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ABSTRACT A common model for classifying images is the convolutional neural network (CNN), which
has the benefit of effectively using data correlation information. Despite their remarkable success, classical
CNNs may face challenges in achieving further improvements in accuracy, computational efficiency,
explainability, and generalization. However, if the specified data dimension or model grows too large, CNN
becomes difficult to train effectively with a slowdown processing. In order to address a problem using
CNN utilizing quantum computing, Quantum Convolutional Neural Network (QCNN) proposes a novel
quantum solution or enhances the functionality of an existing learning model in terms of processing time
during training. This paper presents a comparative analysis between classical Convolutional Neural Networks
(CNNs) and a novel quantum circuit architecture tailored for image-based tasks, emphasizing the adaptability
and versatility of quantum circuits in enhancing feature extraction capabilities and then final accuracy and
processing time. A MNIST and covidx-cxr3 datasets was used to train quantum-CNN models, and the
results of these comparisons were made with traditional CNN performance. The results demonstrate that the
suggested QCNN beat the traditional CNN in terms of recognition accuracy and processing speed (process
time) when combined with cutting-edge feature extraction techniques. This superiority is particularly evident
when trained on the covidx-cxr3 dataset, highlighting the potential for quantum computing to revolutionize
image classification tasks.

INDEX TERMS Quantum computing, quantum circuit, convolutional neural network, covid19, quantum
convolution, quantum pooling, quantum convolutional neural network, image classification.

I. INTRODUCTION
In recent years, COVID-19 has been quickly expanding in
a number of nations as a result of coronavirus infections in
humans that produce severe acute respiratory syndrome. The
continuing COVID-19 pandemic harms people’s health by
producing acute renal damage and respiratory illness. China
saw the disease’s first breakout around the end of 2019 [1].
The most common clinical symptoms include fever, sore
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throat, vomiting, nasal congestion, persistent cough, dyspnea,
diarrhoea, muscle pain, anosmia, tiredness, shortness of
breath, chest pain, and chills. In March of 2020, the
World Health Organization declared COVID-19 a pandemic
[2], [3], [4], [5].

Traditional computing combined with Machine Learning
(ML) paved the way for tackling several issues in a variety
of industries. However, when considering processing speeds,
huge data, and the solution of higher-order polynomials,
classical calculations are rather constrained and fall short [2],
[6]. Many conventional approaches, including data fitting,
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sparse matrix inversion, and low-rank matrix decomposition,
can perform as well as the quantum phase estimation
algorithm [7].

A mathematical framework or physical theory is used to
establish the laws of quantum mechanics. Quantum comput-
ing [8] is a novel computational paradigm that applies the
principles of quantum physics to the processing of both quan-
tum and conventional data [9], It could result in a fundamental
difference between quantum and conventional computers.
Noisy intermediate-scale quantum computers (NISQ) have
started to tackle some reasonably hard computing jobs as
quantum technology progresses, and in some cases, their
computational capability has surpassed that of conventional
computers [10], [11], [12]. Many classic ML methods,
including supervised learning, principal component analysis,
and other dimension reduction algorithms, have found new
inspiration from quantum approaches, which have become a
hot area in study in recent years [7], [13]. Due to their noise
tolerance and reduced circuit depth requirements, quantum
(convolutional) neural networks among these quantum ML
algorithms may be implemented with near-term quantum
devices significantly more easily [14].

With traditional ML techniques, many real-world issues
are still challenging to resolve. These data must be trans-
formed into classical computer data in order to be used
with machine learning approaches to solve the quantum
physics issue specified in the many-body Hilbert space.
Even using the ML approach, the problem is challenging
to tackle successfully since the scale of the system and the
number of the data both grow exponentially [15]. Combining
the CNN modelling technique with quantum computing
technology has resulted in the creation of the Quantum
Convolutional Neural Network, also known as the QCNN.
This network has been utilized in a number of studies to
address various problems. There are two ways to effectively
tackle quantum physics issues: one is to apply the CNN
structure to the quantum system directly, and the other is to
add a quantum system to previously solved problems to get
better results [10], [15].

The primary goal of the proposed Quantum Convolutional
Neural Networks (QCNN) for image classification is to
harness the power of quantum computing to significantly
enhance the accuracy and efficiency of image recognition
tasks. By harnessing principles such as quantum superpo-
sition and entanglement, QCNNs aim to process complex
visual data more effectively than classical Convolutional
Neural Networks (CNN). The overarching objective is to
provide quantum solutions for image recognition tasks,
potentially revolutionizing fields such as medical imaging,
remote sensing, and object detection. Ultimately, QCNNs
seek to explore the quantum advantage, offering faster,
more efficient, and highly accurate methods for image
classification in comparison to classical approaches.

The contributions of this works are listed below:
1. Representation in Quantum CNNs lie in their ability to

redefine how image data is encoded and processed, leading

to advancements in accuracy, efficiency, and interdisciplinary
collaboration, while also expanding the understanding of
quantum feature spaces in the context of deep learning.

2. A new quantum circuit for convolutional layer and pool
layer for parameter reduction and speed up computational
operation is proposed, reducing the number of parameters
directly reduces the computational load during convolutions
and it reduces processing time.

The integration of quantum computing and deep learning
poses several technical challenges that need to be addressed
for successful implementation. One major challenge is the
high error rates inherent in quantum bits (qubits), which can
lead to inaccuracies in computations.

Another challenge is the complexity of quantum circuit
design, especially when designing circuits for specific deep
learning tasks. Quantum circuits need to be tailored to
effectively encode and process data in a quantum mechanical
manner, which requires expertise in both quantum physics
and deep learning algorithms.

Developing quantum hardware is challenge, such as the
development of more stable qubits and scalable quantum
processors, are crucial for overcoming technical limitations
and enabling the seamless integration of quantum computing
with deep learning.

The following outline constitutes the framework of this
study. Following the discussion of related works in Section II,
which is followed by an explanation of the necessary
context for comprehending the architectures of quantum
convolutional neural networks in Section III, Section IV
described the used dataset, while Section V discussed the
methodology, which is followed by a demonstration of the
performance of these algorithms on various medical imaging
datasets in Section VI, finally the conclusions reached
and recommendations for further research is presented in
Section VII.

II. RELATED WORKS
The quantum deep learning network has been most popularly
modeled through many applications like healthcare, hand-
writing classification, and other applications:

Detecting a disease early is crucial to medical diagnosis
and clinical practice, as it lessens stress on the healthcare
system and achieves high degrees of accuracy, although neu-
ral networks and classical computers have limitations. The
work in [16] used quantum algorithms for linear algebra and
quantum neural networks. Quantum deep learning techniques
have been proposed as a way to enhance the performance
of machine learning applications. Using quantum circuits
for training classical neural networks and developing and
training quantum orthogonal neural networks for medical
image classification, they developed two different quantum
neural network techniques. Their techniques were tested on
chest X-rays and retinal color fundus images. Although QNN
provides similar accuracy to classical NN, quantum accuracy
drops for more challenging tasks.

VOLUME 12, 2024 65661



M. Yousif et al.: New Quantum Circuits of QCNN for X-Ray Images Classification

Houssein et al. [3] used a hybrid quantum-classical
convolutional neural network (HQCNN) to detect COVID-
19 patients with CXR images using random quantum circuits
(RQCs). In the first dataset, this study used 6952 CXR
images [3], including 1161 COVID-19 images, 1575 normal
images, and 5216 pneumonia images. Compared to other
available models, the proposed HQCNN model achieves
higher performance and accuracy. The model is tested on
a binary and multiclass dataset, with confirmed COVID-
19 cases in the first dataset. But this model has a more
complex architecture. Moreover, on the second dataset,
the researchers obtained a higher degree of sensitivity
and accuracy. Furthermore, it reached an accuracy and
sensitivity of 88.6% and 88.7%, respectively, on the third
multiclass dataset. There are 5445 images [3] in the second
dataset, including 1350 COVID-19, 1350 normal, 1345 viral
pneumonia images, and 1400 bacterial pneumonia images.
But the method worked in [3], which were complex; the
disease was diagnosed in these two cases only and was not
tested to diagnose new cases of the disease.

The mutated SARS-CoV-2 RNA sequences have led to
the emergence of new epidemic strains of COVID-19, like
Delta and Omicron, that cause high mortality while spreading
rapidly. Jin et al. [17] proposed a hybrid quantum-classical
model that achieved blurred convolution like classical depth-
wise convolution while also successfully implementing
quantum progressive training with quantum circuits. These
features simultaneously guarantee that their model is the
quantum counterpart to the well-known style-based quantum
generative adversarial networks (GAN). According to the
results, the percentages of the randomly generated spike
protein variation structure are always over 96% for Delta and
94% for Omicron. In the HQNNmodel, by using the quantum
algorithm, they have contributed to predicting mutant strains
effectively, and the training loss curve is more stable and
converges better than conventional methods. The generated
images generated by ProGAN cannot be controlled, and the
random parameter inputs have slight changes.

The work in [18] introduces a quantum deep convolutional
neural network (QDCNN) model based on the quantum
parameterized circuit. A comparison of the proposed model
with the classical deep convolutional neural network (DCNN)
indicates an exponential speedup compared with its classical
counterpart based on variational quantum algorithms. Fur-
thermore, the MNIST and GTSRB datasets are simulated
numerically, and the quantitative experimental results are
used to verify the validity and feasibility of the model.
However, there is a lack of information about network
complexity.

Mohsen et al. [19] used quantum machine learning
techniques where images are encoded in quantum states
and inferences are made by a quantum neural network.
Quantum machine learning techniques are particularly useful
for classical image classification. Unfortunately, input images
have been limited to extremely small sizes, no more than
4∗4. Using larger input images has proven problematic due

to the need for more qubits than are physically feasible
in the existing encoding schemes. Their proposal is to use
quantum systems to classify larger, more realistic images.
Rather than requiring more qubits than prior work, their
approach involves embedding images in quantum states. The
framework is able to distinguish images up to 16∗16 for
the MNIST dataset on a laptop computer and is accurate
enough to compete with classical neural networks with the
same number of learnable parameters, and we also proposed
a technique for reducing the number of qubits needed to
represent images, which may lead to less computing power
but better performance in the end, but the challenges remain
in high-dimensional data.

The researchers in [20] used the concept of quantum
together with CNN (QCNN). As a technique for processing
large amounts of data at once, quantum random access
memory (QRAM) uses superposition and entanglement to
store large amounts of data. Themodel ismore efficient on the
resource side, the computational capacity side, and the depth
side. The QRAM method is used to extract features and is
more efficient on the resource side. But it is time-consuming
and difficult to apply. QRAM directly stores classical data in
the quantum state of the computer and enables direct random
access to individual data components, Qiskit encodes data
into quantum states and processes it using quantum circuits.
QRAM uses quantum circuits to process the data. QRAM is
still a theoretical notion, and practical implementations are
still in the process of being developed. Despite the fact that
it has the ability to store and retrieve data in an efficient
manner, The technique used by Qiskit, on the other hand,
offers a versatile framework that can be utilized for encoding
and processing classical data on simulators and hardware that
are already in existence.

In [21], Several hybrid quantum-classical convolu-
tional neural networks (QCCNNs) were suggested by
the researchers. Each of these QCCNNs had a unique
quantum circuit design and encodingmethodology. Both two-
dimensional and three-dimensional medical imaging datasets
have been analyzed using these unique methodologies.
For example, the datasets that highlight discrete, possibly
malignant lesions that are seen in computed tomography
scans have been used. An encouraging finding is that the
performance metrics demonstrated by these QCCNN models
are comparable to those of their classical counterparts. This
finding opens up a tempting route for future research that
aims to incorporate these algorithms into a variety of medical
imaging applications.

An in-depth investigation of the pooling approaches used
by hybrid quantum-classical convolutional neural networks
(QCCNNs) for the purpose of categorizing two-dimensional
medical pictures is carried out by Maureen Monnet and
other researchers [22]. The performance of four distinct
quantum and hybrid pooling strategies is investigated. These
techniques include mid-circuit measurements, ancilla qubits
with controlled gates, modular quantum pooling blocks, and
qubit selection with classical postprocessing. The findings
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indicate that the performance of QCCNNs without pooling
is comparable to or even superior to that of an analogous
classical model. As a result, it is promising to investigate the
architectural options in QCCNNs in more detail for various
future applications.

A framework for quantummachine learning was presented
by the researcher in [23]. This system was built on quantum
convolutional neural networks and was designed to solve
issues associated with multiclass classification. Quantum
outputs are processed by a SoftMax activation function,
and then cross-entropy loss is minimized through quantum
circuit parameter optimization with the use of this technique,
which applies a hybrid quantum-classical approach. More
precisely, a variational model is utilized. The introduction
of a unique quantum perceptron model and the optimization
of the construction of a quantum circuit are two noteworthy
advancements. This technique is used in order to handle a
4-class classification job utilizing the MNIST dataset. The
data is encoded using eight qubits and include four ancilla
qubits, which is a break from prior work that concentrated
on 3-class classification issues. It seems that the findings
imply that the accuracy of these networks is equivalent to
that of traditional convolutional neural networks that feature
comparable trainable parameter counts.

III. BACKGROUND
Information processing in quantum computing is based on the
tenets and properties of quantum physics, including quantum
bits, interference, superposition, and entanglement. We are
now able to tackle complicated problems more quickly and
effectively than ever before, thanks to quantum computing.

Qubits are the important computational units in quantum
computers, which perform a superposition state between |0⟩
and |1⟩ [15], [24], It is possible to represent a single qubit
state as a complex two-dimensional vector, i.e., as shown in
eq. 1 [25], [26], [27].

|ψ⟩ = α|0⟩ + β|1⟩, ||α||
2
+ ||β||

2
= 1 (1)

Here, |ψ⟩ is the state vector representing a quantum system.
This system is in a superposition of two basis states,
represented by |0⟩ and |1⟩. The coefficients α and β are
complex numbers that determine the probability amplitudes
of the system being in each of the two basis states, and
||α||

2 and ||β||
2 are the probabilities of observing |0⟩ and

|1⟩ from the qubit, respectively. It can also be represented
geometrically using the polar coordinates θ and ϕ, as shown
in eq. 2 [25], [27].

|ψ⟩ = cos cos
(
θ

2

)
|0⟩ + ei∅sin sin

(
θ

2

)
|1⟩ (2)

Here, |ψ⟩ is the state vector representing a single-qubit
quantum system. This system is in a superposition of two
basis states, represented by |0⟩ and |1⟩. The coefficients are
determined by the angles θ and φ. θ is the polar angle, which
ranges from 0 to π , and φ is the azimuthal angle, ranging
from 0 to 2π . Both angles are expressed in radians. The term

eiφ is a complex exponential representing the phase of the
quantum state, where 0≤ θ ≤π and 0≤ ϕ≤π . A single qubit
state is represented by the surface of a three-dimensional unit
sphere, referred to as the Bloch sphere. A multiqubit system
can be performed as the product of n single qubits, which is
equivalent to a superposition of n basis states from |00. . . 00⟩
to |11. . . 11⟩. In this system, quantum entanglement connects
different qubits. In quantum circuits, these systems perform
quantum computations by means of quantum gates [28].

It is well known that a quantum gate transforms a qubit
system into another, and as a matter of classical computing,
it can be combined with several classical operators, such
as rotation operator gates and CX gates [29]. Rotation
operator gates Rx(θ ), Ry(θ ), Rz(θ ) rotates a qubit state in
the Bloch field around the corresponding axis by θ and CX
gate entangles two qubits by overturning a qubit state if
the other is |1⟩. Those quantum gates use quantum overlap
and entanglement to add utility to classical computing, and
it is familiar that quantum algorithms can add a rapid
computational gain to the current algorithms in specific
functions such as major factorization [30], [31].

Quantum neural networks have been developed recently as
a subfield of quantum computing that explores how quantum
computers are used for neural network missions. That is,
quantum deep learning is an integrative field that consolidates
quantum physics and deep learning; it uses the power of
quantum computing to create quantum categories of deep
learning algorithms that are used in the associated fields.

IV. DATASETS
An open-access dataset that is made available to the general
public by the Kaggle platform (https://www.kaggle.com/
datasets/andyczhao/covidx-cxr2), was used to perform our
experiments. Released COVIDx CXR-3, a version of the
dataset contains 29,986 images (13992 negative cases,
15994 positive cases) from 16,648 patients, see figure 1 show
COVIDX CXR-3 dataset.

FIGURE 1. COVIDX CXR-3 dataset.

The aim of researcher’s endeavor was to provide a
comprehensive and accurate dataset that can be utilized
for research and analysis in the field. The dataset includes
chest X-ray images of COVID-19, and Normal subjects.
At the time that the research was conducted, the categories
that were discussed before comprised a total of 15994 and
13992 samples, respectively, as shown in figure 1. The
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X-ray images have a standard variable size ranging from
512 × 512 to 1024 × 1024 pixels, and they were captured
from a variety of different angles and positions. In this study,
we downsized the photos to 200 by 200 pixels since we found
that this resolution gave findings that were comparable to
those obtained with bigger image sizes. As a result, it was
able to speed up the training process as well as the testing
procedure.

V. METHODOLOGY
The proposed QCNN divides patients into COVID-19
infected or healthy groups in order to enhance CNN’s
categorization for medical pictures. The primary idea behind
the QCNN model is to improve the efficiency of classical
learning by using quantum computation. The suggested
model is divided into three sections: first, preprocessing.
Second, the classical CNN structure. Third, propose two
quantum circuit of CNN, As shown in Figure 2.

FIGURE 2. General diagram for proposed system.

A. PREPROCESSING
To avoid oversaturating the model and to improve training,
the images are normalized before being fed into the CNN
model. Aside from that, the images are scaled down from
1024×1024 to 200×200 to save the computational expense.
Additionally, the images are mixed together to make the
data more diverse, which finally results in generic training
and broadens the scope of the model. Several augmentation
techniques are used to increase the COVID Xray images
and to make the dataset balanced. These techniques are salt
noise, which is a type of image noise where random pixels
in the image are set to either the maximum or minimum
intensity values (usually 255 for white and 0 for black in
grayscale images), resembling salt and pepper sprinkled on
the image. It helps in making machine learning models,
especially those related to image processing, more robust by

training them to recognize objects even when the images are
corrupted by noise. Horizontal flipping involves flipping the
image horizontally, as if looking at it in a mirror. Vertical
flipping, on the other hand, flips the image upside down.
It increases the diversity of the training dataset. It provides
the model with different perspectives of the same object,
helping it generalize better to unseen data. Rotation involves
changing its orientation by a certain angle (40 degrees),
rotation can be clockwise, rotating images helps the model
become invariant to rotation, meaning it can recognize objects
regardless of their orientation in the image. and brightness
control involves changing the intensity values of all pixels
in the image uniformly. Increasing brightness makes the
image lighter, while decreasing it makes the image darker,
controlling brightness helps the model become more robust
to varying lighting conditions. It ensures that the model
can recognize objects in images taken in different lighting
environments, these augmentation techniques are useful to
avoid underfitting because the system is recognizing each
image as a new entity.

B. CLASSICAL CNN
The suggested CNN network is composed of three layers,
including three convolutional layers, and then a max-pooling
layer is placed on top of each convolutional layer. The
Sigmoid layer is used for classification after the dropout layer,
which is followed by the flatten layer, which is followed by
two dense layers, the first of which is followed by the dropout
layer, which is then followed by the batch normalization
layer, and finally by the Sigmoid layer. In addition, the Relu
activation function is utilized in each convolution layer as
well as the first dense layer, as demonstrated in Figure 3.

The three dropout layers are employed with a dropout
of 0.5 in order to reduce the overfitting. The features that
are retrieved by the convolutional network are flattened into
a one-dimensional vector in order for the fully connected
network to categorize them using Sigmoid into two classes
(COVID and Normal).

C. QUANTUM CNN
To recognize quantum states, QCNN can be created. It is
vital to research how local characteristics fit into the overall
QCNN circuit construction as well as how to link them.

In contrast to past research and current developments,
we will use QCNNs to examine if the physical state/phase
classification mode can be translated into learning the classic
image classification issue and to determine which type of
image is most likely to learn. It’s crucial to prepare quantum
starting states. The separated weight function increases as the
entangled state increases. When compared to an entangled
state, it is more persuasive. The QCNN would be more
powerful than its conventional equivalent.

The following steps are about the procedure on how to
assemble circuits:

1.Define the quantum circuits, appropriately set up a state,
train the quantum classifier, and then check to see whether it
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FIGURE 3. The proposed CNN networks.

works. To speed up the processing, there is ‘‘entanglement’’.
We can read a two qubit to get the classification outcome
when entanglement is decreased.

FIGURE 4. X-ray image preparation and ZFeatureMap architecture.

Figure 7 provides an illustration of the QCNN architec-
ture’s generalizability for this image classification problem.
Figure 4 illustrates the quantum cluster state preparation
layer, the initial layer of the QCNN architecture. We create
synthetic image data from images in the database under cer-
tain conditions, it creates two arrays to represent horizontal
and vertical line patterns, respectively. These arrays contain
values of angles (in radians) that can be used to represent
these patterns, where the goal might be to classify images
of patterns into two classes (horizontal or vertical), with
some level of noise added to the patterns to increase the
complexity of the dataset. The class labels are represented
as -1 and 1, and the patterns are represented as arrays of
angles.

2. The input layer where the encoded features via the
ZFeatureMap [32], it is a quantum circuit that prepares a
quantum state in a way that can be used to encode classical
data into a quantum state for processing on a quantum
computer. Specifically, the ZFeatureMap is used to encode
classical data as rotations around the Z-axis of qubits in a
quantum circuit, see figure 4a.

3. Included in the convolution and pooling layer are two
unitarymatrices with qubit parameters. Quantum convolution
is the third layer. RX, RZ, and CNOT gates in a quantum
convolution layer are shown in Figure 5, which may be built
by a cascade of two-qubit parameterized unitary to pairs of
neighboring qubits progressively.

Specifically, ZFeatureMap is used to encode classical data
as rotations around the Z-axis of qubits in a quantum circuit,
see figure 4a.

In order to map classical data onto a quantum state, the
ZFeature Map performs a number of procedures. The term
‘‘ZFeature’’ comes from the fact that these operations often
entail rotating qubits around the Z-axis of the Bloch sphere.
The information that is derived from the classical data is
encoded into the amplitudes of the quantum state vector,
while the mapping operation is being carried out. The manner
in which this encoding is carried out is determined by the
particular rotations that are done by the ZFeature Map. After
the encoding process is finished, the classical data is then
represented as a quantum state. The amplitudes of the state
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FIGURE 5. Quantum convolution layers.

vector include information about the classical data that was
first encoded.

4. The quantum pooling layers are shown in Figure 6 as
RX, RZ, and CNOT gates. The entanglement is managed
via CNOT gates. Entanglement is lowered down from a two-
qubit circuit to a one-qubit unitary circuit using two arbitrary
unitary qubits to create a parameterized pooling. A two-qubit
pool is used by the quantum pooling layer to combine half of
the qubits. The relevant qubits that have the label 1 affixed
to one state and the label 1 affixed to the other state are
output by the pooling layer. An image data collection for
binary classification serves as the traditional data source in
this design. When downscaling an image and preparing the
features as the input parameters for a quantum network, the
pixel is not an acceptable image feature for classification,
figure 7 illustrates the QCNN architecture.

The distinction between the 1st and 2nd quantum circuit:
1. Sequence of gates: The first circuit begins with a rotation

around the X-axis, while other circuit begins with a rotation
around the Z-axis.

2. The order of the application and qubits targeting the
gateway varies.

3. Both circuits include controllable gates, such as CNOT,
which provide entanglement between the qubits, and their

FIGURE 6. Quantum pooling layer.

locations differ between the two circuits, leading to different
entanglement patterns and the resulting quantum states.
These differences can affect the quantum transformations
achieved by each circuit, highlighting the importance of
understanding the subtle differences between quantum cir-
cuits in quantum computing applications).

In figure 7, This encoding process involves converting
pixel values into quantum amplitudes or using specific
encoding schemes (ZFeatureMap). Quantum Convolution
Layer and Quantum Pooling layer there are two-qubit
quantum circuits known as QCNN1 and QCNN2, and they
were created specifically for certain quantum tasks. The
initial rotation gates that are applied to the qubits in QCNN1
and QCNN2 are different, despite the fact that their structures
are comparable. There is a possibility that the selection of
initial rotation gates (Rz vs Rx) in QCNN1 and QCNN2
will have an effect on the development of the quantum state
and the entanglement patterns in the circuits. It is possible
that one circuit design will perform better than the other
in terms of accuracy, gate count, or depth but this will
depend on the particular quantum algorithm or job being
performed. The ansatz model uses a parameterized quantum
circuit. It usually has a predetermined layout of quantum
gates, such as entangling gates (CX) and rotation gates (Rx,
Rz). It all starts with some arbitrary settings for the ansatz
circuit’s parameters. In order to minimize a cost function,
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FIGURE 7. A QCNN architecture.

the parameters of the ansatz circuit are repeatedly modified
during the training phase.

SparsePauliOp is used a quantum computing framework.
It can represent measurements along different axes by
composing tensor products of Pauli matrices (I, X, Y, Z)

acting on different qubits. This class offers a more efficient
way to represent and manipulate large quantum operators
that are mostly composed of zeros. It stores only the
non-zero elements of the operator, making it much more
memory-efficient for sparse operators compared to a dense
representation.

Decoding in ansatz models inside a quantum neural net-
work (QNN) requires the interpretation of the measurement
results of the output qubits in order to ascertain the class
label of the data that is being input. Immediately after the
execution of the ansatz circuit, measurements are carried
out on the qubits that are output. As a result of these mea-
surements, bitstrings are produced as outcomes, with each
bitstring representing a different potential state of the output
qubits.

Usually, traditional optimization algorithms like gradient
descent are used for this optimization process, which involves
computing the gradient of the cost function with respect
to the ansatz parameters using methods like quantum
gradients.

VI. RESULTS AND DISCUSSION
The purpose of this section is to show how effective the
suggested QCNN classifier based on scale-inspired image
characteristics is. We conduct two sets of experiments to
achieve this. The tests were conducted in an IBM Qiskit
environment.

A medical dataset of Covid-19 images from the first trial
comprises 13992 photographs of healthy people without
illness and 15994 images of benign Covid positive people.
In the first group, 80% of the photos were chosen for training,
while the other 20% were chosen for testing.

In our experiments, features were distributed out into
the eight qubit parameterized quantum circuits after being
normalized to [−π /2, π ] as rotation angle parameters in RX,
RZ, and CNOT gates. The multi-scale structure of the data
distribution is further highlighted by this fusion of encoded
local correlation features and QCNN. The incorporation of
quantum features appears to have improved performance
when compared between the QCNNmodel and the traditional
CNN model.

The value accuracy in CNN and QCNN with multiple
quantum layers for two groups dataset 2000, 10000 images
have achieved CNN accuracies of about 89.4, 91.83, and
80.14% respectively, training time is 57.993, 282.307, and
818.3026 sec per each epoch, respectively and the difference
is negligible. A first proposed QCNN has achieved accuracies
of about 91.57, 92.36, and 83.72% respectively, training time
is 2.84, 12.06, and 37.8684 sec per each epoch. A second
proposed QCNN has achieved accuracies of about 94.21,
95.07, and 86.614% respectively, training time is 3.104,
15.743, and 47.4634 sec per each epoch, respectively as
shown in table 1.

When compared to the other two quantum models,
pure QCNN convergence exhibits a considerable fluctuation
across a relatively limited range. The pure QCNN model,
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TABLE 1. Comparison between classical CNN and two proposed quantum
CNN.

out of the two quantum-based models, may still show better
convergence. The images consist of 15994 photographs
that are covid positive and 13992 images that are normal
without illness. Additionally, each class chose 80% of
these images for training data and the remaining 20% for
validation.

One reason for the accuracy decreases is when using
26000 from a dataset with QCNNs could be related to
the complexity of quantum computations, the decrease in
accuracy when using larger datasets, such as a sample size
of 26,000, with QCNNs can be attributed to the complexity
of quantum computations. Quantum algorithms, including
those used in QCNNs, often involve complex mathematical
operations and circuit implementations, which may have
difficulty handling large data sets efficiently. This complexity
lead to increased computational load and potential accuracy
degradation, as observed in the results, Current quantum
hardware platforms are very limited and the scope of quantum
systems is restricted and does not scale to accommodate
big data [33]. Quantum computing is highly specialized
and rapidly evolving field. Current quantum computers
have limitations, such as high error rates, short coherence
times, and inadequate design choices can result in decreased
accuracy when processing larger datasets. These limitations
can lead to inaccuracies in computations, especially when
dealing with large datasets.

Similar to the way multiscale images are analyzed
and encoding, X-ray images have similar correlations
that are important for studying the properties of differ-
ent measurements. Which leads to a rapid improvement
in the performance of quantum networks, like a rapid
increase in accuracy accompanied by a rapid decrease
in loss.

Creating images in Figure 4a and the accuracy of the data
distribution in the category affects the result by distributing
the different position of the pixel values, where there are
images from the disturbed state to the disagreeable state and
this motivates us to use the noise of the image data.

The proposed quantum CNN networks with the pre-
pare encoding method used outperformed the classical
CNN network in terms of accuracy and processing
time in all experiments, and the performance gradually
improved.

The objective function value represents the cost associated
with the difference between the predicted quantum states
(representing the model’s predictions) and the target quantum
states (representing the actual labels). The objective function
in quantum machine learning models, including QCNN,
is generally defined to minimize the difference between
these quantum states. The specific form of the objective
function can vary based on the task and the quantum model
architecture being used in training process to optimize the
quantummodel for accurate predictions. The specific form of
the objective function depends on the task and the quantum
model’s architecture, see figure 8.

FIGURE 8. Objective function value against epochs.

Analysis of the experimental results shows that two our
proposed methods reduce the time required, and therefore,
quantum CNN contains a smaller number of layers compared
to classical CNN.

Complex tasks may require a higher number of qubits
to capture subtle patterns and relationships within the
data. The number of qubits in a Quantum CNN signif-
icantly impacts its performance, influencing the model’s
complexity, capacity, and the parallelism it can exploit.
However, it’s crucial to balance these advantages with
the required computational resources, the sensitivity to
noise, and the overall scalability of the quantum system
to ensure practical and efficient quantum machine learning
implementations, while a small number of qubits currently
limit the accuracy of quantum models in image classification
compared to classical methods, ongoing advancements in
quantum computing technologies and algorithm develop-
ment hold the promise of overcoming these limitations in
the future.

When doing a comparison examination of the performance
of several models on subsets of the MNIST dataset, the
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major statistic that was taken into considerationwas accuracy.
Specifically, the MNIST (3,4,5,6) and MNIST (0,1,2,3)
subsets were examined and appraised. Quant1 and quant2
in [23] across both subgroups, showing an improvement in
accuracy. This was the case among the quantum models,
which are designated by the reference numbers [23]. QCNN
models, QCNN1 and QCNN2, on the other hand, demon-
strated greater performance in comparison to their quantum
counterparts, as shown in table 2.

TABLE 2. Comparation proposed our quantum models with related
works.

The QCNN1 algorithm attained an accuracy of 91.05%
for the MNIST (3,4,5,6) subset, while the QCNN2 algorithm
demonstrated an even greater accuracy of 93.36%, beating
both quant1 and quant2 algorithms in [23]. Similar to
the previous example, the QCNN1 algorithm obtained an
accuracy of 94.78% on the MNIST (0,1,2,3) subset, while
the QCNN2 algorithm displayed the maximum accuracy of
96.3%. These findings demonstrate that quantum convolu-
tional neural networks are capable of doing quite well when it
comes to image classification tasks, especially when applied
to subsets of the MNIST dataset.

In general, the comparative study highlights the significant
performance gain that QCNN models give in comparison
to previous quantum techniques. QCNN1 and QCNN2 have
consistently outperformed other neural networks, which
demonstrates their potential to improve accuracy and effi-
ciency in image classification tasks. This suggests that there
is a viable route for exploiting quantum computing methods
in machine learning applications.

When it comes to our work, arranging the gates and
rotating the circuit is more ideal for capturing the vital
aspects, and this results in improved performance. This is
in addition to the fact that the suggested circuits have the
capability of adapting to a new data set as a result of their
design and the parameters that they have been set to. This
provides a larger capacity to train and further increases its
efficacy.

Quantum in [23] makes use of a variety of quantum circuit
designs, including as 4-qubit, 3-qubit, and 2-qubit filters,
which results in an architecture that is both sophisticated
and versatile. It places a significant amount of reliance on
entanglement processes that span several qubits in order
to get intricate correlations and characteristics within the
input data. In order to achieve entanglement, it makes
use of parameterized rotations, which in turn increases
the flexibility of the learning method. demonstrates high
performance and accuracy in multiclass image classification
tasks, producing results that are equivalent to those achieved

by traditional CNNs with a comparable number of trainable
parameters. It is able to effectively capture significant
aspects from the input data thanks to its flexible design
and entanglement techniques, which contribute as well to its
efficacy.

A particular two-qubit unitary circuit architecture that is
specifically designed for image classification tasks is the
focus of this article. In comparison to other architectures,
it has a more straightforward overall structure since it makes
use of a condensed circuit topology that is accompanied
by a predetermined sequence of gates. The controlled-
NOT (CX) gates that are used between two qubits are
the primary means by which entanglement is implemented.
Although it is possible to capture entangled states, the
process that causes entanglement is more confined and
less diverse in comparison to previous work that is linked
to this topic. It is possible that the established circuit
design may result in simplified optimization techniques and
shorter training durations; nonetheless, the performance of
the circuit will ultimately be determined by the partic-
ular properties of the dataset and the job that is being
performed.

Compared to our approach, [21] and [22] used RZZ gates
increase complexity and cause quantum clustering instability
during training. This instability yields worse outcomes than
without sophisticated gates. Instead of using complicated
gates, our strategy simplifies training for stability and
good outcomes. The differences in results between the
two techniques show that quantum machine learning must
balance complexity and stability. Complex gates like RZZ
can capture detailed data patterns and be expressive, but
training stability and convergence may be difficult. Simpler
gate topologies, like those used in our study, may lose
expressiveness but frequently result in more stable training
dynamics and dependable performance. By simplifying our
technique, we reduce the danger of quantum clustering
instability and guarantee our model can be taught and
deployed in real-world applications. Our successful tech-
nique shows that advanced gate topologies are not necessarily
needed to compete in quantum machine learning problems.
Instead, balancing simplicity and efficacy may provide solid
solutions.

VII. CONCLUSION AND FUTURE WORK
In this paper, we offer two scale-inspired local feature
extraction algorithms for binary pattern Covid-19 image
classification based on IBM’s quantum framework for
QCNN. When entanglement is minimized, a high or suitable
entangled state corresponds to a high separated weight
function, and we may get the classification outcome from
the qubit. In order to assess the effectiveness of the
quantum classifiers, we trained them using CNN and two
different quantum CNN models. The simulation results
on the Covid-19 image datasets demonstrate that, when
compared to the traditional CNN, the proposed QCNN
with the suggested feature extraction methods may achieve
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performance improvement in terms of recognition accuracy
and classification accuracy. This finding encourages us to
investigate the relationship between the chaotic character of
an image and how QCNN classifiers might improve clas-
sification performance. QCNN outperform classical CNNs
in processing time due to quantum parallelism and entan-
glement. Quantum states enable simultaneous exploration of
vast solution spaces, a capability that classical CNNs lack.
QCNN utilizes quantum entanglement for efficient feature
correlation, enhancing pattern recognition. As quantum
computing matures, QCNN promises reduced processing
times.

The architectural complexity of Quantum CNNs arises
from the probabilistic nature of quantum computations, the
intricacies of quantum gates and qubit entanglement, and the
challenges in integrating classical and quantum components.
Successfully navigating these complexities is pivotal for
harnessing the full potential of QCNN in solving complex
real-world problems.

In the future, more methods for features extraction
needs to be carried out to explore the interpretability and
performance improvement of QCNN models, Finally, the
QCNN architecture can be enhanced to overcome limitations
of the proposed model.
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