives using existing and newly designed approaches.

following key points demonstrate how the proposed aggre-
gation operators are superior to those defined in [15], [22],
[23], [24], [25], [26], [27], [28], [36], [37], [38], [39], [40],
[41], [42], and [43].
i. The aggregation operators defined in the FF knowledge

framework [15], [22], [23], [24] cannot be used to ana-
lyze the data presented in Tables 1-3. These operators
do not include phase terms, resulting in the loss of a
significant amount of data. The enhancement of method-
ologies presented in this research is facilitated by the
advancements made within the dynamic CFF environ-
ment. This approach involves various time periods and
facilitates a more accurate assessment of the data under
consideration.

ii. The techniques proposed in reference [42] are inappro-
priate for assessing the data contained in Tables 1-3 due
to their particular limitations when dealing with time-
dependent decision-making challenges. Because of the
dynamic CFF environment, the suggested approaches
work exceptionally well. They accommodate many time

periods and provide for a more accurate assessment of
the data being considered.

iii. The aggregation operators created for CIFSs and CPFSs
have several limitations. These operators failed to con-
sider the time periods, making them unable to analyze
the data in Tables 1-3. Additionally, the absence of time
factor results in significant data loss. The suggested
strategies are advantageous since they have been devel-
oped within the context of dynamic CFF knowledge,
using temporal intervals to appropriately assess the data
under consideration.

iv. The techniques elucidated in this article have a broader
purview than the approaches devised for dynamic IF
environments [25], [26], [27], [28]. Membership and
nonmembership degrees are less efficient in IF con-
texts than Figure 1 Sequential process for selecting the
optimal BBAD model using the CFFDWA operator in
CFF contexts. Consequently, dynamic CFFS can iden-
tify and resolve uncertainties through a broader variety
of approaches than dynamic IFS.
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v. To tackle the MADM problem described earlier,
we assess the efficacy and reliability of our proposed
operators in comparison to operators in the CIF envi-
ronment (See Tables 6 and 7).

CFF dynamic aggregation operators, according to the
article, provide a more flexible and effective approach to
integrating information than CIF aggregation operators. The
CFFS has a more comprehensive structure than the CIFS
because it satisfies the conditions,µ3

+v3 ≤ 1 and θ3+ϕ3
≤

1. Consequently, it offers greater adaptability in resolving
decision-making issues that encompass ambiguity.

VI. CONCLUSION
This study investigates MADM using CFF dynamic knowl-
edge. In order to address the complexities of MADM
problems, we have devised two novel aggregation operators:
the CFFDWA and CFFDWG. A novel scoring system has
been developed to prioritize and choose the optimal choice.
We have proved several essential characteristics of these
operators. Moreover, a systematic procedure to solveMADM
problems in the framework of CFF dynamic aggregation
operators has been presented. We have also illustrated the
realistic efficiency of these operators by proposing techniques
to tackle real-world difficulties in multi-attribute decision
making. Additionally, this work has provided the best method
for choosing the BBADmodel in light of the newly described
dynamic aggregating operators. The result of this trial shows
that CP PLUS is the best model. Finally, a comparative
study has been performed to showcase the reliability and
effectiveness of the suggested strategies in contrast to current
approaches.

A. A LIMITATION OF STUDY
The limitation of the present research emerges when the
sum of the cubes representing degrees of membership and
non-membership surpasses 1. Furthermore, in the case of
decision-making problems involving membership, neutral,
and non-membership degrees, the CFFS framework fails.

B. FUTURE WORK
Our future studies will focus on addressing the limits of
the current work by exploring recommended approaches for
broader contexts, such as complex q-rung fuzzy sets, complex
image fuzzy sets, and complex spherical fuzzy sets. More-
over, we will improve the validity and applicability of the
suggested techniques by applying them to different dynamic
decision-making scenarios such as flexible financial strate-
gies, real-time monitoring of online social media activities,
dynamic assessment of military management, secret short-
listing procedures, addressing the energy crisis in developing
countries, and resolving timedependent MADM challenges.
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