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ABSTRACT The prediction of the remaining useful life (RUL) of mechanical equipment is of vital
importance to its operation and maintenance. Deep learning methods can effectively extract degrada-
tion information closely related to equipment RUL from extensive monitoring data. However, when the
data is nonlinear, multi-dimensional, long-term, and large-scale, the critical degradation information for
RUL prediction may be obscured. Traditional deep learning networks do not perform well in predict-
ing RUL. Therefore, a method for predicting the remaining useful life of mechanical equipment using a
spatial-temporal feature extraction network is proposed. The main innovations can be classified into two
aspects. Firstly, by training a unidirectional residual convolutional network (URCNN), the deep spatial
features of the monitoring data are extracted. This network does not disrupt the temporal relevance of the
monitoring data and can effectively avoid the phenomenon of vanishing gradient during the training process.
Secondly, the weight parameters of the bidirectional long short-termmemory network (BiLSTM) for extract-
ing time-related features are optimized by introducing an attention mechanism. The attention mechanism
can effectively enhance the expression of crucial degradation information for RUL prediction. Eventually,
the benchmark dataset and the specialized transmission mechanism dataset validates the effectiveness and
superiority of the proposed method. The analysis results indicate that for multi-dimensional monitoring data
with complex operating conditions and variable fault modes, the proposed method can accurately locate
degradation temporal points and effectively improve the RUL prediction accuracy of long-term operating
equipment.

INDEX TERMS Remaining useful life, spatial-temporal feature, attention mechanism, unidirectional
residual convolutional network.

I. INTRODUCTION
Prognostics and health management (PHM) of mechanical
equipment can enhance its safety and prevent catastrophic
accidents [1], [2]. Accurate prediction of the remaining use-
ful life (RUL) is a key task in the field of PHM research,
providing decision-making support for establishing optimal
maintenance strategies for equipment [3].

The associate editor coordinating the review of this manuscript and

approving it for publication was Geng-Ming Jiang .

RUL prediction can dynamically perceive future changes
in the health status of mechanical equipment [4]. Currently,
there are three popular methods: model-driven prediction
methods, data-driven prediction methods, and hybrid-driven
prediction methods [5]. Model-driven and hybrid-driven pre-
diction methods require explicit mathematical models based
on known mechanical principles to analyze the degradation
process of equipment [6]. However, the structure of large
mechanical equipment is complex, and the operating environ-
ment and failure modes are diverse, making the establishment
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of accurate degradation models costly and significantly lim-
iting their application scope [7]. In contrast, data-driven
prediction methods only involve mining performance fea-
tures from monitoring data during equipment operation, thus
revealing the degradation of equipment performance caused
by internal and external environments [10], [11], [12], [13],
[14], [15], [16], [17], [18], [19], [20], [21], [22]. This method
avoids the mathematical modeling of complex mechanisms
of mechanical equipment, gradually becoming a hot research
topic in RUL prediction.

Data-driven prediction methods mainly fall into two
categories: statistical analysis and machine learning [8]. Sta-
tistical analysis methods predict RUL by constructing a
distribution function of the remaining life through param-
eter estimation based on equipment failure time data, and
then realize RUL prediction by fitting the relationship of
random variables [9]. Li et al. [10] obtained the remain-
ing life of aviation engines and cutting tools in the form
of probability density functions based on the character-
istics of Wiener processes. Zhao et al. [11] updated the
drift coefficient of the Wiener process in real-time based
on similarity measurement, effectively solving nonlinear-
ity and multi-stage problems. Wu et al. [12] proposed an
adaptive nonlinear Wiener process model with degradation
drift to simulate non-normal and asymmetric degradation
characteristics. Feng et al. [13] proposed a semi-random
filtering-expectation maximization algorithm, successfully
solving the problem of online prediction of remaining life
in hidden degradation processes. Kundu et al. [14] consid-
ered the working parameters and monitoring signals of the
equipment during the model parameter estimation process,
thereby establishing aWeibull accelerated damage regression
model to describe the failure characteristics of the equip-
ment under different working conditions. Zhang et al. [15]
established an RUL prediction model based on the Gamma
degradation process using integrated monitoring information
of equipment. Wang et al. [16] introduced the ratio of the
diffusion coefficient to the drift coefficient in the traditional
Wiener degradation model, thereby achieving synchronous
updating of the drift coefficient and the diffusion coefficient.
Tang et al. [17] used Dempster-Shafer theory of evidence
to deal with prediction uncertainty with good convergence.
However, with the development of intelligent sensors, multi-
ple networked sensors are usually used to collect multi-source
data to fully reflect the operating status of the equipment.
Statistical analysis methods struggle to extract degradation
feature information from extensive data with large signal
differences, multiple sampling strategies, and low data value,
while the problem of solving the remaining life distribution
based on coupled multi-dimensional variables remains unre-
solved. Machine learning, represented by deep learning, can
extract features and train from raw monitoring data, simu-
lating the performance degradation process without the need
to construct specific degradation models. Meanwhile, deep
learning methods overcome the difficulty of shallowmachine

learning methods in extracting deep features [18]. By extract-
ing deep features from multi-dimensional data composed of
performance parameters of multiple sensors, they can fully
learn the information contained in the time series for more
accurate RUL prediction.

Deep Recurrent Neural Networks (RNN) are suitable for
handling time series, mining latent features that reflect equip-
ment performance degradation. Its derivativemodel, the Long
Short Term Memory (LSTM) network, can solve problems
such as RNN models being unable to learn long-term feature
relationships and vanishing gradient problems, demonstrat-
ing significant advantages in solving the RUL prediction
problem for equipment [19]. Shuai et al. [20] improved RUL
prediction accuracy by stacking multiple layers of LSTM to
construct a deep LSTM structure. Zhao et al. [21] combined a
generalized learning system algorithm and LSTM to develop
a fusion neural network model that excellently predicts the
capacity and RUL of lithium-ion batteries. Xiang et al. [22]
constructed a multi-scale LSTM capable of mining infor-
mation on different degradation states, demonstrating better
prediction performance. Song et al. [23] proposed a fusion
model of Autoencoder and Bidirectional Long Short Term
Memory Network (BiLSTM), achieving good results in
handling high-dimensional massive state monitoring data.
Chen et al. [24] used Convolutional Neural Networks (CNN)
to extract spatial features of monitoring data, thereby accu-
rately predicting the remaining life of the equipment.

The above research indicates that LSTM performs well
when processing time-series data. However, when dealing
with long time series generated by long-term operation of
equipment, it struggles to capture key degradation infor-
mation, leading to a low recognition accuracy rate of
performance degradation time points and a tendency to
lag in RUL prediction. To solve this problem, this paper
proposes a method for predicting the RUL of mechanical
equipment based on a fusion of Unidirectional Residual
Convolutional Neural Network and Attentional Bidirectional
Long Short-Term Memory Network (URCNN-ABiLSTM).
The model used in this method is called the Spatial-temporal
Feature Extraction Network. The main advantages of this
model are as follows:

1) The 1D-CNN networks commonly used to process
sequence data use a 1-dimensional convolutional kernel to
extract features from the data along the time dimension. The
same network cannot adapt to data of different dimensions.
Therefore, we propose unidirectional residual convolutional
network capable of spatial feature extraction in both tem-
poral and spatial directions without destroying the feature
correlation of the time series. In addition, this network can
effectively solve the gradient vanishing problem caused by
deep CNN.

2) For the temporal correlation of massive data, BiLSTM is
used to learn the degradation information of spatial features
provided by CNN to capture the distantly correlated features
in the time series, instead of the traditional method that
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utilizes BiLSTM to predict the RUL for each time step. Sec-
ondly, traditional methods use attention mechanism (AM) to
assign weights to values at different time points. In contrast,
the purpose of introducing AM in this paper is to strengthen
the linkage enhancement between spatial-temporal features
and key degradation information, so as to effectively improve
the RUL prediction accuracy of the model.

The rest of this paper is organized as follows. Section II
reviews the relevant content of URCNN and BiLSTM.
Section III details the Spatial-temporal Feature Extraction
Network. Section IV applies the proposed model to the
benchmark dataset and the specialized transmission mecha-
nism dataset and provides analysis. Section V presents some
conclusions and future work.

II. THEORETICAL BACKGROUND
A. UNIDIRECTIONAL RESIDUAL CONVOLUTIONAL
NETWORK
The structure of a traditional Convolutional Neural Network
(CNN) is shown in Figure 1, mainly composed of convolu-
tional layer (CL), pooling layer (PL), and fully connected
layer (FCL) [25]. The CL extracts feature from the input layer
(IL) data, the pooling layer selects and filters these features
according to specific rules, and the fully connected layer
generally connects with the output layer (OL), equivalent to
the hidden layer of traditional feed forward neural networks,
implementing the final output dimension transformation. The
model can adaptively extract spatial features from multi-
dimensional samples, making it easy to implement sample
reconstruction and feature extraction, and effectively obtain
performance degradation information [26].

FIGURE 1. Structure of CNN.

The more convolutional layers in a CNN, the richer the
deep features that can be extracted. However, deepening the
network can lead to a vanishing gradient problem, which in
turn reduces the accuracy of remaining life prediction [27],
[28]. The deep residual network (ResNet) can effectively
overcome the impact of vanishing gradient and can improve
feature extraction and learning capabilities [29]. Constructing
a deeper network architecture based on residual thinking can
obtain more robust feature expressions, thereby improving
the accuracy of remaining life prediction. Figure 2 (a) is
a schematic diagram of the structure of a single module

of a traditional residual network, where regular convolution
operations disrupt the time sequence of input data. To solve
this problem, this paper proposes a unidirectional residual
convolutional network structure where stacking several unit
modules can construct networks of different depths that can
extract spatial features in both temporal and spatial direc-
tions without destroying the feature correlation of the time
series. Simultaneously, batch normalization operations are
introduced to accelerate module training speed and improve
model training accuracy.

The structure of a single module is shown in Figure 2(b).
If X̃ is the input of the unidirectional residual module, the
definition of the nonlinear mapping function F(·) in the con-
volution module (Conv) is given by Equation (1):

F(X̃, {W ′
i}) = W3 ⊗ f (W2 ⊗ f (W1 ⊗ X̃)) (1)

where W1, W2 and W3 are the weight matrices of the three
convolutional layers of the unidirectional residual module,
and f (·) represents the functional mapping of BN operation
and ReLU activation function. Then the nonlinear mapping
function of a single module is given by Equation (2):

Ỹ = F(X̃, {W ′
i}) + X̃ (2)

Taking the partial derivative of Equation (2), we get
Equation (3):

∂ỸL
∂X̃ l

=
∂F(X̃ l,W l) + ∂X̃ l

∂X̃ l

= 1 +
∂F(X̃ l,W l)

∂X̃ l
(3)

FIGURE 2. Residual network module. (a) Classic residual module;
(b) Unidirectional residual module.

From Equation (3), it can be seen that the problem
of vanishing gradients can be effectively solved by con-
structing a direct channel from input to output. Comparing
Figures 2 (a) and (b), according to the characteristics of
the full life cycle dataset, the unidirectional residual module
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replaces the convolution kernel size of the second convolu-
tional layer of the classic residual module from 2 × 2 to
2 × 1. At the same time, the actual convolution process real-
izes the unidirectional movement of the convolution kernel,
which does not disrupt the temporal correlation of the time
series data, i.e., the information fusion of a single time series
of mechanical equipment sensor data is carried out with-
out changing the temporal relationship of the data, thereby
extracting features related to the remaining life.

B. BIDIRECTIONAL LONG SHORT-TERM MEMORY
NETWORK
The main approach to remaining life prediction is to learn
spatial-temporal in-formation from mechanical equipment
sensor data related to equipment performance degradation,
and the RNN can fully utilize the time-related characteristics
of the data to process time-domain sequence data. However,
when the length of a single time series is long or the time inter-
val is short, the RNN may have problems such as vanishing
gradient and exploding gradient [30].

LSTM introduces the concept of memory cells, which is
composed of four inter-connected structures: the input gate,
forget gate, selection gate, and output gate. By comparing
memory information and current information, LSTM chooses
important information and forgets secondary information,
giving the network a stronger memory ability. This can allevi-
ate the problems of vanishing gradient and exploding gradient
during the training process of long sequence RNN networks.
Its network topology structure is shown in Figure 3.

FIGURE 3. Structure of LSTM network.

In Figure 3, ht−1 and ht are the hidden states at times
t-1 and t, respectively; ct−1 and ct are the gate unit states
at times t-1 and t , respectively; xt is the input at time t.
The forget gate f t is responsible for selectively discarding
the information input from the previous node; the input gate
it merges memory information and current information and
inputs it into the selection gate gt ; the selection gate gt
selectively remembers the merged information; the output
gate ot determines the impact of the current gate unit state
on the hidden layer output. The current gate unit state ct is
affected by the gate unit state at the previous moment, the
forget gate, the input gate, and the selection gate, while the
output of the memory unit is determined by the output gate
ot and the gate unit state ct . The specific calculation process

is shown in Equation (4).

f t = σ (W f [xt ,ht−1] + bf )
it = σ (W i[xt ,ht−1] + bi)
gt = tanh(Wg[xt ,ht−1] + bg)
ot = σ (Wo[xt ,ht−1] + bo)
ct = f t × ct−1 + it × gt
ht = ot × tanh(ct )

(4)

In the equation, W f and bf , W i and bi, Wg and bg, Wo
and bo are the weights and bias matrices of the forget gate,
input gate, selection gate, and output gate, respectively. The
Sigmoid activation function σ (·) transforms the output to
the [0,1] interval; tanh(·) is the hyperbolic tangent activation
function, which transforms the output to the [-1,1] interval.

Memory units or gate units (cell) are the core of the LSTM
network. By forming a forward propagation chain structure
through several memory units, it can achieve the overall coor-
dination and transmission of information [31]. As can be seen
from Equation (4), the memory unit can precisely control the
information flow by integrating all internal state information
and input information at all times, ensuring the stability of
gradient descent during the model training process. In order
to deepen the extraction of original time series features and
further improve the accuracy of the model output, two inde-
pendent LSTMs in different directions are stacked together to
form a BiLSTM network, as shown in Figure 4.

FIGURE 4. BiLSTM network structure diagram.

The input xt is input into the forward layer, and the
output hf of the forward hidden layer is calculated forward
from time 0 to t; it is input into the backward layer, and
the output hb of the backward hidden layer is calculated
backward from time t to 0. Finally, the output results of the
forward layer and the backward layer are input into the fully
connected layer to obtain the final output h.

h = f (hf ,hb) (5)

In the equation, f (·) is the mapping function of the fully
connected layer.

III. REMAINING USEFUL LIFE PREDICTION MODEL FOR
MECHANICAL EQUIPMENT
A. OVERVIEW OF THE PREDICTION MODEL
In the prediction of the remaining useful life of mechanical
equipment, important information about the degradation pat-
tern is mainly stored in the historical time series. Traditional
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FIGURE 5. Flowchart of the proposed RUL prediction method.

machine learning methods generally select features related
to performance degradation from the time series based on
prior knowledge, which can disrupt the temporality of the
historical data, leading to lower prediction accuracy. There-
fore, the method proposed in this paper for predicting the
RUL of mechanical equipment based on a spatial-temporal
feature extraction network can deeply mine the rich pattern
in-formation and degradation trends in sensor data using
a fusion model, improving the accuracy of remaining life
prediction. Using the spatial-temporal feature extraction net-
work, the RUL can be obtained in four steps as shown
in Figure 5.

1) STEP 1: DATA SIMULATION AND PROCESSING
In this study, we divided the dataset into a training set and
a test set for training and testing the proposed model. Sec-
ondly, the preprocessing of the engine simulation data and
the specialized transmission mechanism dataset includes four
aspects as follows:

1. Feature preference
Taking FD001 of engine simulation data as an example to

demonstrate the validation process. It can be ob-served that
the dataset contains setting_3 and seven sensor values that do
not change. To speed up computation, meaningless data are
discarded, and the operating cycle is also considered as one
of the input features, thus obtaining an optimized dataset with
17 input features.

2. Noise reduction
The original data contains a large amount of Gaussian ran-

dom noise. Afilter functionwith awindowwidth of 10 is used
to denoise and smooth the data to reduce data fluctuations.

3. Normalization
As multi-dimensional monitoring data have different

dimensions, normalization preprocessing must be performed

before model construction. In this paper, the Min-Max nor-
malization method is used to unify the data to the [1, 0] range.
The spe-cific equation is as follows:

x̃ ji =
x ji − x jmin

x jmax − x jmin

(6)

In the equation: x̃ ji is the normalized data; x jmax and x
j
min are

the maximum and minimum values of the j sensor data.
4. Sliding window
In order to deeply mine the degradation pattern from

the limited series and transform the time series into a
three-dimensional input format that the BiLSTM network
is good at processing, a sliding time window segmentation
method is used to process the normalized data. This can
fully retain the time correlation between adjacent sequences
and increase the number of training set samples, making the
model more robust and generalizable. Let the original time
series length be T , the feature dimension be N , and use a
sliding window with a width of S to slide along the time
series, stacking the time series cut for each sliding step to
the third dimension to form a three-dimensional tensor of
(T − S, S,N ). The calculation process is as follows:

X1:T−S = x1:1+S ⊕ x2:2+S ⊕ · · · xi:i+S · · · ⊕ xT−S:T (7)

In the equation: X1:T−S is the transformed three-dimensional
tensor; xi:i+S is the sequence of length S starting from the i-th
time period; ⊕ represents the connection of data within the
window in the third dimension to form a three-dimensional
tensor.

2) STEP 2: MODEL TRAINING AND PARAMETER
CONFIGURATION
This study uses a spatial-temporal feature extraction net-
work to learn the complex relationship between the feature

VOLUME 12, 2024 66591



X. Yan et al.: Improved Method for Predicting the Remaining Useful Life

FIGURE 6. Structure diagram of the spatial-temporal feature extraction network.

variables and RUL. First, set the number of residual con-
volutional layers, BiLSTM layers, and attention layers, and
then determine the model’s hyperparameters, including net-
work structure, learning rate, batch size, number of iterations,
Dropout rate, etc. Finally, Adam is chosen as the optimizer to
train themodel, and theMean Square Error, a commonly used
regression loss function, is used to optimize the network and
determine the optimal hyperparameters of the model.

3) STEP 3: ESTIMATE OF RUL RESULTS
After training the spatial-temporal feature extraction network
with the selected optimal model parameters, the test input
sequence is input into the trained model to obtain the final
results of the test set.

4) STEP 4: PERFORMANCE EVALUATION
Two standards are used to comprehensively evaluate the
performance of the proposed model. The root mean square
error (RMSE) is used to measure the deviation between the
predicted values and the actual values. The smaller the RMSE
deviation value, the more accurate the method’s prediction
result. Secondly, Score is introduced to evaluate the lag of the
prediction result. The lower the Score, the better the method
can overcome the impact of prediction lag on equipment
safety.

B. SPATIAL-TEMPORAL FEATURE EXTRACTION NETWORK
The structure of the spatial-temporal feature extraction net-
work designed and built in this paper is shown in Figure 6.
It is mainly formed by the fusion of two typical models,
URCNN and BiLSTM. URCNN can not only fully mine
the potential rules of data, automatically extract important
features, but also can improve vanishing gradient problem in
the training process of deep CNN networks. The BiLSTM
network based on the attentionmechanism can better learn the
degradation pattern from the features extracted by URCNN,
and can easily capture long-distance related features in time
series. When the input time series is too long in the remaining

life prediction, the attention mechanism can assign different
weights to the input features, using limited computational
resources to screen out key information from a large amount
of information, filter or weaken other redundant information,
making the model pay more attention to features that have a
great impact on performance degradation, thereby solving the
problem of information loss caused by the time series being
too long.

The model is mainly composed of an input layer, a spatial
feature extraction layer, a temporal feature extraction layer,
and an output layer. The sensor data of the mechanical equip-
ment are input to the unidirectional residualmodule, the depth
of the network is deepened through repeated convolution
operations, the proposed multi-dimensional feature map is
input to the fully connected layer to obtain the final output,
and the extraction of deep features of the time series is
completed. The BiLSTMmodule learns the rules of change of
mechanical equipment with time from the proposed features,
the attention module highlights the time period of attention
concentration by introducing the weight probability P, and
strengthens the connection between each segment to help
the network capture the key time series information. Finally,
the output layer makes an accurate prediction of the current
remaining life.

1) INPUT LAYER
The input layer is responsible for inputting the historical
sensor data of the mechanical equipment into the prediction
model. The operating conditions and different types of sensor
monitoring data are denoted as the related feature time series
matrix X = (x1, x2, · · · , xT ) = (x1, x2, · · · , xN )T , which
can be expanded to represent the Equation (8):

X =


x11 x21 · · · xN1
x12 x22 · · · xN2
...

...
...

x1T x2T · · · xNT

 ∈ RT×N (8)
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In the equation: xt = [x1t , x
2
t , · · · , xNt ](1 ≤ t ≤ T ) is

the value sequence of N related variables at time t, xn =

[xn1 , x
n
2 , · · · , xnT ](1 ≤ n ≤ N ) is the value sequence of the

n-th related variable at T historical moments.

2) SPATIAL FEATURE EXTRACTION LAYER
The feature extraction layer is responsible for extracting the
features of the input time series. By constructing a num-
ber of unidirectional residual modules to form an RCNN
framework, and adding a maximum value pooling layer
in the module to retain more data fluctuation information.
After convolution and pooling operations, the original data
is mapped to the hidden feature space, the ReLU activation
function is selected for activation, a fully connected structure
is built to convert it into a one-dimensional structure, and
parameters are simplified to speed up training. The input is
a single time series, and the structure of the 3-layer residual
module is shown in Figure 7, and its calculation process is as
follows:

R1 = F(X ⊗W1 + b1) = ReLU(X ⊗W1 + b1) (9)

P1 = max(R1) + b2 (10)

R2 = F(P1 ⊗W2 + b3) = ReLU(P1 ⊗W2 + b3) (11)

R3 = F(R2 ⊗W3 + b4) = ReLU(R2 ⊗W3 + b4) (12)

Ho = Sigmoid(R3 ×W4 + b5) (13)

In the equations: R1, R2, and R3 are the outputs of residual
convolution 1, 2, and 3, respectively; P1 is the output of
the pooling operation; W1, W2, W3, and W4 are the weight
matrices; b1 ∼ b5 are bias vectors; ⊗ is the convolution
operation; the output of the feature extraction layer can be

FIGURE 7. Feature extraction layer structure.

denoted as Ho = [hC1 ,hC2 , · · · ,hCt , · · · ,hCT ]
T , where C is

the number of extracted features, and T is the time length.
As can be seen from Figure 7, assuming that the size of the

input data is 14 × 1, the number of convolution kernels is 2,
after the residual convolution operation (Rconv)1, it becomes
two feature maps of size 2 × 13×1; then after the maximum
value pooling operation of size 2 × 1, the output of size
2 × 12×1 is obtained; after the residual convolution opera-
tions 2 and 3, the output of size 8×10×1 is obtained; then the
output node is unfolded into a fully connected layer, and the
final output of the feature extraction layer is calculated using
the activation function, thereby realizing feature extraction
and dimension reduction.

3) TEMPORAL FEATURE EXTRACTION LAYER
For the task of predicting the remaining life of mechanical
equipment, the sensor data features as input are a series of
continuous and highly correlated time series, which requires
the network to have a certain ‘‘memory function’’, by learning
the differences in information before and after to judge the
remaining life of the current equipment. The feature extrac-
tion layer can mine data features from different angles, but it
is difficult to learn sequence information with obvious time
correlation. Therefore, a BiLSTM module and an attention
module were added after the feature extraction layer, allowing
the network to learn time series information. The time series
information learning layer shown in Figure 6 uses the output
of the BiLSTM module as the input of the attention module,
solving the problem of loss of long time series information.

1. BiLSTM module: BiLSTM learns the deep features
extracted by URCNN from both forward and backward
directions. As shown in Figure 6, the features at each
moment t are input to the forward layer and the backward
layer, the forward output hft and the backward output hbt
are obtained, and finally the output of the BiLSTMmodule
ht , t ∈ [1,T ] is calculated by Equation (5).

2. Attention module: Let the remaining life label at time t
be Y = (y1, y2, · · · , yt , · · · , yT ). First, the feature weight
parameterW t of ht is calculated through a fully connected
neural network, which is used to represent the relevance
of the target value Y ′ obtained from ht and Y , highlight-
ing the time period of attention concentration, and then
the Softmax function is used to normalize the weight,
to obtain the weight probability P t where the sum of
all feature weights is 1, and finally the attention module
output st is calculated by weighted sum of the input ht
based on the weight probability. The calculation process
is as follows:

W t = tanh(wht + b) (14)

P t =
exp(W t )
t∑
j=1

W j

(15)

st =

∑T

t=1
P tht (16)
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In the equations: w is the weight coefficient of the fully
connected layer, and b is the bias vector.

4) OUTPUT LAYER
The output of the attention module is used as the input
of the output layer, and the predicted value Y ′

=

[y′1, y
′

2, · · · , y′t , · · · , y′T ]
T of the remaining life of the equip-

ment is calculated through the fully connected layer. The
calculation equation can be represented as Equation (17):

y′t = Sigmoid(wost + bo) (17)

In the equation: y′t is the prediction value of the model at
time t; wo is the weight matrix; bo is the bias coefficient; the
Sigmoid function is selected as the activation function.

IV. VERIFICATION AND ANALYSIS
In this section, two datasets, namely the standard CMPASS
dataset and the full-life-cycle monitoring data for special-
ized transmission mechanism, are utilized to validate the
efficacy of the proposed method in the precise prediction of
the Remaining Useful Life (RUL) of mechanical systems.
Section A details the selected benchmark datasets along with
the experimental handling process of said datasets. Section B
describes the experimental procedure for the specialized
transmission mechanism test system. The model is developed
utilizing the TensorFlow 2.0 framework. Under this frame-
work, the model is capable of being trained via GPU. The
experimental model is executed on a GeForce RTX 3090.

A. CASE1: BENCHMARK DATASET C-MAPSS
1) DATASET DESCRIPTION AND PREPROCESSING
NASA’s C-MAPSS aviation engine dataset is one of the most
widely used public datasets in the field of remaining life
prediction, which includes four sets of sensor monitoring
data from normal operation to failure of turbofan engines
under different fault modes and working conditions, and uses
21 types of sensors as typical indicators that can characterize
the operation status of the engine. Each data set consists of
a training set, a test set, and RUL labels. The training set
contains all the data throughout the entire life cycle of the
engine, the test set only contains part of the data from the
initial state of the test engine, and the RUL label is the RUL
at the last monitoring moment of the engine corresponding
to the test set. The individual data files contain different
numbers of engines, each with different degrees of initial
wear, thus the sequence length of each engine’s monitoring
data is also different. The specific information of the four sets
of monitoring data is shown in Table 1.

2) VERIFICATION PROCESS AND RESULT ANALYSIS
a: RUL LABEL SETTING
In the early stage of engine operation, the performance is
good and the degradation can be ignored. However, at the
end of usage, the performance of the engine will decrease
sharply over time. If the label of the monitoring data before

TABLE 1. Basic information of CMAPSS datasets.

the rapid deterioration of the engine performance is set to the
total running period minus the current running period, it will
increase the lag of the RUL prediction result. Therefore, it can
be considered that the RUL before the engine starts to degrade
rapidly remains unchanged, that is, a threshold is set for the
RUL label of the training set to make it a piecewise linear
function. Studies have shown that setting the critical value of
the sudden change in the training set RUL label to the 130th
running cycle has a good prediction effect [32], and the result
of the RUL label setting is shown in Figure 8.

FIGURE 8. RUL label setting.

b: HYPERPARAMETER SETTING
The main hyperparameters involved in this model include:
network structure, learning rate, batch size, number of iter-
ations, Dropout rate, etc. The model hyperparameters have a
significant impact on the performance of the model. There-
fore, the model prediction error is minimized by adjusting
a single parameter to obtain the optimal hyperparameter
combination.

At the same time, in order to accurately reflect the error
distance between the prediction value and the real value of
the different hyperparameter models in the test set, the mean
square error is used as the evaluation index to adjust the
hyperparameters:

MSE =
1
m

m∑
i=1

(yi − ŷi)2 (18)
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In the equation: yi is the real value of the i-th input data; ŷi
is the predicted value of the i-th input data; m is the number
of samples.

Taking the batch size parameter as an example, the model
hyperparameter adjustment process is shown in Figure 9.
As can be seen from Figure 9, the MMSE is smallest when
the batch size is 48, so 48 is the most reasonable batch
size parameter for the model. Table 2 shows the optimal
hyperparameter combination obtained through 30 repeated
experiments. The methods for setting other hyperparameters
in the table are all according to the above method.

TABLE 2. Optimal hyperparameter combination.

FIGURE 9. Different batch size test results. MMSE is the mean of MSE
obtained from 30 trials.

c: MODEL TRAINING AND RESULT ANALYSIS
The preprocessed high-dimensional time series is input into
the URCNN network for feature extraction. The original
data has 17 features, which is reduced to 7 dimensions after
5 residual units and max pooling operations, and then the
dimension reduction features are input into BiLSTM for time
information learning. The dataset is divided into a training set
and a test set at a ratio of 7:1, and if the error of the test set
does not show a decreasing trend in 10 consecutive training
epochs, training is stopped early to prevent model overfitting.
The changes in test error and training error during the training
process are shown in Figure 10. The evaluation indicators for
training and testing gradually stabilize and become consistent
as the number of training epochs increases, with the training
error decreasing from 1852 to 234, and the test error gradually
decreasing from 1794 to 263.

FIGURE 10. RUL prediction training error and test error curves.

The test set is input into the trained model, and the RUL
prediction results are shown in Figure 11.

FIGURE 11. FD001 test set RUL prediction results.

To compare the impact of RUL size on model predictions,
all engines in the FD001 test set are reordered from large
to small according to the actual RUL values, as shown in
Figure 12. When the RUL value is large, the engine is in
a healthy state, indicating that the equipment is in good
running condition. As shown in Figure 12, at the beginning
of engine operation, the RUL prediction error is relatively
large, with severe fluctuations and obvious lag. However,
after a long period of operation, the predicted RUL converges
around the actual RUL, significantly enhancing the prediction
performance. Therefore, the more sufficient the equipment’s
historical information and the more obvious the performance

FIGURE 12. FD001 engine reordering prediction results.
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FIGURE 13. Four engine RUL prediction results. (a) No. 19 engine test results; (b) No. 21 engine test results; (c) No. 30 engine
test results; (d) No. 60 engine test results.

degradation information, the smaller the model’s prediction
error.

Four random engines from the FD001 dataset are selected
to show the continuous RUL prediction results, as shown
in Figure 13. The figure shows that the deep convolution
structure of the spatial-temporal feature extraction network
can effectively extract deep features of engine degradation.
Even when the engine just starts to operate and there is little
historical data (0-50 cycles), making it difficult to predict the
RUL size, the model’s predicted value is relatively close to
the critical value of 130.

As the operating cycle increases, the amount of engine
performance degradation gradually accumulates. The rapid
development of engine losses suddenly intensifies before the
model predicts them, causing the predictions to lag behind
the actual equipment conditions. The above prediction lag
phenomenon is reflected in Fig. 13 as the predicted RULwith
peak shape ismuch higher than the actual value. Nevertheless,
BiLSTM can learn the temporal relationship before and after
the time series, while the attention mechanism adaptively
selects the key time points of performance degradation. The
model effectively improves the prediction accuracy over a
longer period by combining the advantages of both in learning
spatial and temporal features. As shown in Figure 13, in the
middle and late stages of engine performance degradation, the
model can fit the actual performance degradation curve well,
and the RUL prediction results become increasingly accurate
and stable. Therefore, the proposed model in this paper has
strong capabilities for extracting spatial depth features and
remembering long-term temporal features.

3) MODEL COMPARATIVE ANALYSIS
In order to objectively evaluate the accuracy and general-
ization ability of different models on the test set, the Root
Mean Square Error (RMSE) and Scoring Function are used
to evaluate the RUL prediction effect [18].

RMSE is used to measure the deviation between the pre-
dicted value and the real value, and its calculation equation
is:

RMSE=

√√√√ 1
m

m∑
i=1

(yi − ŷi)2 (19)

where yi is the actual RUL value of the i-th engine; ŷi is the
RUL predicted value of the i-th engine; m is the total number
of engines.

Due to the high safety requirements of the engine, the
cost caused by the catastrophic consequences of untimely
maintenance is much greater than the cost of excessive main-
tenance resources. Therefore, the scoring function imposes a
higher penalty on the overestimation of RUL. The lower the
Score, the better the model’s predictive performance, and the
calculation equation is as follows:

Score =



m∑
i=1

e−( ŷi−yi13 )
− 1 ŷi − yi < 0

m∑
i=1

e(
ŷi−yi
10 )

− 1 ŷi − yi ≥ 0

(20)

To verify the effectiveness of the proposed spatial-temporal
feature extraction network for engine RUL prediction, Sup-
port Vector Regression (SVR) [18], CNN [18], LSTM [20],
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TABLE 3. Comparing the results of different forecasting models.

FIGURE 14. Training time and testing time for different models. (a) Training time; (b) Testing time.

GRU [18], CLSTM [33], AE-BiLSTM [23] and Trans-
former [33] were respectively built as comparison models,
and the results are shown in Table 3. As can be seen from
Table 3, compared with shallow machine learning methods
(SVR) and single-layer deep learning models (CNN, LSTM,
GRU), the CLSTM proposed in literature [34] performs
slightly worse than LSTMon the subset FD003, but it predicts
better on the complex multiple fault mode conditions subsets
FD002 and FD004. The AE-BiLSTM proposed in refer-
ence [20] employs an autoencoder as a feature extraction tool,
while leveraging BiLSTM to capture bidirectional long-term
dependency characteristics. Compared with the CLSTM
model, the RMSE on datasets FD001 and FD003 decreased
by 2.5 and 2.91 respectively, and the Score decreased by
42 and 1135 respectively, further improving the RUL pre-
diction results. However, the Score on datasets FD002 and
FD004 increased by 120 and 256 respectively, showing obvi-
ous prediction lag. However, the spatial-temporal feature
extraction network considers the superiority of the atten-
tion mechanism in extracting crucial degradation information
from lengthy time series, and the prediction accuracy on
all test sets is significantly improved. Compared with the
CLSTM model, the proposed model reduced the RMSE
on datasets FD001 and FD003 by 22.25% and 21.96%

respectively, and the Score by 21.12% and 82.75% respec-
tively; compared with the AE-BiLSTM model, the RMSE
decreased by 8.0% and 5.98% respectively, and the Score
by 8.43% and 14.04% respectively. For the more complex
and variable datasets FD002 and FD004, compared with
RMSE, the performance indicator Score of the proposed
model decreases more significantly, indicating that the pro-
posed model still has the advantage of overcoming prediction
lag under complex conditions.

Compared with the latest proposed model Transformer, the
RMSE and Score of the model on datasets FD001 and FD003
are not much different, indicating that the model performs
equally well on stable data. However, on datasets FD002
and FD004, which feature more complex simulated oper-
ating conditions, the accuracy of the proposed model does
not match that of Transformer, and it exhibits a marginally
reduced capacity to mitigate prediction lag. This suggests that
larger models such as Transformer are better suited to deep
data mining tasks.When working conditions growmore intri-
cate, the advanced larger models demonstrate their prowess in
surmounting prediction lag.

However, a significant drawback of deploying large mod-
els is the substantial increase in time required for train-
ing and inference, which complicates their use in online

VOLUME 12, 2024 66597



X. Yan et al.: Improved Method for Predicting the Remaining Useful Life

FIGURE 15. Filling mechanism test system.

FIGURE 16. Action sequence of test system.

applications. Figure 14 portrays the box plots of training and
testing times obtained for different models after 60 repeated
trials. The horizontal axis represents the model type, sequen-
tially listing LSTM,CLSTM,AE-BiLSTM, Transformer, and
our proposed model, from left to right. The vertical axis
depicts the training and testing times in seconds (s), span-
ning approximately 200 to 1000 seconds for training and
varying from roughly 0 to 4 seconds for testing. As depicted
in Figure 14, the LSTM base model exhibits the shortest
training and testing times. In contrast, the Transformer model
records the highest training and testing times, and its distri-
bution is more spread out. Our model’s training and testing
times do not significantly deviate from those of the enhanced
LSTM model, yet it offers greater accuracy (as indicated
in Table 3). Collectively, our proposed model proves more
advantageous for real-world deployment, satisfactorily meet-
ing accuracy requirements, particularly in situations with
limited datasets. Therefore, we contend that the joint learning
model ‘‘URCNN+BiLSTM’’ exhibits greater pragmatism.

B. CASE2: SPECIAL TRANSMISSION MECHANISM
DATASET
1) DATASET DESCRIPTION
We have designed a specialized transmission mechanism test
system that operates under reciprocating impact vibrations,
as depicted in Figure 15. The test system primarily con-
sists of a frame unit, a power unit, a reciprocating unit,
a release unit, a control unit, an impact unit, and a swing unit,
among other elements. The system is capable of replicating
complex operating conditions characterized by high tran-
sients, strong impacts, and severe vibrations that occur during

reciprocation. It supports a maximum reciprocating speed of
≥3.5 m/s and a maximum reciprocating mass of ≥5 t, with
an adjustable reciprocating distance ranging from 530 mm to
770 mm. The system allows for the full monitoring of the
lifecycle of specialized transmission mechanism components
under laboratory conditions, providing comprehensive lifecy-
cle data that can be used to validate the proposed intelligent
prediction methods. The system utilizes six travel switches
to sense the position information and operational statuses
of various mechanisms and controls six hydraulic cylinder
solenoid valves to orchestrate the mechanisms’ sequential
operations, which include bolting, recoiling, release, feeding,
bolt opening, downward swing, and upward swing. Conse-
quently, the action sequence of various units is as shown in
Figure 16.
The swing unit is capable of performing downward and

upward swing motions to transmit the load from the verti-
cal to the horizontal orientation and is the main actuator of
the specialized transmission mechanism. The core parts, the
slide plate and the ratchet, directly influence the swing unit’s
ability to correctly execute the swinging actions and are the
most vulnerable life-limited components of the swing unit.
The engagement of brand-new components is illustrated in
Figure 17. During the reciprocation of the reciprocating unit,
the slide plate engages with the ratchet, thereby compressing
the downward swing spring to achieve a 90◦ swing of the load
from the horizontal to the vertical direction. The compatibil-
ity between the slide plate and the ratchet directly affects the
normal operation of the swing unit, which in turn impacts
the proper functioning of the specialized transmission
mechanism.
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FIGURE 17. Ratchet and slide plate and its engagement relationship.

FIGURE 18. Comparison diagram of the ratchet and slide plate (the left side is the health state, the right side is the failure state).

Towards the end of its service life, significant impact wear
appears on the meshing surfaces of the slide plate and ratchet,
preventing normal engagement and causing the swing unit to
cease functioning. At this point, the slide plate and ratchet
are deemed to have reached their life threshold and enter
a failed state. A comparison between a healthy slide plate
and ratchet and one that has experienced significant impact
wear after testing is shown in Figure 18. The worn meshing
surfaces of the failed slide plate and ratchet are smooth.When
the reciprocating slide plate engages with the ratchet, the
frictional force in the direction of meshing action cannot
sustain the pushing force of the slide plate, resulting in the
disengagement of the ratchet. The reciprocating unit is then
unable to drive the ratchet to compress the downward swing
spring, severely affecting the normal operation of the trans-
mission mechanism.

2) DATA ACQUISITION AND PROCESSING
The experimental signal acquisition system utilized a
32-channel LMS signal collector, as depicted in Figure 19(a).
The type of vibration acceleration sensor employed was an
ICP acceleration sensor, with the sampling frequency set to
10.24 kHz. During the operating process of the experimen-
tal system, transient vibrations produced were quite severe.

The vibration sensors were connected using wired methods,
and they were affixed to the surface of the specimen under
test using a liquid adhesive, as shown in Figure 19(b).

The mounting position of the vibration acceleration sen-
sors should be as close to the component under test as
possible to minimize the noise introduced by the vibration
transmission path. Six vibration acceleration sensors, labeled
V1 to V6, were arranged near the slide plate as shown in
Figure 20(a), and two more, labeled V7 and V8, were posi-
tioned near the rollers as illustrated in Figure 20(b). The
distances between the different sensor measurement points
were suitably moderate, which is beneficial for the acqui-
sition of multisource monitoring data richer in degradation
information.

Taking the sensors V3 and V6, which are closest to the
life-limited components, as examples: The complete cyclic
vibration acceleration signals captured at the beginning and
end of monitoring at the V3 measurement point are depicted
in Figure 21(a) and 21(b), respectively, and those for the V6
measurement point at the beginning and end ofmonitoring are
shown in Figure 21(c) and 21(d), respectively. It can be dis-
cerned from Figure 21 that the vibration acceleration signals
obtained during the reciprocating motion of the transmission
mechanism represent a typical near-periodic signal with sub-
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FIGURE 19. Sensor signal acquisition system.

FIGURE 20. Sensor deployment schematic.

stantial transient shock vibrations. Moreover, the peak values
of the vibration signals at the inception of monitoring are
smaller compared to those at the conclusion, suggesting that
as the lifespan of critical components nears its threshold, the
performance of the loading mechanism continues to degrade,
consequently leading to intensified vibrations of the test
apparatus.

A unit cycle signal of the aforementioned near-periodic
signal is extracted, with a duration of approximately 25.8 sec-
onds, as shown in Figure 22. The unit cycle signal can be
divided into five motion processes: recoiling, feeding, down-
ward swing, upward swing, and bolting. Each motion process
causes transient changes in the statistical characteristics of
the signal, characterizing it as a typical nonlinear and non-
stationary signal.

3) HYPERPARAMETER SETTINGS
The determination of hyperparameters was carried out
using the same trial and error method as described in
1) of Section A. Table 4 presents the optimal hyper-
parameter combination obtained through 30 repeated
experiments.

TABLE 4. Optimal hyperparameter combination.

4) MODEL TRAINING AND RESULT ANALYSIS
Ten experiments were repeated, with the slide plate and the
ratchet failing on average at the 1586th cycle, thereby setting
1586 as the Remaining Useful Life (RUL) of the brand new
mechanism. The vibration data from the eight measurement
points was used as the dataset. Since each measuring point
can measure vibration data in the x, y, and z directions,
the dimensionality of the dataset is 24. Compared to the
C-MAPSS dataset, this dataset is higher-dimensional and
more nonlinear. The URCNN performs feature extrac-
tion on this 24-dimensional data. After passing through
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FIGURE 21. Original vibration acceleration signal.

FIGURE 22. Unit period vibration acceleration signal.

10 residual units and a max-pooling operation, the
dimensionality is reduced to 7 dimensions, and then the
reduced-dimensionality features are input into ABiLSTM
for temporal information learning. The data is split into a
training set and a test set using a 8:2 ratio, meaning 8 sets
of data are used for training, and 2 sets of data are for testing.
The proposed model is trained using the training data, and
the variation of testing error and training error during the
training process is illustrated in Figure 23. As the number of
training epochs increases, the training and testing evaluation
metrics gradually stabilize and converge, with the training
error decreasing from 8332 to 1156, and the testing error
gradually reducing from 12329 to 1182.

When the test set is input into the trained model, the
obtained RUL interval prediction results at a 95% confidence
level are shown in Figure 24. The pink area in the figure rep-
resents the RUL interval at a 95% confidence level, where the

FIGURE 23. Error change curve.

parameters of the RUL probability distribution are obtained
through fitting the results of the six sets of test data for each
cycle to a normal distribution. The RUL interval represents
the uncertainty associated with the model’s RUL prediction.

As indicated by Figure 24, during the initial stages of
operation, the predicted RUL values significantly deviate
from the true values. This discrepancy may arise because
the performance degradation of the transmission mechanism
is not sufficiently apparent at the start of operation. Addi-
tionally, transient shocks and vibrations produced during the
operational process heavily influence the prediction model,
resulting in predicted RUL values that are less than the
actual values. However, as the operating cycles increase,
the performance degradation of the transmission mechanism
accumulates, enabling the model to capture the degradation
information from nonlinear monitoring data across the time
series. The point prediction results for RUL align closely with
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FIGURE 24. Predicted results for the RUL interval.

FIGURE 25. Predicted results of RUL at the end of transmission mechanism operation.

the actual values, and the 95% confidence interval predictions
generally cover the true RUL values. Additionally, the width
of the prediction interval expands during periods of fluctua-
tion in point estimates caused by degradation, but gradually
narrows as the actual RUL decreases, signifying that the
uncertainty in RUL predictions diminishes with increasing
monitoring time.

The RUL interval prediction results and the Probability
Density Function (PDF) curve for the last 80 cycles of
the swing mechanism operation are depicted in Figure 25.
As shown in the figure, towards the end of the transmis-
sion mechanism’s lifespan (monitoring cycles 1506-1586 and
1486-1586), the predicted RUL values (denoted by the red
pentagrams in Figure 25) closely approach the true RUL
values (indicated by the black hollow circles in Figure 25).
Furthermore, during the monitoring of the swing mecha-
nism, the peak values of the predicted PDF curve gradually
increase, indicating that the point predictions of RUL are
more trustworthy towards the end of the monitoring period.
Consequently, this enhances the persuasiveness of mainte-
nance strategies based on predictive maintenance that are
established subsequent to the predictions.

5) MODEL COMPARATIVE ANALYSIS
To investigate the prognostic performance of the method
for RUL prediction, the same evaluation metrics as in 3) of

TABLE 5. Comparing the results of different forecasting models.

section A are employed to objectively assess the accuracy
and generalization ability of different models on the test set.
Table 5 compares the training effects on the test set for various
models (as with those in Section A).

Compared to the seven other methods, the proposed
method’s average RMSE and Score metrics are the smallest,
with the exception of the Transformer. Further analysis indi-
cates that although the GRU’s training performance is slightly
inferior to that of the LSTM, the training time is reduced
by about 12%, which is advantageous for the deployment of
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real-time prediction. Moreover, the AE-BiLSTM leverages
an autoencoder for feature extraction, thereby more easily
capturing the bidirectional long-term dependencies, resulting
in a reduction of approximately 17% and 26% in RMSE
and Score respectively compared to single network models.
Additionally, compared to the C-MAPSS dataset, the full-
life-cycle data of the specialized transmission mechanism
exhibits stronger nonlinearity and noise, and the performance
of the proposed method is marginally inferior to that of
the larger Transformer model. However, during the offline
training phase, the proposed method averages a runtime of
1710s, and only 1.7s during the online testing phase, which
is 63% and 34% less time-consuming than the Transformer
model, respectively. Additionally, compared with other meth-
ods, the average testing time of the proposed method when
applied to the dataset differs by only 0.7 seconds, yet it offers
higher prediction accuracy, compensating for the temporal
losses associated with complex models. Therefore, the afore-
mentioned analysis reveals that a vertical comparison of the
prediction results indicates that the current method possesses
commendable predictive precision and generalization capa-
bility, while also fulfilling real-time requirements.

V. CONCLUSION
In response to the characteristics of mechanical equipment
monitoring data being nonlinear, multi-dimensional, large-
scale, andwith key degradation information easily submerged
in long time series, this paper proposes a method for predict-
ing the remaining useful life of mechanical equipment based
on a spatial-temporal feature extraction network. Thismethod
combines RCNN andBiLSTM to obtain spatial-temporal fea-
tures and uses the CMAPSS dataset and special transmission
mechanism dataset to perform multi-faceted validation and
testing of the model. The experimental results show that:

1. The more sufficient the historical information of the
equipment, the more apparent the performance degrada-
tion information, and the smaller the prediction error of
the model.

2. The spatial-temporal feature extraction network deeply
mines the degradation features of multi-dimensional mon-
itoring data through the RCNN model, while ABiLSTM
can learn the temporal relationship before and after
the time series, and uses the attention mechanism to
adaptively select the key time points of performance
degradation. The model effectively improves the pre-
diction accuracy over longer periods by integrating the
advantages of both in learning spatial and temporal
features.

3. Compared with shallow machine learning methods,
single-layer deep learning models, and multi-layer deep
learning models, the use of a spatial-temporal feature
extraction network to process multi-dimensional mechan-
ical equipment monitoring data with complex operating
conditions and variable fault modes can accurately locate

degradation time points and enhance the safety of equip-
ment use.

4. Spatial-temporal feature extraction network performs
slightly worse than integrated large model on complex
datasets with complicated working conditions. However,
it is more favorable for rapid deployment and more prac-
tical value under the requirement of accuracy.
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