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ABSTRACT Federated Learning (FL) allows task initiators (servers) to utilize data from task participants
(clients) to train machine learning models while protecting data privacy. However, in the FL system, when
the client data are non-independently identically distributed (Non-IID), appropriate metrics are chosen to
accurately evaluate the quality of the client data, accordingly to select a reasonable subset of clients, and
thus ensure the accuracy of the FL aggregation model. In this paper, based on the experimental results,
a data distribution evaluation model is proposed, which is based on two metrics: the volume of client data
and its increment and the balance of global client data. This data distribution evaluation model enables more
accurate evaluation of clients with Non-IID characteristics. Based on this evaluationmodel, this paper further
proposes an FL client subset selection algorithm. This algorithm accurately evaluates the data value of each
client, enabling the server to select the most valuable subset of clients before FL training, thus improving the
accuracy of the federated learning aggregation model in scenarios with Non-IID client data. When training
the FL aggregation model using the proposed method on datasets composed of CIFAR-10, Fashion-MNIST,
and DEAP distributions, compared to the optimal baseline, the average precision scores increased by 5.99%,
4.79%, and 4.29% respectively. The improvement in accuracy is more pronounced in scenarios with Non-
IID data, such as in the DEAP dataset distribution with the highest Non-IID degree, where the accuracy
increased by 5.30% compared to the optimal baseline.

INDEX TERMS Client selection, data distribution, federated learning, machine learning.

I. INTRODUCTION
In recent years, the rise of the Internet of Things (IoT) and
the surge in the number of smart devices have generated
massive amounts of data, which provides new opportunities
to further improve the accuracy of AI models. However, the
ensuing data privacy issues pose new challenges for model
developers [1]. As a result, scholars have proposed Federated
Learning (FL) - a distributed computational training method
designed to protect user privacy [2]. FL takes full advantage
of the abundant data resources and computational power on
each device, with the server as the coordination center. Each
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client uses its local data to train the model and uploads
only model-related information to the server for aggregation.
Eventually, the aggregatedmodel is formed on the server side,
and the model is applied to realize the recognition task [3].

However, FL also faces numerous new challenges. In par-
ticular, due to the general non-independently identically
distributed (Non-IID) nature of the data from each client, the
optimization direction of the model on local data may result
in a significant difference from the optimization direction
of the aggregated model on the aggregated global data [4],
[5]. This difference may make FL lower than traditional
centralized AI methods in key performance metrics such as
training accuracy and convergence speed. Other researchers
found that when dealing with a multi-classification task on
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the CIFAR-10 dataset, FL decreased its accuracy by 55%
compared to the traditional approach due to the client data
exhibiting Non-IID characteristics.

Therefore, selecting balanced, diverse, and highly repre-
sentative data has become crucial for enhancing FL perfor-
mance. Traditional FL usually randomly selects a portion
of clients to form a subset of clients to participate in the
training [6], [7], and this approach may lead to an imbalance
of the data distribution, which in turn makes the model prefer
data from some specific clients, and ultimately affects the
accuracy of the model. Existing solutions usually evaluate the
model parameters or gradients uploaded by the client during
the server training process as a way to guide the client’s
selection [8], [9]. However, this approach still faces several
problems: First, a large amount of client data needs to be
purchased, leading to an increase in cost [10]. Second, the
evaluation process consumes a large amount of computational
resources and has a high time cost [11], [12], [13]; and
finally, the client needs to upload the model parameters or
gradients, which may lead to privacy leakage issues [14].
Therefore, FL requires effective value evaluation and screen-
ing of clients before training, aiming to mitigate the negative
impact of client Non-IID characteristics on FL performance,
while ensuring that client privacy is protected.

For the multi-classification task scenario, this paper pro-
poses a client selection algorithm based on data quality
evaluation metrics, which can accurately evaluate the value
of each client before training to construct a reasonable sub-
set of clients under the premise of protecting data privacy.
By utilizing the data provided by this client subset for FL,
the resulting aggregated model trained not only has high
recognition accuracy but also effectively reduces the capital,
communication, and computational costs in the FL process.
We validate this on the image dataset CIFAR-10, Fashion-
MNIST, and the emotion recognition dataset DEAP. Themain
contributions of this paper are as follows:
• Through experiments, we identified the characteristics
of the functions required to assess data volume and its
increment, as well as the balance of global data, and
established evaluation metrics for evaluating the quality
of client data based on these characteristics.

• We propose an algorithm based on client data qual-
ity evaluation metrics for selecting a subset of clients
required before FL training. We apply this client subset
selection algorithm to a standard federated learning task
system example.

• We simulated and built the whole set of FL application
flow and verified that this client selection algorithm has
a high accuracy of the aggregation model obtained from
federated model training in Non-IID scenarios for image
classification and EEG-based emotion recognition
scenarios.

II. RELATED WORK
The implementation of FL usually involves the participation
of hundreds or even thousands of clients [15]. However, due

to the constraints of budget and resource limitations, a small
number of clients are generally selected to participate during
actual federated learning training [16], and client selection
has become a key factor in improving the performance of
federated learning. Compared to the traditional method of
randomly selecting clients [11], [17], much literature has
proposed a variety of novel client selection methods. For
example, literature [18] proposes an algorithm that prioritizes
clients with higher local losses to participate in each round of
training, thus accelerating the convergence of errors. In [19],
the participating client models are evaluated by evaluating the
model during each round of training to facilitate the speed of
convergence. Literature [20] explores the problem of inactive
clients and their incomplete updates for fast convergence of
FL. In literature [21] and [22], Shapley values are introduced
to evaluate the value of clients as a way to normalize the client
selection process.

The above approach requires evaluating clients in each
round of training, a process that consumes a large amount
of computational resources and time and thus encounters
challenges in practical applications. Given this, scholars have
proposed a new algorithm, i.e., pre-evaluating the clients
before the training is initiated, and letting the clients that
are qualified by the evaluation results participate in each
round of training for FL. For example, in [23], a method
was designed in which the volume of data owned by a
client is used as a client auction factor to attract clients
with more data to join FL. Another method [24] mea-
sured the client value and selected clients by calculating
the uniformity and diversity of the client dataset distribu-
tion. Reference [25] suggested that selecting clients with
large and nearly uniformly distributed data improved model
performance. The above methods face limitations in their
applicability and accuracy of FL in the scenario of Non-IID
data.

III. MAIN IDEA AND DESIGN METHOD
It has been found that the accuracy of federated learn-
ing is closely related to the quality of client data [15],
[17], [24], [26], so the data quality of each client needs
to be effectively evaluated. In this paper, a new client data
quality evaluation metric is proposed, and an FL client
selection algorithm is designed based on this evaluation
model. Using this client selection algorithm, the clients are
evaluated before the training, the clients that meet the con-
ditions are filtered out, and the filtered clients participate
in the training of each round of FL. The client selection
algorithm is particularly well-suited for Federated Learn-
ing in Non-IID data scenarios, effectively enhancing FL
accuracy.

Next, we will first introduce two core metrics for evaluat-
ing client data quality, then describe the client data quality
evaluation metrics designed in this paper, and finally propose
a client selection algorithm for selecting a reasonable subset
of clients in FL.
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A. DESIGN OF THE CLIENT SELECTION ALGORITHM
1) EVALUATION METRIC SELECTION
To design reasonable data quality evaluation metrics, this
study explores the impact of data volume and data distribution
on the performance of FL. Existing evaluation methods are
mainly based on the total amount of client data and the
variance of the client data distribution. In our preliminary
experiments using the CIFAR-10 [27] dataset to train the
ResNet-56 [28] model, we found that federated learning in
non-IID data scenarios exhibits the following two character-
istics: First, the volume of data in each class and its increment
in the client dataset has an impact on the recognition accuracy
of the aggregation model. Second, a balanced global data
distribution ensures that the aggregation model maintains
high recognition accuracy.

FIGURE 1. Impact of data volume and distribution on the FL training task.

a) The volume of client data and its increment. In the
client data sets, the volume of data and its increment in
each class have an impact on the recognition accuracy
of the aggregated model. We use the ResNet-56 model
to conduct multiple FL experiments on the CIFAR-10
dataset, setting up 10 clients for each experiment with
200 iteration cycles, and recording the recognition
accuracy of each aggregated model. The experiments
start from an extreme Non-IID data configuration, i.e.,
initially, each client has only 100 samples of data
for a particular class in CIFAR-10. CIFAR-10 is a
10-categorization task, meaning that each client starts
with only one class to train. Subsequently, 1 image from
each of the other 9 categories was added to each client
at a time during each FL retraining (9 images in total) to
train and record the recognition accuracy. Ultimately,
the process was repeated until the volume of data for
each class reached 100 images. As a result, a total
of 100 FL aggregation models were trained, and their
recognition accuracies are shown in Figure 1a. Figure a
illustrates the trend in the accuracy of these aggregation
models as well as their variation(1 Accuracy), where
the horizontal axis indicates the volume of data added
to categories other than the initial one. As can be seen
from the figure, with the increase in the amount of data
for each class at the client, the recognition accuracy
of the aggregation model has been improved. How-
ever, once the data volume for each class on the client
reaches a certain level, the recognition accuracy of

the aggregation model does not improve significantly,
resulting in a marginal diminishing effect.

b) The uniformity of the global data. A balanced global
data distribution ensures that the aggregation model
maintains high recognition accuracy. A more bal-
anced global data distribution in federated learning can
effectively reduce the impact of Non-IID on the recog-
nition accuracy of FL aggregation models. As shown
in Figure 1b, the accuracy of the aggregated model
recognition is compared through three types of sce-
narios: The first, a balanced client local distribution
and balanced global distribution (BL&BG); the second,
a balanced global distribution and imbalanced client
local distribution (IL&BG); and the third, an imbal-
anced global distribution and imbalanced client local
distribution (IL&IG). In Figure 1b, it is shown that the
aggregation model’s recognition accuracy decreases
from 87% to 74% when trained with FL using data
fromBL&BG, compared to FL using data from IL&IG.
When trained with FL using data from IL&BG, the
aggregated model experiences only a 1% decrease in
recognition accuracy. In practice, the distribution of
client data depends on the data it holds, so the server
cannot directly interfere with the distribution of client
data. However, the server can mitigate the negative
impact of local data imbalance on the recognition accu-
racy of the integrated model by selecting a subset of
clients participating in FL training to adjust the balance
of the global data distribution.

2) MATHEMATICAL MODELS FOR EVALUATION
The experiments in the previous section lead us to evaluate
the quality of the data through the following two dimen-
sions: First, the evaluation metric for data volume should
emphasize the volume of data per class for each customer and
the marginal benefits derived from its incremental growth;

TABLE 1. Notation and description.
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Second, when evaluating the client data distribution, more
attention should be paid to the balance of the global data
distribution.

Therefore, the evaluation metric for each client’s data
volume and its increment should fulfill the following two
conditions: 1) The function should be monotonically increas-
ing. 2) Its derivative should be monotonically decreasing and
the growth of the function stabilizes after a certain threshold
amount of data. Based on this we designed the data volume
and its increment evaluation metric as shown in equation 1.

ϕe_volume =

C∑
c=1

(ϕce )

ϕce =

∫ r(e,c)

0
(1− x)bdx

r (e, c) = min
{

nce
Nc/E

, 1
}

(1)

In Equation 1, e denotes the client, and c denotes the
data class. The metric ϕe_volume for the data volume and its
increment for client e is calculated by cumulating the class
data volume and its increment coefficient ϕce for each class
c of the client e. In ϕce , r(e, c) denotes the upper limit of
data integration, i.e., the ratio of the number of categories
c in customer nce to the average number of categories c in
all customers (i.e., the total number of categories c in all
customers divided by the number of customers E) - nce

Nc/E .

If nce
Nc/E is greater than 1, set the value of r(e, c) to 1. If

nce
Nc/E is less than 1, it indicates that the quantity of class c in
client nce is lower than the average quantity of class c across
all clients, indicating that class c is rarer. At this point the
value of r (e, c) increases with the number of categories c,
ensuring that the data volume and its increment coefficient ϕce
is large for categories with large data amounts. At the same
time, the impact of adding additional data units to the overall
evaluation metric exhibits diminishing marginal utility as the
amount of data increases. Therefore, for the integrand func-
tion f (x), the decreasing function chosen is (1−x)b, as shown
in Figure 2a. Here, b (b > 0) is the constant that adjusts the
trend of the decreasing function. As the number of categories
c in customer nce increases, the increase in ϕce slows down until
nce

Nc/E is greater than 1. The value of r(e, c) no longer increases
with the number of categories c, but is simply set to 1.

FIGURE 2. Schematic diagram of the product function.

The data volume and its increment metric proposed in this
paper aim at evaluating the data characteristics of each class
in the client in a more fine-grained way to ensure that each
class in the subset of clients selected for FL has sufficient
data, rather than just evaluating the overall data amount of
the subset of clients.

A balanced global data distribution ensures that the
FL aggregation model has higher recognition accuracy.
We assign each class a data balance metric ϕc_rareness related
to its rareness based on the distributional properties of the
global data, which is defined as follows:

ϕc_rareness =

[
1−

(
U − Nc
U + Nc

)]
(2)

In the above equation, U is the average of the global data
volume over the number of categories, and Nc is the number
of category c in the global data volume. Equation 2 measures
the rareness of the amount of data in class c in the total amount
of data, i.e., the rarer the data in a particular category is, the
lower the data balance metric ϕc_rareness is. This reminds us
that clients with rare data should be given due consideration
in client selection algorithms to prevent rare data from being
overlooked due to the inadequacy of statistical methods.

We build a comprehensive data quality evaluation model
ϕe_evaluation by incorporating the data balance metric
ϕc_rareness into the exponential term of the data volume
and its increment evaluation metric ϕe_volume, as shown in
Equation 3.

ϕe_evaluation =

C∑
c=1

ϕ(nce)

ϕ(nce) =
∫ r(e,c)

0
(1− x)bϕc_rarenessdx (3)

Figure 2b shows the graph of the integrand function con-
taining the data balance metric ϕc_rareness. The higher the data
balance metric ϕc_rareness, the lower the rate of decrease of the
integrand function, while the data volume controls the upper
limit of the integral. Therefore, the higher the data balance
metric ϕc_rareness, the larger the total data evaluation metric
ϕ(nce) is for a certain upper limit of integration. This ensures
that for a given volume of data, the rarer the data the higher
the evaluation metrics.

The data quality evaluation model proposed in this paper
has the following advantages:

a) Considered the impact of both the size of the data
volume and the increment of data volume for each class
within the client on the recognition accuracy of the FL
aggregation model;

b) Variables N and Nc, based on global data design, pre-
vent excessive emphasis on data balance distribution
at the individual client level, while also avoiding the
neglect of those data resources that, although rare, are
of high quality overall.

c) A data balance metric ϕc_rareness is introduced into the
index term to evaluate the combined effect of the size
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of the data volume, the increment of the data volume
and the global data balance on the data quality, thus
enhancing the flexibility and adjustability of the data
quality evaluation metrics.

B. CLIENT SELECTION ALGORITHM
Our client subset selection algorithm can be described by the
following algorithm:

Algorithm 1 Client Selection and Payment Determination
Input: Reward R, Expected number of clients K , Client’s

pool E;
Output: Selected clients set S, Payment for all clients P;

Server-side:
1 Collect global distribution D = {Nc}c∈C from

client’s pool E and compute the total
2 volume of data N =

∑
c∈C Nc;

Define data evaluation function ϕ based
3 on D and N. Send ϕ to all clients;

Clients side:
Calculate data score se according to

4
evaluation function ϕ, se← ϕ

(
nce

)
and

5
6 send it to the server;
7 Server-side:
8 Collect se from all clients and sort se by
9 se1 > se2 > . . . > se3 > . . . > seE ; Select Top-
10
11 K clients S← [e1, e2, . . . , eK ];
12 For each e ∈ E do
13 If e ∈ S do

pe = R/K ;
Else
pe = 0;

End if
End for
Return S, P← {pe}e∈E.

Note that the client selection algorithm is applied
only once before FL starts the training task, as shown
in Figure 3.

We designated the server as the FL task publisher and the
client as the FL task applicant. They operate through the
following four steps:

1) EVALUATION METRIC SELECTION
The server releases the task requirements (data, labeling, and
hardware requirements) and the expected number of FL task
clients K. Clients willing to participate in the training task
submit a request to participate and the payment they want to
receive, and only K clients can participate in the task.

2) DATA EVALUATION
The server sends a data collector, which only collects the
volume and increment of data from the clients and the global

distribution of the data. The server then defines and param-
eterizes a data evaluation function ϕ that is used to evaluate
the value of each client’s data. The function ϕ combines the
collective statistical information from the clients to perform
data evaluation for each client.

3) CLIENT SELECTION
After the scores of each client are determined, all clients
are sorted according to the score, the top K clients with the
highest score are selected, and the payment remuneration of
the selected clients is determined.

4) FL TASK
The server starts the federated learning task based on the
client selection result. Model training and updating are
achieved by iteratively passingmodel parameters between the
client and the server.

FIGURE 3. Federated learning client data selection process.

After completing the aforementioned client selection
algorithm, FL will select suitable clients to form a client
subset, and then proceed with the training and recognition of
the model according to the original steps of FL. We name the
client selection algorithm proposed in this paper as DDEM
(Client Selection Algorithm Based on a Data Distribution
Evaluation Model).

C. COMPLEXITY ANALYSIS OF ALGORITHMS
DDEM employs a more fine-grained strategy, allowing the
server to evaluate the contribution of each category from each
client to the training process before training. Based on this
evaluation, a suitable subset of clients is selected to partici-
pate in the training. During the training process of federated
learning, DDEM is no longer used to evaluate the client,
so the complexity of the algorithm is lower. Specifically,
we use ϕ

(
nce

)
from Equation 3 to represent the calculation

of the value of a single data class for a client data, where
ϕ(nce) is the total data evaluation metric. Given that the server
needs to compute these scores for all data categories (C) of
all clients (E), the overall complexity of the DDEM algorithm
can be represented as E ∗ C ∗ ϕ(nce). For example, if the server
specifies a requirement for data from 10 categories (C= 10),
and there are 20 clients interested in joining the federated
learning task, the server needs to calculate ϕ

(
nce

)
a total of

200 times.
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IV. EXPERIMENTATION AND RESULTS
Our experimental settings were as follows. In the experi-
ments, a subset of clients was picked once using our method
before each FL task started training. The selected clients were
all added to the FL training task using the same hyperparam-
eters, with the batch size set to 128, and in the simulated
experiment with 100 clients, the batch size was set to 64;
the learning rate was set to 0.003. All clients participated
in local training for 1 epoch before joining the aggregation.
The model aggregation was carried out on the server, and the
aggregated model was tested for accuracy. The test accuracy
and loss were recorded to serve as observations of themodel’s
performance. The CIFAR10 experiment was halted after
600 rounds of model aggregation, while the DEAP experi-
ment was concluded after 200 rounds of model aggregation.

A. SYSTEM SETTINGS
Our experiments were conducted on a Linux server with 40-
core 4.0 GHz Intel Xeon CPUs and 8 NVIDIA V100 GPUs.
On the server side, a document container with 8 CPU cores
and 1 GPU was configured, and the clients shared the
remaining computational resources equally. All functions are
implemented via Python, where the FL function and the
model training function are based on FedML and PyTorch,
respectively.

B. APPLICATIONS
The pretraining client selection algorithm proposed in this
paper is applied to a multi-classification task in an FL envi-
ronment. To verify the generalizability and accuracy of the
algorithms, two representative FL application scenarios are
selected in this paper, and three multiclassification datasets
are comprehensively evaluated under these scenarios.

1) APPLICATION #1
Image classification is a widely studied application domain.
In this paper, we adopt the ResNet model to perform image
classification tasks and conduct model training and eval-
uation on two datasets: CIFAR-10 and Fashion-MNIST
(FMNIST). CIFAR-10 consists of 60,000 32×32 pixel color
images that have been grouped into 10 different categories
such as airplanes and automobiles. Among them, 50,000
images are used for training, and the remaining 10,000 are
used for testing. FMNIST contains 70,000 grayscale images
of 28 × 28 pixels classified into 10 categories such as pants
and pullovers. Among them, 60,000 were used for training
and 10,000 for testing. The training dataset is distributed
to each client according to the Dirichlet distribution, which
means that each client receives a different amount of training
data and its distribution, while the test dataset has a balanced
distribution.

2) APPLICATION #2
Applying deep learning techniques to the field of brain-
machine interfaces, especially in emotion recognition, has
shown tremendous potential [29], [30]. This study utilized
the publicly available EEG dataset DEAP [31] to train the

emotion recognition model. The dataset includes EEG and
related physiological signals from 32 participants during pro-
longed audiovisual stimuli presentation, which can be used
to analyze human emotional states. Likeness labels in DEAP
are quantified as numerical values ranging from 1 to 9, con-
stituting an imbalanced nine-category label for the Likeness
prediction task. We sampled the DEAP dataset to obtain a
sample set containing 90,000 labels with a balance distribu-
tion, and divided it into training and testing sets at an 8:2 ratio,
to construct a Non-IID experiment.

C. CLIENT-SIDE DATA DISTRIBUTION
In reality, similar to emotion recognition, sample collection
is based on the subjective thoughts of the subject or patient;
therefore, the data distribution of the datasets used by the
various organizations that own the data and participate in FL
is often different. It is more likely that the data distributions
of the different FL task participants are not independently
identically distributed. Therefore, to simulate realistic scenar-
ios, we constructed datasets with different distributions and
distributed these data to clients.

D. DATA DISTRIBUTION GENERATION
We constructed datasets with different data distributions to
test our method, and we treated the original dataset as dis-
tribution D1, as shown in Figure 4. For a comprehensive
evaluation of our algorithm, we removed a certain number
of samples from each class of the original data and downsam-
pled the original dataset into sub-datasets with uneven sample
sizes for each class. We generated five (D2-D6) subdatasets
with different distributions by incremental deletion. Figure 8a
illustrates the data generation process using the CIFAR10
dataset as an example, where Class denotes the class type
and Distribution denotes that we created six different data
distributions.

FIGURE 4. Generated data distributions of CIFAR10 and an example of its
allocation.

E. DATA DISTRIBUTION TO CLIENTS
For each experiment, a generated dataset was distributed to
clients. In this process, data samples from one of the dataset’s
classes were distributed to the client using a set of random
numbers that followed a Dirichlet distribution. This process
was repeated for all classes within the dataset. The size of
the α parameter in the Dirichlet distribution influenced the
variance of its random numbers. In the experiments described

VOLUME 12, 2024 63963



C. Xu et al.: Pretraining Client Selection Algorithm Based on a Data Distribution Evaluation Model

in this paper, α is set to 0.5. Figure 4b illustrates an example
of distributing CIFAR10-D1 to 20 clients.
Baseline: In FL, most existing client selection strategies

are applied during the training phase, where these strategies
select clients based on updated local models [32], [33], which
is not applicable for pretraining data evaluation. Therefore,
we compared our approach with four baselines in the litera-
ture that could be applied to select clients before the training
phase.

1) DDS
This client selection algorithm evaluates the contribution of
client distribution to FL using two evaluation metrics, statis-
tical homogeneity, and content diversity and selects clients
whose data tend to be uniformly distributed and diverse in
content.

2) DICE
This algorithm uses the volume of client data and the variance
of the client distribution as metrics for evaluating data quality,
aiming to select clients with a large volume of data and a data
distribution close to a uniform distribution.

3) QBS
The server sorts the clients based on their number of samples
and selects the client with the highest number of samples to
enter the joint learning task in order.

4) RS
The server randomly selects a specified number of clients
from the full set of clients into the FL task.

We compared our algorithm (DDEM) with four differ-
ent BASELINE algorithms to evaluate the ability of our
method to select high-quality clients. Figures 5, 6, 7, and 8
show DDEM’s ability to select 25% and 50% of customers,
as well as our validation accuracy on two different datasets.
Figures 5, 6, and 8 depict selection from 20 customers, while

FIGURE 5. CIFAR 10: n clients selected from 20 clients.

FIGURE 6. FMNIST: n clients selected from 20 clients.

FIGURE 7. CIFAR 10: n clients selected from 100 clients.

FIGURE 8. DEAP: n clients selected from 20 clients.

Figure 7 depicts the effect of selection from 100 customers
on the CIFAR10 dataset.

As shown in Figures 5, 6, 7, and 8, our method obtains
higher validation accuracies in most cases than other base-
lines (RS, QBS, DICE, DDS), especially when the global
distribution is unbalanced (e.g., D4, D5, D6). As shown
in the experiments in Figure 5, with 20 clients and on the
CIFAR10 dataset, DDEM achieves an average model accu-
racy of 69.49% in a total of 12 experiments selecting subsets
of 5 and 10 clients. Compared to the four baselines, DDEM
showed an overall higher average validation accuracy on
CIFAR10, with improvements of 21.83%, 22.36%, 5.99%,
and 19.20%, respectively. As shown in the experiment in
Figure 6, we did the same experiment in FMNIST to vali-
date the effectiveness of the method, and the average model
accuracy reached 75.36%. Compared to the four baselines,
DDEM showed an overall higher average validation accuracy
on FMNIST, with improvements of 11.10%, 9.95%, 4.79%,
and 11.89%, respectively.

However, DDEM does not exhibit a significant advantage
over the baseline with more balanced data distributions (e.g.,
D1, D2). This is because when the number of selected clients
is small and the global data distribution is relatively balanced,
selecting high-quality clients is not challenging, and other
baseline strategies (e.g., DICE) can also achieve this goal.

The effectiveness of our data evaluation is also validated
in the DEAP dataset, the results of which are presented
in Figure 6. The average accuracies after FL, when 5 and
10 clients are selected through DDEM, are 68.19% and
74.32%, respectively. For the case of selecting 5 clients, the
average accuracy improvements compared to other baselines
(RS, QBS, DICE, DDS) are 12.60%, 4.48%, 4.29%, and
14.71%, respectively. Similarly, when selecting 10 clients,
the average accuracy increases by 8.10%, 6.33%, 4.94%,
and 13.50% compared to the respective baselines. Notably,
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when selecting 10 clients from D6, which exhibits the most
uneven distribution, the improvement effect is most signif-
icant, with enhancements of 11.44%, 5.30%, 17.48%, and
28.42% higher than the baseline approaches, respectively.

To investigate whether DDEM could be effective in sce-
narios with more clients, we increased the number of clients
from 20 to 100 and conducted an experiment to select 25 and
50 clients from the pool of 100 clients. In this experiment,
the total volume of data remained the same as the distri-
bution depicted in Figure 5; only the number of clients
was increased. As depicted in Figure 7, DDEM exhibits
higher test accuracy than the other baselines when selecting
25 clients, showcasing average accuracy improvements of
18.35%, 29.87%, 7.40%, and 18.40%, along with a similar
accuracy improvement when selecting 50 clients.

Figure 9 shows the accuracy and loss curves of DDEM and
all baselines. As shown in the figure, as DDEM selects clients
that join FL, the verification accuracy increases and loss
decreases faster than those of other baselines. For example,
it takes 90 rounds for DDEM to reach 60% accuracy, but
170, 390, 360, and 270 rounds for DICE, DDS, QBS, and
RS, respectively. As shown in Figure 8b, DDEM has a much
smaller training loss in a very large fraction of rounds.

FIGURE 9. Performance comparison with the existing strategies.

In this section, we further analyze the effectiveness of the
client selection algorithm by comparing the data distribution
of the selected clients. We compared the selection outcomes
of our approach with the best-performing baseline DICE in
the selection of 5 clients out of 20 from CIFAR10-D6. Please
note that D6 is an extreme case with a highly imbalanced
global data distribution (refer to Figure 8a).

As shown in Table 2, both strategies select 3 identical
clients (2, 6, 18). A comparison of the other 2 clients selected
by the two strategies shows that our selection of clients 15 and
16 contains data samples from all categories, while the clients
selected by DICE (i.e., 0 and 1) omit these rare categories
(i.e., 7, 8, and 9). Since DDEM outperforms DICE in terms
of validation accuracy, we can conclude that theDDEMselec-
tion algorithm is more effective in the case of data balance.

According to Table 2, DDEM selects fewer clients with
less data and lower variance across different categories than
DICE. During the selection process, DICE considers only
local data variance, whereas DDEM values a globally bal-
anced distribution and tends to select clients with rare data
samples. With this algorithm, we can select more valuable

TABLE 2. Selection results of DDEM and DICE CIFAR10-D6.

samples at a smaller cost, reducing computational and com-
munication costs during the training process.

V. CONCLUSION
Selecting a reasonable subset of clients to obtain appropriate
data information for participation in FL can effectively ensure
the recognition accuracy of the FL aggregation model. Based
on this, we propose a client selection algorithm based on data
distribution evaluation, which enhances the performance of
the FL model, including the convergence speed and accuracy,
without collecting private client data. The method is applied
before training, which helps to reduce the computational and
communication costs of the server. Additionally, through a
specially designed evaluation model, the client data is com-
prehensively evaluated by considering both the data volume
and its increment, as well as the global balance of data, and
dynamic adjustments are made between them. Our algorithm
performs well under a strong Non-IID distribution and can
be applied to a wide range of application scenarios. In this
paper, we compare four different benchmarkmethods, and the
clients selected by our algorithm in different scenarios gener-
ally yield higher andmore stable test accuracies, with average
accuracy improvements of 5.99% and 4.29% on the CIFAR-
10 and DEAP datasets, respectively. The improvement in
accuracy is more pronounced in scenarios with Non-IID data,
such as in the DEAP dataset distribution with the highest
Non-IID degree, where the accuracy increased by 5.30%
compared to the optimal baseline.
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