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ABSTRACT Due to the increasing use of nonlinear loads in modern power systems, harmonic currents
have become a more prominent problem for power quality. Typically, harmonic currents are compensated
by using shunt active power filters. Recently, a novel constrained linear state signal shaping model predictive
controller has been proposed for shunt active power filter control. However, due to the high computational
requirements of online quadratic programming solvers, the real-time implementation of this solution is
quite challenging. Therefore, the present work proposes the use of a linear state signal shaping explicit
model predictive control formulation, such that the optimizations are done offline. However, the generated
offline data introduces a large memory footprint, hindering real-time implementation. To break the curse
of dimensionality, a tensor representation is proposed, which can be efficiently compressed via tensor
decomposition methods. The proposed approach was tested in simulation and was able to provide good
results. Due to the use of efficient tensor decomposition methods, a considerable reduction of the memory
requirement could be achieved.

INDEX TERMS Harmonic compensation, explicit model predictive control, active power filter, tensor
decomposition.

I. INTRODUCTION
The number of converter-connected generation units and con-
sumers is constantly rising, which poses, among other power
quality problems, the introduction of harmonic disturbance
into the grid, [1]. For the reduction of harmonic disturbance,
several approaches are available, shunt active power filters
(SAPFs) being the most prominent one, with an active field
of research, e.g., [2] uses Lyapunov theory and [3] neural
networks.

Recently, a new linear state signal shaping model predic-
tive control (LS3MPC) approach was proposed by [4], which
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is based on model predictive control (MPC) with constraints,
i.e., a quadratic program (QP). When dealing with harmonic
compensation, the LS3MPC can use a harmonic shape
class as reference dynamics for its compensation, as seen
in [4] (for a comparison of the base concept against classical
approaches see [5]). In general, MPC offers many advantages
over classical control approaches, like look-ahead action
and built-in constraint handling. However, despite recent
advancements in optimization solvers, see [6] and [7], the
online computation of an MPC is still quite demanding for
real-time applications, particularly at small timescales like in
harmonic compensation. Thus, a reasonable approach is to
use an explicit MPC formulation, which enables the offline
precomputation of the control laws.
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In explicit MPC approaches, the control problem is
formulated as a multi-parametric quadratic program (mp-
QP), which solution leads to a piecewise affine (PWA)
function containing the control law over each polytopic
region of a set of convex critical regions [8]. The explicit
MPC implementation is divided in two phases. The first
phase is offline, where the PWA control laws are calculated
for each critical region and stored. The second phase is
online, where the real-time controller solves a point location
problem to identify the currently active critical region and its
corresponding control law, which is easily evaluated, [9].
However, depending on the original problem dimensions,

the memory footprint of the mapped solution regions and the
run time effort to identify the critical region can rapidly scale
up. Therefore, different approaches have been explored in
literature to reduce the explicit MPC problem complexity.
Many approaches focus on the offline phase, simplifying
the PWA solution by, e.g., finding its minimal polyhedral
region representation [10], or looking for equivalent but more
efficient formulations like its lattice representation [11].More
recently in [12], a region-free approach is proposed, which
further reduces the memory and computation burden of the
offline phase, as no critical regions but only their optimality
condition variables need to be constructed or stored [13].
These approaches are also known as combinatorial or implicit
enumeration techniques, which often order the active set
candidates in a combinatorial tree, see [14], for more recent
advancements.

Alternatively, other approaches focus on the online phase,
trying to speed up the point location problem to reduce
the worst-case sample time like [15], which proposes a
hash-based approach in contrast to classic direct search. Some
approaches like [16], which uses binary search trees instead in
the lattice representation of the PWA, offer trade-offs between
preprocessing time, storage requirement, and online compu-
tation time. Other techniques, like constraint sorting [17], also
help accelerate the online evaluation by region discarding.

Nevertheless, despite the improvements achieved by the
aforementioned approaches, some MPC setups are still
too complex. This is particularly the case when long
prediction horizons are required, as it increases the region
partitions, thus hindering its real-time feasibility. In this
context, aiming for simplified suboptimal solutions that
approximates the explicit MPC problem can be considered
as an option if the application allows it. Approximation
approaches have been considered since the early stages
of the explicit MPC, see [18]. Many approaches aim at
approximating the PWA solution with simpler objects, like
orthogonal hypercubes [19] or simplices [20]. For a more
comprehensive review of further explicit MPC approaches
refer to [21]. While many of these approaches greatly reduce
the explicit MPC complexity and memory burden, they are
still susceptible to the curse of dimensionality, as the number
of combinations keeps growing, even well-built search trees
become unmanageable.

The aim of this publication is to find an explicit MPC
formulation that is suitable for the LS3MPC approach in the
application field of SAPF for harmonic compensation. In this
context, due to the large prediction horizon requirements of
the approach [4] and the flexible margins of the application
field, approximate approaches are a reasonable course of
action.

The proposed explicit LS3MPC approach aims to exploit
the strength of tensors, in particular their decomposition
in low-rank approximations, to achieve a more efficient
solution region representation for the explicit MPC. Tensor
decomposition is already extensively used in the fields of
signal processing, statistics, data mining, machine learning,
and many more, e.g., [22]. Tensors can also be used in the
parameter space, e.g., for describing multilinear models [23],
because of their close structural relation. For explicit MPC,
tensors have been sparsely used, e.g., the tensor product in the
multiresolution approximation approach in [24]. However,
to the best of the authors’ knowledge, tensor decomposition
methods remain untapped.

Similarly to other approximation approaches, the explicit
LS3MPC uses simpler orthotope objects to approximate
the PWA function. However, in contrast to other methods,
each dimension has a constant partition, leading to an
equidistant mesh that allows for a tensor formulation that
approximates the PWA function. These partition restrictions
essentially make the point localization problem negligible,
as each dimension is uniformly sampled, greatly simplifying
the online phase. Nevertheless, to attain an acceptable
approximation accuracy, a really fine mesh is required, which
consequentially leads to a prohibitive number of partitions
to be stored in the offline phase. This is when the tensor
decomposition methods, enabled by the tensor formulation,
come to play, alleviating the curse of dimensionality of
the offline phase significantly via low-rank approximations.
Moreover, due to the nature of the application field and
the LS3MPC formulation, an additional frequency domain
approximation is used to further reduce the size of the
problem and its dependence on the prediction horizon (in
terms of dimension, not combinations).

The proposed explicit LS3MPC presents a promising
approach to tackle the curse of dimensionality. Nevertheless,
it still has open problems, particularly in the offline calcula-
tion of the full tensor and its decomposition. In this context,
this manuscript aims to determine whether a low-rank tensor
decomposition approximation can satisfactorily capture the
dynamics of an explicit MPC, in particular for the LS3MPC
setup.

The paper is organized as follows. The LS3MPC is
introduced in section II. The explicit LS3MPC with the
notation in tensor format, as well as the decomposition
of the resulting tensor, is given in section III. The appli-
cation example is described, and simulation results are
given in section IV. Finally, conclusions are drawn in
section V.
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II. LINEAR STATE SIGNAL SHAPING MODEL PREDICTIVE
CONTROL
This section introduces the base MPC and linear state signal
shaping (LS3) theory required to formulate the LS3MPC
problem.

A. MODEL PREDICTIVE CONTROL
The MPC framework used for this work considers a
discrete-time linear state space system formulation for the
plant, which is given as

x(k + 1) = Ax(k) + Bu(k) + Dd(k), (1)

with x ∈ Rn, u ∈ Rl , and d ∈ Rd as state, input, and
disturbance vectors; with {n, l, d} ∈ Z≥0 as number of
states, inputs, and disturbances respectively; and A ∈ Rn×n,
B ∈ Rn×l , and D ∈ Rn×d as system, input, and disturbance
matrices, for discrete time k ∈ Z≥0. For a given finite
prediction horizon Hp, the MPC control action u for
stabilizing (1) starting at x (0) = x0, is obtained by solving
the following QP

min
u

Hp−1∑
k=0

x⊤(k)Q(k)x(k) + u⊤(k)R(k)u(k), (2)

s.t. xmin ≤ x(k) ≤ xmax ∀ k ∈
{
1, ... ,Hp

}
, (2a)

x(k + 1) = Ax(k) + Bu(k) + Dd(k)

∀k ∈
{
0, ... ,Hp − 1

}
, (2b)

with Q(k) ∈ Rn×n and R(k) ∈ Rl×l standing for the block
diagonal elements of their corresponding state and input
weighting matrices

Q =


Q(0) 0 . . . 0
0 Q(1) . . . 0
...

...
. . .

...

0 0 . . . Q
(
Hp − 1

)
 ∈ RnHp×nHp ⪰ 0,

(2c)

R =


R(0) 0 . . . 0
0 R(1) . . . 0
...

...
. . .

...

0 0 . . . R
(
Hp − 1

)
 ∈ RlHp×lHp ≻ 0,

(2d)

where 0 is amatrix of zeros of appropriate size, and xmin ∈ Rn

and xmax ∈ Rn stand for the lower and upper bounds of
the states vector x, [25]. Naturally, more formulations and
multiple input and state constraint combinations are possible.

Parting from (1), lifted system equations for the whole
prediction horizon Hp can be formulated as

X (k) = 9x(k) + 8U(k) + 0D(k), (3)

where

X (k) =
(
x⊤(k + 1) x⊤(k + 2) . . . x⊤

(
k + Hp

))⊤
∈ RnHp ,

(3a)

9 =

(
A⊤ A2⊤

. . . AHp⊤
)⊤

∈ RnHp×n, (3b)

8 =


B 0 . . . 0
AB B . . . 0
...

...
. . .

...

AHp−1B AHp−2B . . . B

 ∈ RnHp×lHp ,

(3c)

U(k) =
(
u⊤(k) u⊤(k + 1) . . . u⊤

(
k + Hp − 1

))⊤

∈ RlHp , (3d)

0 =


D 0 . . . 0
AD D . . . 0
...

...
. . .

...

AHp−1D AHp−2D . . . D

 ∈ RnHp×dHp ,

(3e)

D(k) =
(
d⊤(k) d⊤(k + 1) . . . d⊤

(
k + Hp − 1

))⊤

∈ RdHp . (3f)

The previous equations can be used to reformulate (2), such
that it can be solved with standard QP solvers, e.g., operator
splitting quadratic program (OSQP) solver by [26], leading
to

V (z(k)) = min
U(k)

1
2
U⊤(k)HU(k) + z⊤(k)FU(k), (4)

subject to GU(k) ≤ W + Ez(k), (4a)

where

z(k) =
(
x⊤(k) D⊤(k)

)⊤
∈ Rn+dHp , (4b)

H = 2
(
8⊤Q8 + R

)
∈ RlHp×lHp , (4c)

F = 2
(

9⊤Q8

0⊤Q8

)
∈ R(n+dHp)×lHp , (4d)

G =
(
8⊤

−8⊤
)⊤

∈ R2nHp×lHp , (4e)

W =

(
x⊤
max ⊗ 1⊤

Hp x⊤

min ⊗ 1⊤
Hp

)⊤

∈ R2nHp , (4f)

E =

(
−9 −0

9 0

)
∈ R2nHp×(n+dHp), (4g)

with 1Hp as a column vector of ones of size Hp, [8].
Remark 1 (Convexity): Note that to ensure that (4) is a

convex problem, the HessianH in (4c), needs to be symmetric
and positive semidefinite [27], i.e., H = H⊤

⪰ 0. This is
ensured by the choice of Q and R in (2).

B. LINEAR STATE SIGNAL SHAPING
The LS3 theory centers around shaping linear system states,
like x from (1), into ‘‘shapes’’ belonging to specific linear
dynamics, captured by a so-called ‘‘shape class’’, as defined
in the following.
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Definition 1 (Shape Class): Given a discrete-time state
space system with state vector x ∈ Rn, starting at discrete
time k , let

XL(k) =
(
x⊤(k) x⊤(k + 1) . . . x⊤(k + L − 1)

)⊤
∈ RnL ,

(5a)

XT (k) =
(
x⊤(k) x⊤(k + 1) . . . x⊤(k + T − 1)

)⊤
∈ RnT ,

(5b)

where L ∈ Z≥1 and T ∈ Z≥1,L ≥ T , then, the set

X̂V = {XL(k) |VXT (j) = 0∀j = k, ... , k + L − T − 1} ,

(5c)

contains any sequence XL(k) consisting of L consecutive
discrete-time x instances, which belong to the shape class
given by the shape matrix V ∈ Rs×nT , which defines s linear
difference equations for a sequence of T consecutive discrete-
time x instances [28].

Definition 1 outlines the kernel of the shape class linear
map ker (V), which consists of a set of linear difference
equations that define the desired shape dynamics.
Remark 2 (Shape Class Set): Note that the shape class

definition set X̂V in (5c) is a more restrictive definition
than the general shape class set XV extending to infinity,
as given by [28]. However, due to the finite nature of the
MPC prediction horizon Hp, this finite formulation subset is
proposed here.

The control goal for LS3 is to find solutions that lead the
system to state sequences XL that piecewise, i.e., XT , lie
within the kernel of a given shape matrix or at least within
its vicinity. When a solution state sequence does not belong
to the kernel exactly, i.e., VXT (k) ̸= 0, it defines a shape
residual [28]

∥VXT (k)∥2 . (6)

The core idea of the LS3MPC is to find an optimal
state sequence XL(k) that minimizes the shape residual
in (6) throughout its prediction horizon, i.e., XL(k) = X (k),
since L = Hp. This can be achieved by formulating the
following minimization problem

min
X (k)

X⊤(k)P⊤

VPVX (k), (7)

with the pattern band matrix

PV=


V1 V2 · · · VT 0 · · · 0

0 V1 V2 · · · VT
. . .

...
...

. . .
. . .

. . .
. . .

. . . 0
0 · · · 0 V1 V2 · · · VT

 ∈ Rs(Hp−T+1)×nHp ,

(7a)

where

Vj = V

0n(j−1)×n
In×n

0n(T−j)×n

 ∈ Rs×n, (7b)

are block matrices from the shape class matrix V [28],
with zero matrix 0i×j ∈ Zi×j and identity matrix Ii×i ∈ Zi×i.
As shown by [4], this minimization problem can easily
be embedded into (4) QP formulation by setting the state
weighting cost matrix as Q = P⊤

VPV. This approach directly
affects the Hessian in (4c), which becomes non-diagonal, but
still needs to be positive semidefinite to ensure (4) solvability,
see Remark 1. For further remarks on the closed-loop
behavior of the LS3MPC and its design parameters, please
refer to [4] and [28].

III. LINEAR STATE SIGNAL SHAPING EXPLICIT MODEL
PREDICTIVE CONTROL IN TENSOR FORM
This section recaps the explicit MPC theory and intro-
duces the explicit LS3MPC. The section concludes with a
tensor-based approach to reduce the storage demand of the
explicit LS3MPC.

A. EXPLICIT MODEL PREDICTIVE CONTROL
One of the main objectives of an explicit MPC is to move
most of the computation effort offline [8]. The key idea is
to treat (4) as an mp-QP with an explicit dependency on the
vector of parameters z(k) as given in (4b). Then, the mp-QP
problem solution U⋆(k) can be computed offline, leading to
a piecewise affine function of z(k) [8]. Such piecewise affine
function is given as follows

w(z(k)) = Miz(k) + ci ∀ z ∈ CRi, (8)

where Mi
∈ RlHp×n+dHp is the slope matrix and ci ∈ RlHp is

the offset vector for the convex polyhedral regionCRi, which
together conform a subset for z ∈ Z ⊆ Rn+dHp .
The first step to transform (4) into an mp-QP is to perform

the change of variable

w = U(k) + H−1F⊤z(k), (9)

leading to

Vw(z(k)) =min
w

1
2
w⊤Hw, (10)

subject to Gw ≤ W + Sz(k), (10a)

where

S = E + GH−1F⊤
∈ R2nHp×(n+dHp), (10b)

Vw(z(k)) = V (z(k)) +
1
2
z⊤(k)FH−1F⊤z(k). (10c)

The solution to the mp-QP in (10), as detailed in [8], is the
following

w = M̃
(
W̃ + S̃z(k)

)
, (11)

where M̃ = H−1G̃⊤

(
G̃H−1G̃⊤

)−1
, and W̃, S̃, and full

rank G̃ are the set of active constraints, i.e.,

G̃w − W̃ − S̃z(k) = 0. (12)
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FIGURE 1. Meshing of a 3-D state space.

Replacing (11) in (9) leads to

U(k, z) =

(
M̃S̃ − H−1F⊤

)
z(k) + M̃W̃. (13)

These matrix function parameters are stored as follows

K =
(
M̃S̃ − H−1F⊤ M̃W̃

)
∈ RlHp×(dHp+n+1), (14)

for the corresponding slope and offset. To fulfill (10a)
considering (11), it follows

GM̃
(
W̃ + S̃z(k)

)
≤ W + Sz(k). (15)

Moreover, the Lagrange multipliers for the first-order
Karush-Kuhn-Tucker (KKT) optimality conditions for (10)
must remain non-negative

λ̃ = −

(
G̃H−1G̃⊤

)−1 (
W̃ + S̃z(k)

)
∈ R2nHp ≥ 0. (16)

Considering (15) and (16) and removing the redundant
constraints in (10), as detailed in [8], a compact represen-
tation for the critical region CR0 for a specific z0 can be
obtained. Next, the remaining region Z − CR0 needs to be
explored, repeating the same procedure to find all new critical
regions. The steps for this procedure can be summarized as
follows:

1) solve mp-QP in (10) for a chosen zi,
2) find the set of active constraints (12),
3) calculate the corresponding matrix function parame-

ters Ki as given in (14),
4) compute a compact representation of the region CRi

considering (15) and (16),
5) choose a new zi and repeat.

B. EXPLICIT LS3MPC
This subsection starts by introducing the meshing approach,
followed by a frequency domain parameterization method for
the variables in z.

FIGURE 2. Piecewise linear function with polyhedral regions.

FIGURE 3. Piecewise linear function of the proposed meshing approach
from different perspectives.

1) MESHING APPROACH
In contrast to the usual approach of defining polyhedral
regions CRi in the state space, this publication uses the
meshing approach introduced in [29] to reduce the number
of variables to be stored. In this approach, the storage
demand for the regions is reduced because of the mesh
structure. Furthermore, the disturbance and the control input
are parametrized in the frequency domain. Both will be
described in the following.

The state space is meshed in all variables leading to
orthotopes, as displayed in Fig. 1 for the case of three states.

For each orthotope j = 1, . . . ,5z
i=1ni, the function param-

eters matrix Kj ∈ RlHp×(dHp+n+1), as given in (14), is calcu-
lated and stored in a tensor

T ∈ Rn1×...×nz×lHp×(dHp+n+1), (17)
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where ni is the number of orthotopes in the direction of
state xi, for i = 1, . . . , nz. The parameters zj for calculating
the matrix Kj correspond to the centroid of the respective
orthotope region. Because the dimensions of the tensor T and
their sizes implicitly give the mesh structure, no additional
information needs to be stored about it, unlike polyhedral
regions, which ultimately trivializes the point location
problem. Next, a minimal example is introduced to help
visualize the proposed meshing approach.
Example 1 (Piecewise Linear Function): The optimiza-

tion problem (4) was solved for the state-space model

x(k + 1) =

(
0.7326 −0.0861
0.1722 0.9909

)
x(k) +

(
0.0609
0.0064

)
u(k),

(18)

with sampling time ts = 0.1 s and weighting matrices

Q =

(
1 0
0 1

)
, (19)

R = 0.001. (20)

The controller aims to drive the states to the equilibrium at
the origin, i.e., x1 = x2 = 0. The prediction horizon was kept
atHp = 2 to keep the scale of the example to a minimum. The
input was constrained to ±2 and the states to ±1.5. The mesh
size was chosen to be 1x = 0.2 for both states.
Fig. 2 shows the standard polyhedral regions approach for

explicit MPC. In contrast, Fig. 3 shows the piecewise linear
function of the proposed meshing approach, which is not
as smooth. At the borders of the orthotopes, discontinuities
arise, which can violate the inequality constraints.

The bigger the mesh size, the more likely the inequality
constraints will be violated. Naturally, the simpler mesh
structure provided by the orthotopes does not match the
polyhedral regions exactly, bringing a trade-off between
accuracy and mesh size.

2) FREQUENCY DOMAIN PARAMETERIZATION
As stated before, the dimension of matrices Kj in (14)
depends on the prediction horizon Hp, the number of
disturbances d , the number of states n, and the number of
inputs l. However, by expressing the disturbance and the
control input in terms of harmonic signals, only the amplitude
and phase of each harmonic need to be stored, thus removing
the problem size dependency on the prediction horizon. This
can be done using a discrete Fourier transform (DFT)

D(k) ≈ W0D̂(ωk ), (21)

U(k) ≈ Wu Û(ωk ), (22)

with ωk = 2π fk for frequency f , and Fourier matri-

ces W0 ∈ CdHp×2dnd and Wu ∈ ClHp×2lnu , where nu is the
number of harmonics considered for the control input DFT
and nd is the number of harmonics considered for the
disturbance DFT. The elements of each Fourier matrix are

FIGURE 4. 3D rank R CP tensor.

given as

Wn̂,k =
1
N

cos
(
2π
N
kn̂

)
+ j sin

(
2π
N
kn̂

)
, (23)

for columns k , rows n̂, and N =
1
fts

for sampling time ts. This
change of variable leads to a reformulation of (4) as

V (z(k)) = min
Û (ωk )

1
2
Û⊤(ωk )W⊤

u HWu Û(ωk )

+ z⊤(k)FWu Û(ωk ), (24)

subject to GWu Û(ωk ) ≤ W + Ez(k), (24a)

where the parameter matrix 0Fourier ∈ CnHp×2dnd = 0W0 is
replaced.

This parameterization extends to the mp-QP formulation
in (10). Thus, the dimensions of the matrices Kj under this
parameterization are

Kj ∈ R2lnu×(2dnd+n+1). (25)

Naturally, the viability of this parameterization will depend
on the balance between the required harmonic order of the
application versus the prediction horizon Hp, as will be
seen in section IV. Even though the proposed harmonic
parameterization dramatically reduces the scale of the
problem, far more significant gains are yet to be exploited due
to the tensor format chosen in (17), as seen in the following
subsection.

C. TENSOR DECOMPOSITION
To reduce the storage demand for the explicit LS3MPC,
the tensor T can be approximated by tensor decomposition
methods. Various tensor decomposition methods are avail-
able [30], [31], [32], [33]. Each of these has advantages,
marked as (+), and disadvantages, marked as (-) with respect
to their applicability (neutral points are marked as (o)).

Tensor trains are best in a predefined degree of accu-
racy (++), presenting good runtimes for decompositions (+)
but only medium runtimes for reconstruction (o), and a large
memory size (or smaller compression rates, respectively) (-).
The canonical polyadic decomposition (CPD) is the format
with the largest compression rate (++), having good
runtimes for reconstruction of elements (+) but long runtimes
for decomposition (-), and non-unique numeric results (- -).
Hierarchical or tucker formats are optimal for generically
structured data, which is not the case for the current
application.
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TABLE 1. Equivalent circuit microgrid parameters.

For real-time implementation, we are looking for a format
which allows performant online computations (reconstruc-
tion) with a minimal amount of memory. At this stage of the
explicit LS3MPCdevelopment, there is not toomuch focus on
the offline time (for decomposition) nor on achieving perfect
accuracy. Thus, CPD is currently the preferred choice, though
further formatsmight be explored at later development stages.

The CPD relies on the canonical polyadic (CP) tensor
format, introduced as follows.
Definition 2 (Canonical polyadic Tensor): A canonical

polyadic (CP) tensor

K = [X1,X2, . . . ,Xn] λ ∈ RR1×R2×···×Rn , (26)

is a tensor of dimension (R1, . . . ,Rn), with elements given by
the sums of the outer products of the column vectors of the so-
called factor matrices Xi ∈ RRi×R, weighted by the elements
of the so-called weighting or parameter vector λ ∈ RR.
An element of the multidimensional tensor K is given by

Kjk...p =

R∑
i=1

λi (X1)ji (X2)ki . . . (Xn)pi. (27)

If no weighting vector is given, it is assumed to be a vector
of ones, i.e., λ = (1 1 . . . 1)⊤ [30].

For the case of a 3-dimensional tensor, this is illustrated for
rank R in Fig. 4.

To help understand how the decomposition scales, a mini-
mal example is given in Fig. 5, with factor matrices

K =

[(
0 1
2 0

)
,

(
1 3
1 −3

)
,

(
1 0
0 1

)]
. (28)

FIGURE 5. CP tensor decomposition example.

The number of columns of the factor matrices corresponds
to the rank of the decomposition R = 2. Each dimension in
the example has a size of 2, which leads to a total of 8
elements in the original tensor to be stored vs. 12 elements
of the factor matrices. However, as the number of dimensions
keeps increasing, the number of elements of the original
tensor scales exponentially, while it scales only linearly for
the decomposed version, i.e, 2D against 2DR, where D is the
number of dimensions. Thus, by finding an adequate rank R
decomposition, the curse of dimensionality is broken.

FIGURE 6. Equivalent circuit representing a 3-node microgrid, with a grid
supply connection, an SAPF, and a nonlinear load.

Finding an exact decomposition with a minimal rank is
nontrivial NP-hard problem. However, several toolboxes are
available to find low rank approximations of full tensors.
In this work, the tensorlab toolbox [34] was used.
To wrap up this section, a brief recap of the steps needed

to reach this point is given in the following,
1) calculate mp-QP parameters in (4), i.e.,H,F,G,W,E,
2) define the mesh grid size 1x for T,
3) calculate the corresponding matrix function parame-

tersKj as given in (25) for each orthotope region j in T
as given in (17),

4) perform a CP tensor decomposition on T for a chosen
rank R.

IV. APPLICATION EXAMPLE
This section gives a harmonic compensation example for a
simple power system. The LS3MPC uses a harmonic shape
class to act as a reference for the compensation action of
an SAPF. The objective of this section is to showcase the
scalability of the approach for different low-rank tensor
decomposition approximations. A more exhaustive compar-
ison of the base concept around the harmonic shape class
LS3MPC against classical approaches is covered in [5].

A. MICROGRID MODELING
A simple 3-node microgrid is depicted in Fig. 6. The grid
supply node is represented by the ideal voltage source us
with feeder line resistance R1, feeder line impedance L1,
and feeder line current if . The nonlinear load node is
given by the resistance R4 in parallel with the ideal current
source il0, and load current il , which is the source of the
harmonic disturbance. Finally, connected in shunt at the
point of common coupling (PCC), the compensation node
is depicted by the resistance R3 in parallel with the ideal
current source ic0, which represent an SAPF, with line
resistance R2 and inductance L2, and compensation current ic.
The parameters of the system are given in Table 1.
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Using Kirchhoff’s voltage and current laws, the following
equations can be derived

0 = −us + R1if + L1
dif
dt

− R2ic − L2
dic
dt

+ R3(ic0 − ic),

(29a)

0 = −R3(ic0 − ic) + R2ic + L2
dic
dt

+ R4(il − il0), (29b)

il = if + ic, (29c)

which can be rewritten in state-space form as

ẋ(t) =

−
R1 + R4
L1

−
R4
L1

−
R4
L2

−
R2 + R3 + R4

L2

 x(t)

+

 0
R3
L2

 u(t) +


1
L1

R4
L1

0
R4
L2

dm(t), (30)

with state vector x(t) =
(
if ic

)⊤, control input u(t) = ic0 and
the measured input disturbance dm(t) =

(
us il0

)⊤.
The goal is to control the SAPF via ic0, such that the

harmonics injected by the nonlinear load il0 are canceled,
and the feeder line current if is free of harmonic disturbance.
Since the MPC implementation used in this work is in
discrete time, the system in (30) is discretized with sampling
time ts = 40µs, leading to a discrete-time state-space model
as given in (1).

B. HARMONIC SHAPE CLASS CONTROL DESIGN
One of the aims of an SAPF is to compensate the harmonic
distortion in a system, i.e., to ensure that it follows
the dynamics of a fundamental harmonic. As introduced
in [28], such dynamics are captured by the solution of the
autonomous ordinary differential equation

d2x(t)
dt2

+ (2π f )2x(t) = 0, (31)

where f = 50Hz denotes the frequency of the fundamental
harmonic signal x. To embed these dynamics onto a
shape class, (31) is discretized using central difference
approximation as

ẍ(k) ≈
x(k − 1) − 2x(k) + x(k + 1)

t2s
, (32)

with an accuracy of order O(ts)2, [35], leading to

v

x(k − 1)
x(k)

x(k + 1)

 = 0, (33)

where v is the harmonic shape class vector given as

v =
1
t2s

(
1 −2 + 4π2f 2t2s 1

)
∈ R1×3. (34)

Using the harmonic shape class vector v from (34) as a
base, the pattern band matrix PV in (8) can be built targeting

the state if , so that the mp-QP problem in (10) can be formu-
lated with the special state weighting matrix Q = P⊤

VPV as
explained at the end of subsubsection II-B.

The LS3MPC closed-loop block diagram is shown in
Fig. 7, which corresponds to the QP in (24) with cost function
short form J (Û(ωk ), z(k)). For simplicity, direct access to
the states x(k) is assumed, hence no observer, and a simple
predictor is considered for d(k), which is assumed to be
periodic.

C. SIMULATION SETUP
The microgrid is designed to operate with a sinusoidal
supply voltage us of

√
2 · 230V of amplitude with a

fundamental frequency of f = 50Hz. Considering the
sampling time ts = 40µs from the system as given in
subsubsection IV-A, a prediction horizon of Hp = 500 is
required to match the duration of one fundamental period
at f = 50Hz.

Fig. 8 shows a reference LS3MPC simulation operating
for 4 fundamental periods, using the input sequence results
of one QP solved with OSQP for each period. For this run,
the target feeder line current (solid blue line) in Fig. 8 (a),
was constrained to ±8A (red dashed line) and the input
weighting matrix R was set to be diagonal with all entries
set to 1 × 10−8. For the nonlinear load, the harmonic profile
of a typical rectifier was chosen as

il0 = 9.47 sin
(
ωf t

)
+ 7.7 sin

(
3ωf t + 3.2

)
+ 4.8 sin

(
5ωf t + 0.2

)
+ 1.9 sin

(
7ωf t + 3.36

)
+ 0.8 sin

(
11ωf t + 0.35

)
+ 0.62 sin

(
13ωf t + 3.55

)
,

(35)

with time and frequency spectrum as seen in Fig. 9. The
compensating action of the LS3MPC through ic0, resulted
on a satisfactory total harmonic distortion (THD) of 1.35%
for if , which is defined as given in Appendix.
Following the steps at the end of subsubsection III-C, the

first step towards the proposed explicit LS3MPC formulation
is the calculation of the mp-QP parameters. While all the
information for this step is already available, the current
setup would lead to a tensor T with too many dimensions to
handle on consumer hardware. Even though the decomposed
tensor can achieve a reasonable size for computation, the
full tensor still needs to be computed first, which can
easily scale in complexity. Looking at (17), there is a clear
dependency between the dimensions of T and nz, the size
of z, i.e. for a second order system dim (T) = 2 + 4nd + 2.
By considering a fixed fundamental harmonic sine wave
for us and restricting il0 to 2 harmonics, the fundamental
(also kept fixed with amplitude 10A) and the third harmonic,
i.e., nd = 2, the dimensions of T are reduced to dim (T) = 6,
with 2 dimensions corresponding to K, 2 for the states initial
conditions, and 2 for the third harmonic components of il0.
Continuingwith the steps at the end of subsubsection III-C,

assuming a state mesh size of 1x = 0.5A for the
range ±10A and a mesh size of 2.5A with range ±5A for
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FIGURE 7. LS3MPC closed-loop block diagram.

FIGURE 8. LS3MPC closed-loop simulation feeder line current if in
(a) and control input ideal compensation current ic0 in (b).

the third harmonic of il0, leads to T ∈ R41×41×5×5×4×11,
i.e., 1.85 × 106 elements, or 4.2 × 104 function matrices Kj
corresponding to each orthotope region to be computed.
The function matrix computations were performed in a
consumer grade laptop with an Intel® Core™ i5-6300U CPU
running at 2.5GHz and 8GB of RAM. Each Kj took on
average 80.4 × 10−3 s, which is roughly 56 minutes for
computing all the function matrices in this setup.

Once all regions of T are computed, the explicit LS3MPC
closed-loop can be established, as seen in the block diagram
in Fig. 10. Here, the appropriate functionmatrixKj is selected

FIGURE 9. Nonlinear load il0 rectifier disturbance signal in time (a) and
frequency (b) domain.

based on the current x(k) and D̃(ωk ) values. Once again,
direct access to the states x(k) is assumed, and the same
DFT and predictor concepts from the LS3MPC closed-loop
case are kept. Fig. 11 shows the results considering that the
target feeder line current if (solid blue line) was constrained
to ±8A (red dashed line), and the input weighting matrix R
was set to be diagonal with all entries set to 1 × 10−8.
In this case, the compensating action of the explicit LS3MPC
reached a THD of under 4.13%. Naturally, a finer mesh
would lead to even better results but at the cost of storage,
as already discussed.
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FIGURE 10. Explicit LS3MPC closed-loop block diagram.

FIGURE 11. Explicit LS3MPC closed-loop simulation feeder line current if
in (a) and control input ideal compensation current ic0 in (b).

D. REDUCTION OF STORAGE DEMAND
Despite the simplifications introduced by the end of sub-
subsection IV-C to reduce the number of dimensions of T
and their size, 1.85 × 106 elements is still quite numerous.
As explained in subsubsection III-C, since T is a tensor, it is
possible to approximate it with a low-rank CP decomposition.
For this example, the tensor T was decomposed using
the tensorlab toolbox [34]. Different rank approximations
were tested; Fig. 12 shows the compensation results for
approximations with rank R = 35, R = 240, and R = 500,
which portray the trade-off between accuracy and storage
demand as the rank increases. Once again, the target feeder
line current if was constrained to ±8A (red dashed line), and
the input weighting matrix R was set to be diagonal with all
entries set to 1 × 10−8.

FIGURE 12. Explicit LS3MPC closed-loop simulation feeder line current if
in (a) and control input ideal compensation current ic0 in (b) with stored
tensors with different rank approximations.

FromFig. 12, it is apparent that a rank of 35 is not sufficient
to control the system. A rank of 240, on the other hand,
is already shaping the signal quite well, but the constraint
of not exceeding the upper and lower bounds is violated.
The controller using the rank 500 approximation can keep
the results within the constraints while providing a good
compensating action.

Regarding the number of elements to be stored, the
rank 500 approximation needs to store only 5.35 × 104

elements, considerably less than the full tensor at 1.85× 106

elements, a reduction of more than 97%.
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TABLE 2. THD of the current if for the simulation of the explicit LS3MPC
with decomposed tensors with different ranks.

In Table 2, the THD of the current if is given for the first
periods using decomposed tensors with different ranks in the
explicit LS3MPC. Regarding the THD results performance,
the efficacy of the controller using the decomposed tensor
with rank 240 and rank 500 is clear.

It is also important to notice that all these low-rank approx-
imations cannot formally ensure any of the closed-loop
properties of the original MPC problem, e.g., stability or
robustness. This connection was already formally severed by
the orthotope approximation and is further diminished due to
the decomposition. It is easy to notice from the results that the
higher the rank, the higher the closed-loop fidelity (similarly
for the mesh size fineness). However, a formal derivation of
bounds on the induced errors and deviation from the original
closed-loop behavior is yet to be developed and is part of
future research as the method continues to mature.

V. CONCLUSION
The explicit LS3MPC based on tensor decompositions
combines the linear state signal shaping MPC approach
with a multidimensional extension to the offline formulation
of general explicit MPC theory. It was shown that with
the described meshing approach, it is possible to store the
relevant information for each orthotope, i.e., the meshed
space of states and disturbances in a tensor. This approach
not only reduces the number of variables required to store
the relevant regions but grants faster access to the function
matrices Kj, as each dimension is uniformly divided, thus
trivializing the point location problem. Moreover, switching
some key variables to the frequency domain makes the tensor
size independent of the prediction horizon, focusing on the
number of harmonics relevant for the application. More
importantly, the computed tensor can be approximated by
a low-rank CP tensor, which leads to more efficient tensor
operations and reduces the memory footprint considerably.
Without the reduction brought by tensor decomposition, the
chosen meshing approach would be unviable due to the curse
of dimensionality.

The power system application example shows that for a
simple circuit consisting of a grid connection, an SAPF, and a
nonlinear load, the explicit LS3MPC can compensate the har-
monics introduced by the nonlinear load. Simulation results
for reduced rank tensors proved to be satisfactory regarding
the THD and the compliance of the constraints. It was shown
that for a rank of 500, a reduction of the storage demand
by more than 97% still produces acceptable harmonic

compensation. This showcased the expected trade-off against
approximation error, constraint violations, and region dis-
continuities. These results are promising for the practical
implementation of the LS3MPC approach.

Future work will focus on further improving the main
limiting factor of the approach, i.e, the offline calculation of
the full tensor and its decomposition. In this context, many
approaches are possible, like exploring using incomplete
tensor formulations or combining the CP approximation
optimization problem with the MPC problem to find a low-
rank CP decomposed tensor directly instead. Later research
will focus on the derivation of bounds for the closed-loop
behavior that can lead to formal certificates on the stability
and robustness of the approach. Additionally, numerical
simulation comparisons are to be carried out with competitive
methods in literature.

APPENDIX
TOTAL HARMONIC DISTORTION
Definition 3 (Total harmonic distortion): The total har-

monic distortion (THD) of a signal I is given as

THD =

√
∞∑
h=2

(
I (h)

)2
I (1)

· 100% , (36)

where I (h) denotes the root mean square (RMS) or the
amplitude of the hth harmonic of the signal I , [36].
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