
Received 20 February 2024, accepted 24 April 2024, date of publication 2 May 2024, date of current version 10 May 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3396209

A Method for Predicting Links in Complex
Networks by Integrating Enclosure
Subgraphs With High-Frequency
Graph Information
ZHIWEI ZHANG , GUANGLIANG ZHU , AND WENBO QIN
School of Informatics and Engineering, Suzhou University, Suzhou 234000, China

Corresponding author: Wenbo Qin (zzwloveai@gmail.com)

This work was supported in part by the Natural Science Foundation of Anhui Province under Grant 1908085QF283; in part by the Doctoral
Scientific Research Funding under Grant 2019jb08, Grant 2021bsk016, and Grant 2023bsk024; in part by the University Synergy
Innovation Program of Anhui Province under Grant GXXT-2022-047; in part by Anhui Provincial Universities’ Excellent Young Teachers
Training Program under Grant YQYB2023053; in part by the Natural Science Research Projects in Universities under
Grant 2023AH040314; and in part by Suzhou University Scientific Research Funding under Grant 2021XJPT50.

ABSTRACT Link prediction in complex networks, crucial for uncovering hidden or upcoming links between
nodes and widely applicable in fields such knowledge graphs, faces challenges with current techniques.
Predominantly, graph neural networks (GNN) based methods focus on learning node representations and
use predictive components to assess the similarity of these representations for achieving link prediction.
However, these approaches tend to accumulate errors in the predictive model and complicates the
training process. Additionally, existing GNNs often display a low-pass filtering effect during network
data processing, prioritizing low-frequency information while overlooking high-frequency details in node
representations. These bias make GNNs mainly used for link prediction in strongly assortative networks and
limit their performance on highly disassortative networks. Addressing these issues, this article introduces
a novel framework that redefines the link prediction problem. By extracting enclosure subgraphs of
both ‘observed’ and ‘unobserved’ links, we represent these links by corresponding enclosure subgraphs
and transform link prediction into a problem of subgraphs classification. We innovate by combining
high- and low-frequency graph information from the subgraphs, using an attention mechanism for
integration, and constructing a graph neural network tailored to learn these subgraph representations,
thus accomplishing the task of link prediction indirectly and enhancing link subgraphs classification
accuracy. Our extensive experiments on recognized benchmark datasets, evaluated using the Hits@n
metric, demonstrate that our method not only shows remarkable performance but also possesses strong
generalization capabilities, positioning it as a potent baseline for link prediction tasks.

INDEX TERMS Complex network, link prediction, graph neural network, enclosure subgraph,
high-frequency graph information.

I. INTRODUCTION
Many systems in nature and society, from the World Wide
Web to social and biological networks, can be aptly described
as complex networks or graphs [1], [2], [3]. In these networks,
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nodes or vertices represent entities, while the interactions
among these entities are depicted as edges or links [1].
Complex networks, serving as abstract models for under-
standing real-world systems, exhibit characteristics such as
self-organization, self-similarity, small-world properties, and
scale-free nature. Link prediction within these networks is
a critical task that involves uncovering hidden or emerging
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links between nodes. This includes not only identifying
unknown links that already exist but have not yet been
detected in the network but also forecasting future links that,
although not currently present, are likely or ought to exist in
the foreseeable future [4].

In practical applications, link prediction plays a pivotal
role in forecasting potential new connections within a
network, thereby supporting and enhancing decision-making
processes. For instance, in the field of biomedical research,
particularly concerning protein interaction networks and
metabolic networks, the determination of whether links
(interaction relationships) exist between nodes often relies
on extensive experimental inference. Taking protein inter-
action networks as an example, about 80% of interaction
relationships in yeast proteins remain undiscovered, and for
humans, only 0.3% of known protein interactions have been
identified. Due to the high experimental costs associated
with uncovering these hidden links in such networks, the
development of effective link prediction algorithms based
on existing network structures and characteristics is of
paramount importance. Utilizing these predictive outcomes
to guide experiments can significantly increase the likelihood
of successful experimental results, thereby reducing costs.
Furthermore, it can accelerate the pace of revealing the intrin-
sic mechanisms within these networks, offering substantial
academic and research value [5], [6], [7].

In the realms of theoretical research and modeling, link
prediction serves not only as a crucial tool for studying
network structures and their evolutionary patterns but also
as an effective method for simulating complex systems
and constructing models. For example, in the field of
knowledge representation, knowledge graphs, as a form
of complex network, possess remarkable expressive power
and modeling flexibility. In these graphs, nodes represent
entities or concepts from the real world, and each link
(edge) corresponds to a piece of knowledge in reality, thus
embodying a wealth of rules and logical meanings. This
allows for the deduction of unexpressed knowledge in the
knowledge graph based on predefined rules. For instance,
knowing that ‘Tom is a cat’, we can derive numerous new
pieces of knowledge using rules such as ‘cats have two ears,
four legs, and come in various breeds’, without the need to
explicitly detail each one in the knowledge graph. Therefore,
knowledge graphs not only effectively model the real world
but are also readily processed by computers, leading to their
wide application in fields like question-answering systems
and criminal investigations in public security. However,
issues like incomplete data and information loss during
the construction of knowledge graphs can lead to missing
entities, attributes, and relationships, causing inaccuracies
in knowledge inference. To address these issues, knowl-
edge graph completion techniques have emerged. These
techniques aim to predict unobserved relationships between
entities in the knowledge graph and to forecast tail entity
attributes based on head entity attributes. Fundamentally,
this technique parallels link prediction in complex networks.

Thus, link prediction contributes significantly to enhancing
the accuracy of knowledge graph completion, enriching
knowledge inference, and its applications [8], [9].

With the advancement of deep neural networks, GNNs
have been widely applied to link prediction in complex
networks. On one hand, GNN-based prediction methods,
being node-centric, update and learn node representations
through repeated exchanges of neighborhood information,
and then utilize prediction components to learn the similarity
of these representations for link prediction. This approach,
however, does not fully leverage the end-to-end learning
advantages of GNNs and cumulatively increases the overall
model error, making it challenging to dynamically adjust the
node representations provided to the prediction components
for optimization during training. Moreover, link-centric
prediction models lack effective methods in areas such
as the extraction and isomorphism testing of local pattern
closure subgraphs of links. This project aims to focus on
links by concentrating on the extraction and isomorphism
testing of link closure subgraphs, transforming link prediction
into a classification of these subgraphs, and establishing a
single-task optimization model. On the other hand, previous
studies have shown that current GNNs exhibit a low-pass
filtering effect when processing network data [10], often
learning only the low-frequency information representing
commonalities of nodes and neglecting the high-frequency
information that reflects node differences. This limitation
confines the application of existing GNNs primarily to
link prediction in strongly assortative networks, while their
predictive performance is restricted in highly disassortative
networks [8], [9], [10], [11]. However, highly disassortative
networks are prevalent in the real world and play a crucial
role, such as in biological, technological, and financial net-
works. Link prediction in these networks not only addresses
practical application issues but also allows for exploration of
network formation and evolution at a micro-level.

To address the aforementioned challenges, this article
adopts a link-centric approach, proposing a method for pre-
dicting links in complex networks by Integrating Enclosure
Subgraphs with High-Frequency Graph Information
(IESHGI). This approach indirectly facilitates link prediction
through the classification of link enclosure subgraphs. The
main contributions of this work are summarized as follows:

• We extract the closure subgraph, consisting of two
nodes associated with a link and their neighboring nodes
that do not exceed k hops, for each link, representing
the link by its closure subgraph, and transform the
link prediction problem into a classification task of
these subgraphs. This leads to the establishment of a
single-task optimization model for link prediction.

• We construct a GNN to learn the representations of
link closure subgraphs, which extracts not only the
low-frequency information from node representations
but also the high-frequency information that reflects
node differences. Furthermore, by applying an attention
mechanism, we integrate high and low-frequency graph
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information to realize a universal graph filter. This
allows the model to effectively and adaptively aggregate
the features of neighboring nodes.

• Extensive experiments have been conducted on widely
recognized benchmark datasets to validate the feasibil-
ity and effectiveness of the proposed link prediction
method.

The remainder of this article is organized as follows.
Section I introduces the research background, main chal-
lenges faced, and the primary work of this article related
to link prediction. Section II presents an overview of
the literature involved to the topic under consideration.
Section III outlines the link prediction framework that
incorporate enclosure subgraphs, high- and low-frequency
graph information. Section IV describes the experimental
settings, datasets, along with the presentation of experimental
consequences and their analysis. Finally, we concludes the
key findings and drawbacks of the proposedmethod, and shed
light on the future research directions in the final section V.

II. RELATED WORKS
As an emerging technique in complex network analysis, the
concept of GNN was first introduced by Gori et al. [12] and
further elucidated by Scarselli et al. [7]. However, in a com-
prehensive synthesis of existing research on link prediction,
Philip S. Yu et al. pointed out that while methods based on
similarity for link prediction have been extensively studied,
the application of GNNs in link prediction has received
comparatively less attention [5]. This paper will analyze and
summarize the current state of research in representation
learning within networks and the construction of GNNs for
link prediction.

A. NETWORK REPRESENTATION LEARNING
‘‘Network representation learning is focused on embedding
network nodes into a low-dimensional space, trans-
forming high-dimensional sparse feature vectors into
low-dimensional dense embedding vectors. Methods based
on random walks in network representation learning generate
contextual information for network nodes through these
walks. Node sequences are then interpreted as sentences, and
natural language processing techniques are applied for node
embedding. Consequently, the more frequently two network
nodes appear together in the same random walk, the more
similar their embeddings become.

One of the most representative random walk-based net-
work representation learning algorithms is DeepWalk, intro-
duced by Perozzi et al. [13]. Its fundamental concept involves
mapping the relationships and structural properties of nodes
within a graph to a new vector space. In this space, nodes
that are closer within the network are also closer in the vector
space, thus transforming network data into vector space data
through this optimization goal. Following this, feature vectors
representing node structural information are concatenated
with those representing node attribute information, and
then used for downstream network data mining tasks,

including link prediction [14]. However, LINE proposed by
Tang et al. [15], seemingly does not utilize a random walk
strategy. Nevertheless, literature [16] categorizes it under
random walk approaches, primarily because LINE, similar
to DeepWalk, employs a probabilistic loss function. This
involves minimizing the empirical probability of nodes being
connected and the distance in vectorized node similarity,
considering both first and second-order similarities. This
approach is inherently akin to themotivations of randomwalk
strategies.

Furthermore, for strongly assortative network data,
Xu et al. proposed the Graph Isomorphism Network
(GIN) [17], which characterizes the discriminative ability
of classical GNNs and their variants on assortative network
data. GIN is proven not only to possess isomorphism testing
capabilities as powerful as the Weisfeiler-Lehman test but
also to perform exceptionally well on multiple network
classification benchmark datasets. In terms of simultaneously
learning network structure and embeddings, Chen et al.
introduced an end-to-end learning framework, namely Deep
Iterative and Adaptive Learning for Graph Neural Networks
(DIAL-GNN) [18]. This framework converts the network
structure learning problem into a similarity metric learning
task, using an optimized regularization strategy to control
the smoothness, connectivity, and sparsity of the generated
network. Building on this foundation, they further proposed a
new iterative method to search for hidden network structures,
aiming to enhance the original network. This approach offers
valuable guidance for constructing the link prediction Graph
Neural Networks in this research topic.

In summary, network representation learning emphasizes
the representation of network nodes and the preservation
of network topology information in the embedding space,
providing support for downstream link prediction tasks.
However, current link prediction methods based on network
representation learning rarely adopt a link-centric approach.
They mainly focus on learning node representations in a
node-centric manner and then utilize prediction components
to calculate the similarity of these representations for link
prediction. This approach not only accumulates the overall
error of the model but also complicates the training process.

B. CONSTRUCTION OF GNNS FOR LINK PREDICTION
As a framework for deep learning on graphs, GNNs have
been recognized for their potential in complex network link
prediction. Yet, as noted by Philip Qiu et al., there is a
relative scarcity of research in this area [11]. Baldassarre and
Azizpour provided a general definition of Graph Networks
(GNs) and focused their explanation on twomain approaches:
gradient-based and decomposition-based [20]. Their work,
which concentrated on the interpretability of GNs, particu-
larly for graph-based predictive tasks, offers valuable insights
and inspiration for adapting link prediction in both assortative
and disassortative complex networks, a focus of this study.
To comprehensively learn node features in hierarchical
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FIGURE 1. Link prediction graph neural network based on edge convolution [19].

graph-structured neural network models, information can be
gleaned at various levels of the graph [21], [22]. The Capsule
Graph Neural Network (CapsGNN) developed by Xinyi and
Chen [22] stands out as one of the most representative
models, employing the concept of capsules to address
the limitations of existing graph embedding algorithms.
By extracting node features in capsule form and utilizing a
routing mechanism to gather vital information at different
graph levels, CapsGNN generates multiple embeddings for
each graph, capturing the macroscopic attributes of the entire
graph in a data-driven manner from various perspectives.
Our earlier work proposed a link-centric approach to link
representation learning and GNN model training [19]. This
model represents and learns link representations by ‘merging’
the representations of the two nodes associated with a
link, defines an edge convolution layer, and constructs a
link prediction GNN as shown in Figure 1 by stacking
these layers. However, this model requires extracting node
representations from the learned link representations and
then computes link prediction based on the similarity of
these node representations. Therefore, it accumulates errors
in GNN training and link prediction, necessitating further
refinement. However, combining the findings of Bo et al.
published at AAAI 2021 [10], it is evident that current
GNNs exhibit a low-pass filtering effect when processing
network data, learning only low-frequency information and
neglecting high-frequency information. This tendency limits
GNNs to link prediction in strongly assortative networks and
hinders their performance in highly disassortative networks.
The smoothness of low-frequency information leads to
GNN training retaining low-frequency features that reflect
node commonalities, while high-frequency features that
demonstrate node differences are overlooked. This paper will
integrate the methods proposed by Bo et al. [10] and others to
incorporate both high- and low-frequency graph information
into the construction of graph link prediction neural networks.

III. LINK PREDICTION FRAMEWORK INTEGRATING
ENCLOSURE SUBGRAPH AND HIGH-FREQUENCY GRAPH
INFORMATION
This section will first introduce the symbols and task defini-
tions related to link prediction. Subsequently, it will detail the

TABLE 1. Symbols employed in this article.

scheme for extracting link enclosure subgraphs, the methods
for high- and low-frequency graph information extraction,
and the construction of Graph Neural Networks based on
these elements. Finally, building on the aforementioned
research, this sectionwill outline a comprehensive framework
for link prediction.

A. PRELIMINARIES
1) SYMBOLS
In our endeavor to enhance the clarity and depth of
descriptions and explanations pertaining to the domain of
link prediction, we have diligently compiled an extensive
and detailed list of symbols, as shown in Table 1, which
provide a clearer understanding of the complex concepts
and methodologies employed in our research. Throughout
this article, these symbols are used consistently, serving as
a fundamental cornerstone for elucidating our theoretical and
experimental approaches.

2) LINK PREDICTION
Link prediction fundamentally aims to determine the exis-
tence or potential formation of links between two nodes.
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FIGURE 2. The process of extracting link closure subgraphs, labeling subgraph nodes, and generating initial subgraph representations constitutes a
critical component of our methodology, where the edge ‘A—B’ is the ‘observed’ link and the ‘C· · · D’ is the ‘unobserved’ link, and their corresponding link
enclosure subgraphs correspond to categories of ‘1’ and ‘0’, respectively.

Within the framework of a specified graph G = (V, E), where
V denotes the set of nodes and E the set of links, and
considering the universal link set U = V × V , the goal of
link prediction is to forecast links between nodes vi and vj
(vi, vj ∈ V). This forecast is based on the known topological
features and properties of G. To delineate, the link prediction
process utilizing a GNN involves several key steps. Initially,
E is partitioned into two subsets: ET (training set) and
EP (validation set), while the complementary set U − E is
earmarked as the test set. Notably, ET combined with EP
encompasses the entire set E , with no overlap between them.
Following this, a model based on graph attention neural
network concepts is employed to derive node representations
from ET . This model is then validated against EP to refine
its predictive accuracy. In the final phase, the model executes
Hadamard product operations on the node representations for
vi and vj, thereby effectively predicting the likelihood of a link
between these nodes.

B. LINK ENCLOSURE SUBGRAPHS EXTRACTION
Guided by the SEAL proposed by Zhang and Chen [23],
this article focuses on links within complex networks and
extracts local pattern enclosure subgraphs of these links as
the fundamental units for learning in a Graph Convolutional
Neural Network (GCN) aimed at link prediction. We extract
enclosure subgraphs not only for ‘observed’ links but also
for ‘unobserved’ links, subsequently labeling the respective
enclosure subgraphs’ categories as ‘1’ and ‘0’. This approach
effectively translates the link prediction problem into a
enclosure subgraph classification problem. To accommodate
network types and node attributes, network embedding
algorithms are utilized to generate initial representations of
these link enclosure subgraphs. As illustrated in Figure 2,
this process encompasses several key steps: the extraction of

link enclosure subgraphs, the labeling of subgraph nodes, the
dimension normalization of the subgraph adjacency matrix,
and the generation of initial subgraph representations.

1) ENCLOSURE SUBGRAPHS EXTRACTION SCHEME
Motivated by the SEAL approach [23], this paper adopts
a strategy of randomly sampling K-hop neighbors of link
nodes to extract enclosure subgraphs. The process unfolds as
follows:

Firstly, themethod involves extracting enclosure subgraphs
by randomly sampling K-hop (k=2 for simplicity in this
article) neighbors of link-adjacent nodes. This process
includes not only the extraction of closure subgraphs for
‘observed’ links (such as ‘A—B’ in Figure 2) but also
for ‘unobserved’ links (like ‘C· · ·D’ in Figure 2). This
dual approach allows the model to learn patterns that both
‘facilitate’ and ‘inhibit’ the formation of links between nodes.

Secondly, the nodes within the extracted enclosure sub-
graphs are labeled to achieve ‘sequential numbering’ of
nodes. In networks, there often exist links with similar
or identical roles, leading to isomorphic properties in
their corresponding enclosure subgraphs. Building upon the
Weisfeiler-Lehman algorithm [24], [25] and incorporating
the randomness of enclosure subgraph extraction, this paper
develops a node labeling algorithm with equivalent node
labeling and isomorphism testing capabilities. The steps of
this algorithm are illustrated in Figure 3. This approach
ensures that enclosure subgraphs with isomorphic properties
have adjacency matrices with similar node indices.

Finally, the dimensions of the enclosure subgraph adja-
cency matrices are ‘normalized’. Due to the sparsity, scale-
free nature, and community structure characteristics of
networks, there can be inconsistencies in the number of
nodes in enclosure subgraphs formed by K-hop neighbors
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FIGURE 3. Node labeling process in enclosure subgraph of links, following the steps outlined in literatures [24] and [25]. Initially, all nodes are labeled
with the same number, such as 1. Then, for each node, create a list of its neighboring nodes and represent it in the form of (node label, list of neighboring
nodes label), such as (1, 11). Finally, based on the number of neighbors for each node, update its label to be the count of its neighbors; for example, the
label of node (1, 11) is updated to 2. Repeat above process until each node within the enclosure subgraph has a unique label.

of link-adjacent nodes. This results in varying dimensions
of the corresponding adjacency matrices for the enclosure
subgraphs. In this paper, ‘n’ represents the final dimension
of the subgraph adjacency matrixA(n×n). For matrices larger
than n, a ‘trimming’ process is applied, while for those
smaller, a ‘padding’ method is used. This approach ensures
the consistency of node order in isomorphic subgraphs.

2) INITIAL REPRESENTATION GENERATION OF LINK
ENCLOSURE SUBGRAPHS
To simultaneously capture the topological structure and
attributes of enclosure subgraphs, and to learn and obtain the
initial representation X (n×d) of the link enclosure subgraphs,
where n represents the number of nodes in the subgraph,
and d represents the dimensionality of the subgraph node
representation. This paper employs the current mature
network embedding algorithm, node2vec [26], to generate
the initial representations X (n×d) for each link enclosure
subgraph. This approach provides the necessary data support
for link prediction through enclosure subgraph classification
and for training the graph neural network constructed in this
study.

C. CONSTRUCTION OF GNN INTEGRATING HIGH- AND
LOW-FREQUENCY GRAPH INFORMATION
The adjacency matrix A(n×n) of the aforementioned link
enclosure subgraphs reflects the structural information
between nodes, whereas the information contained within
the subgraph representation X (n×d) represents node fea-
tures, with low-frequency information embodying common
characteristics of nodes, and high-frequency information
indicating node differences. To fully learn the inherent
representations within link enclosure subgraphs for indirect

link prediction through classification of these subgraphs,
and to maintain robust performance in assortative and
disassortative complex networks, it is first necessary to
design corresponding high-pass and low-pass filters to extract
high- and low-frequency graph information from X (n×d).
Subsequently, by employing an attentionmechanism, the pro-
portion of high- and low-frequency graph information during
the GNN information aggregation process is controlled. This
achieves a universal graph filter capable of learning both
high- and low-frequency graph information. Consequently,
a Graph Convolutional Network (GCN) layer that integrates
high- and low frequency graph information is constructed to
learn and update the network node representations. The above
process is shown in Figure 4.

1) EXTRACTION OF HIGH- AND LOW-FREQUENCY GRAPH
INFORMATION
For each link enclosure subgraph G = (V, E) and its adja-
cency matrixA(n×n), the corresponding standard Laplacian
matrix L = In − D−

1
2AD−

1
2 can be derived. Here, V

and E represent the node and link sets of G respectively,
with n = |V|, where In is the identity matrix and Dii =∑

jAij is the diagonal degree matrix. Coupled with G’s initial
representationX n×d

= [x1, x2, · · · , xn], where xi denotes the
signal of node vi, that is, the node feature, and d represents
the dimensionality of node features. This study delineates
the two-step process for extracting high- and low-frequency
graph information from the enclosure subgraph node features
as follows, motivated by the idea proposed by Bo et al. [10].

Step One: Given that G is an undirected graph, L is
a real symmetric matrix and can thus be decomposed
into L = U3U⊤, where U = [u1, u2, · · · , un] com-
prises a complete set of orthonormal eigenvectors, and
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FIGURE 4. Construction process of GCN layer for learning representations of link enclosure
subgraphs, where hi denotes the representation of node vi , w ij

hi and w ij
lo respectively

represent the weights corresponding to the high- and low-frequency information between
nodes vi and vj .

3 = diag([λ1, λ2, · · · , λn]), with λi being the eigenvalue
corresponding to the eigenvector ui (i ∈ N, 1 ≤ i ≤ n).
In accordance with graph signal theory, the eigenvectors of L
and U can serve as the basis for the graph Fourier transform,
implying that for a graph signalX , its graph Fourier transform
is X̃ = U⊤X , and the inverse graph Fourier transform
is X = UX̃ . Consequently, this study aims to define the
convolution operation ⋆ between G’s graph signal X and a
convolution kernel F as shown in Equation (1).

(F ⋆ X )G = U((U⊤F) ⊙ (U⊤X )) = UgθU⊤X (1)

Herein, ⊙ signifies the Hadamard product, while gθ =

diag([θ1, θ2, · · · , θn]) serves as the convolution kernel in
the spectral domain. In this paper, gθ is defined as gθ =∑k−1

k=0 βk3
k .

Step Two: Inspired by Bo et al. [10], this paper employs
high-pass and low-pass filters to extract high and
low-frequency graph information from the features of
nodes in enclosure subgraphs. The high-pass filter Fhi
and the low-pass filter Flo are respectively illustrated in
Equations (2) and (3).

Fhi = αIn −D−
1
2AD−

1
2 (2)

Flo = αIn +D−
1
2AD−

1
2 (3)

where α represents a hyperparameter that the model needs
to learn. By substituting the high-pass filter Fhi from
Equation (2) and the low-pass filter Flo from Equation (3)
for the convolution kernel function F in Equation (1), the
high- and low-frequency graph information in G can then be
obtained respectively through Equations (4) and (5), which
lays the foundation for a universal graph filter capable of
learning both high- and low-frequency graph information.

Xhi = (Fhi ⋆ X )G = U[(α − 1)In + 3]U⊤X (4)

Xlo = (Flo ⋆ X )G = U[(α + 1)In − 3]U⊤X (5)

2) UNIVERSAL GRAPH FILTER INTEGRATING HIGH- AND
LOW-FREQUENCY GRAPH INFORMATION
Following the extraction of high- and low-frequency graph
information from the link enclosure subgraph representa-
tion X , investigating a universal filter that can integrate
both types of information and is adaptable to both highly
disassortative and strongly assortative network link enclosure
subgraph representation learning emerges as one of the
key challenges to be addressed in this paper. To this end,
an attention mechanism is employed to calculate the weights
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FIGURE 5. The whole GCN designed for link prediction in complex networks and named IESHGI,combines both high- and low-frequency graph
information, where hi is the representation of node vi , hhi

i and hlo
i respectively denote the high- and low-frequency graph information for vi , while w ij

hi
and w ij

lo respectively represent the weights corresponding to the high- and low frequency information between nodes vi and vj .

of the extracted high and low-frequency graph information,
as shown in Equations (6) and (7), thereby facilitating the pro-
vision of ‘‘fusion’’ coefficients for high- and low-frequency
graph information during the representation learning of
enclosure subgraph node vi.

wihi = softmaxi(Xhi) =
exp(X i

hi)∑
k∈N (i) exp(X k

hi)
(6)

wilo = softmaxi(Xlo) =
exp(X i

lo)∑
k∈N (i) exp(X k

lo)
(7)

It should be noted that wihi and w
i
lo represent the attention

coefficients corresponding to the high and low-frequency
graph information for node vi (vi ∈ V in G) during its rep-
resentation learning. Incorporating the attention coefficients
for high- and low-frequency graph information as specified
in Equations (6) and (7), this paper designs a universal graph
filter as shown in Equation 8 to accomplish the learning and
updating of enclosure subgraph representationH(l).

H(l)
= whi((Fhi ⋆ X )G) + wlo((Flo ⋆ X )G) +H(l−1) (8)

herein, H(l) represents the new representation learned
through the universal graph filter. With this, the paper com-
pletes the construction of the Graph Convolutional Network
(GCN) layer for link enclosure subgraphs classification.
Subsequent steps involve stacking GCN layers to build a
comprehensive deep GCN for link prediction.

D. LINK PREDICTION FRAMEWORK IMPLEMENTED
THROUGH LINK ENCLOSURE SUBGRAPH CLASSIFICATION
In this section, we delineate the construction of a comprehen-
sive framework IESHGI for link prediction within complex

networks. By stacking the aforementioned Graph Convolu-
tional Network (GCN) layers and incorporating activation
functions, pooling operations, and a classification function,
we construct a Graph Convolutional Neural Network for
the classification of link enclosure subgraphs, as depicted in
Figure 5. This architecture enables the convolutional process-
ing of the adjacency matrix and initial representations of link
enclosure subgraphs, facilitating the acquisition of final sub-
graph representations. Consequently, this framework allows
for the effective classification of link enclosure subgraphs,
thereby enhancing our ability to predict links within complex
networks.

This framework not only leverages the structural and
feature information inherent in the subgraphs but also
optimizes the information flow through the network by
applying non-linear transformations and reducing dimen-
sionality where necessary. The use of pooling operations,
in particular, aids in abstracting higher-level features from the
convolutionally processed subgraphs, while the classification
function translates these features into probabilistic predic-
tions for subgraph categories. This methodology underscores
the potential of deep learning techniques in unraveling
the intricate patterns of connectivity that characterize com-
plex networks, offering a robust tool for the prediction
of new or missing links based on observable network
dynamics.

IV. EXPERIMENTS AND DISCUSSION
To rigorously evaluate the IESHGI model and conduct a
comparison with established baseline methods, we follow the
experimental framework from our prior work [4]. Ourmethod
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TABLE 2. The statistical information on the datasets utilized in this
article.

encompasses an in-depth analysis across various benchmark
datasets to fully gauge the model’s efficacy. This section
starts by detailing the benchmark datasets used, describes
the baseline methods for comparison, and specifies the
metrics for evaluating performance. Subsequently, we report
our experimental findings and engage in a comparative
discussion. Our aim is to showcase the IESHGI model’s
robustness and dependability through this comprehensive
examination.

A. EXPERIMENTAL SETTINGS
The experimental framework for this study was meticulously
crafted to guarantee the precision and reliability of our
research work.We conducted our experiments on a Dell T640
workstation, a high-performance deep learning platform
running the CentOS-7 operating system. This setup provides
a stable and efficient platform for computational tasks.
The workstation was equipped with a Tesla V100s GPU.
For this research, CUDA 10.2 was utilized to leverage
optimized support for graph deep learning frameworks and
enhance GPU acceleration. The programming environment
was unified under Python 3.7 to ensure seamless compat-
ibility and facilitate the development of IESHGI. PyTorch
version 1.11, known for its dynamic computational graph
capability and comprehensive library support, was selected
for IESHGI implementation. Additionally, we incorporated
torch_geometric 2.1, a PyTorch-based library dedicated to
graph deep learning. This library offers vital tools for the
implementation and evaluation of the IESHGImodel, bolster-
ing our experimental setup with the necessary resources for
cutting-edge research.

B. DATASET
Without loss of generality, while maintaining continuity with
our previous research work [4], the dataset employed in
this article remains consistent with the dataset utlized in
our previous work [4], all sourced from the Open Graph
Benchmark (OGB),1 as shown in Table 2, including ogbl-
ppa [27], ogbl-collab [28] and ogbl-ddi [29]. We strictly
followed the default partition settings provided by OGB for
these datasets. This approach not only preserves the distinct
size and characteristics of each dataset but also ensures
consistency with the experimental methodologies outlined
in [4], thereby maintaining the integrity and continuity of our
research.

• The ogbl-ppa is a type of undirected and unweighted
graph. In this graph, nodes correspond to proteins

1https://ogb.stanford.edu/docs/linkprop/

originating from 58 distinct species. The edges within
this graph signify biologically significant relation-
ships between proteins, which can include phys-
ical interactions, co-expression patterns, homology,
or genomic proximity [27].

• The ogbl-collab is an undirected graph that captures
a portion of the collaboration network among authors
indexed by Microsoft Academic Graph. Each node in
the graph represents an author, and the edges signify
collaborations between these authors. All nodes in this
dataset are associated with 128-dimensional features,
which are derived by averaging the word embeddings
of papers authored by these individuals. Additionally,
each edge in the graph is accompanied by two
pieces of meta-information: the year of collaboration
and the edge weight, which reflects the number of
co-authored papers published in that particular year.
This graph can be understood as a dynamic multi-
graph, allowing for the existence of multiple edges
between two nodes if authors collaborate across multiple
years [28].

• The ogbl-ddi is a homogeneous, unweighted, undi-
rected graph that depicts the drug-drug interaction
network. In this graph, each node represents either
an FDA-approved drug or an experimental drug.
The edges in the graph signify interactions between
these drugs, indicating scenarios where the com-
bined effect of taking two drugs together signif-
icantly deviates from the expected effect of each
drug acting independently. This network captures and
visualizes the complex relationships and interactions
between different drugs based on their observed joint
effects [29].

C. BASELINE METHODS
In this study, we extend our previous research by fur-
ther validating the effectiveness of our enhancements
and comparing them with established baseline meth-
ods. To ensure a robust comparison, we employed the
same baseline techniques as mentioned in literature [4],
which include the classic Graph Convolutional Net-
work(GCN) [30], Graph Attention Network(GAT) [31],
GraphSAGE [32], EdgeConvNorm [19], and our own
previously developed LVGANN [4]. It’s important to
emphasize that our focus in using these GNNs is pri-
marily on enclosure subgraph representation learning. For
the link prediction task, which is indirectly approached
through link enclosure subgraphs classification, we apply
the log_softmax classifier to the pooled representations
of these subgraphs, ensuring a consistent methodology
for evaluating performance. The concise description of
the baseline methods employed in this article are as
follows.

• GCN advances the application of convolutional oper-
ations beyond their traditional realm of regular grids,
as seen in image processing, to accommodate the
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complexities of irregular graphs. Within this frame-
work, graphs are processed by applying a feature
transformation to each node, which incorporates the
attributes of its neighbors. This pivotal process preserves
the network’s local structure by aggregating neighbor-
ing features to forge a new representation for each
node.

• GAT introduces attention mechanisms to GNNs, rev-
olutionizing how significance is allocated among
nodes. By incorporating an attention mechanism, GAT
independently assesses the importance of each neighbor-
ing node, acknowledging that different neighbors exert
varying levels of influence. This innovation enables
nodes to focus more on significant neighbors and less on
those with minimal impact. As a result, GAT improves
the model’s capacity to identify and learn from the
most pertinent connections within the graph, facilitating
more refined and effective node representations. This
advancement underscores GAT’s role in enhancing
the nuanced understanding and processing of graph
data.

• GraphSAGE an innovative adaptation of the GCN,
addresses the critical issue of scalability. It creates node
representations by selectively sampling and aggregating
features, a departure from the GCN approach that
requires processing all graph nodes in each forward
pass. GraphSAGE stands out for its ability to efficiently
train on large-scale graphs and produce embeddings
for nodes not seen during training. This method
greatly improves the model’s flexibility and scalability,
establishing GraphSAGE as a formidable solution for
navigating and analyzing vast and intricate graph
networks.

• EdgeConvNorm revolutionizes link representation
learning by incorporating a specialized edge convolution
operation, uniquely suited for distilling the essence
of connections within a graph. This model further
enhances the quality of link representations through a
strategic normalization process, effectively addressing
the prevalent challenge of over-smoothing often encoun-
tered in edge convolution-based link prediction models.
A key feature of EdgeConvNorm is its deployment
within a link prediction framework, employing multiple
stacked edge convolutional layers. This structured
approach allows the model to adeptly unravel and
analyze intricate link characteristics, significantly
boosting the precision and resilience of link prediction
outcomes.

• LVGANN introduces a nuanced analysis of link value
grounded in network structure and presents a novel
methodology for its estimation. This approach integrates
link value into the design and training phases of a
link prediction graph attention network, enhancing the
precision of link predictions. Moreover, this integration
offers a theoretical framework for interpreting the pre-
diction outcomes, thereby enriching our understanding

of link dynamics within networks. This advancement not
only elevates the accuracy of link predictions but also
contributes significantly to the theoretical underpinnings
of network analysis.

D. EVALUATION METRIC
Evaluating the efficacy of link prediction models, Hits@n
emerges as a pivotal metric, quantifying prediction accuracy
by counting how many correct links are identified among the
top n predictions. This method involves ranking all predicted
link enclosure subgraphs by their likelihood, in descending
order, for each test scenario. A thorough investigation
assesses whether the correctly predicted links fall within
the top n positions. A hit is recorded when a correct link
prediction (i.e. link enclosure subgraph classification) is
found within this specified range. The collective hits across
all scenarios are then compiled and normalized by the total
number of accurately predicted subgraphs. In mathematical
terms, for k correct link predictions, the link enclosure
subgraph corresponding to each link ei ∈ E is assigned a label
of 1 if it ranks among the top n predictions, and 0 otherwise.
The computation of Hits@n, as detailed in Equation (9),
offers a precise metric for assessing the model’s predictive
precision.

Hits@n =
1
k

∑
p(ei) (9)

The Hits@n metric is pivotal for assessing the precision
of link prediction models in identifying the top n links,
with a higherHits@n indicating superior model performance.
It should be noted that in the performance evaluation of the
model IESHGI, p(ei) represents the classification result of the
enclosure subgraph corresponding to the link ei. This research
evaluates model efficacy using selected n values—10, 50,
and 100—as key parameters. Notably, each model undergoes
10 iterations to produce a range of outcomes. The ultimate
results are derived by averaging the Hits@n values across
these iterations and calculating the corresponding standard
error, providing a comprehensive measure of model accuracy
and consistency.

E. RESULTS ANALYSIS AND DISCUSSION
For this study, the experimental settings of the baseline
methods were carefully calibrated using the published
source code from OGB. The model’s parameters were not
further optimized, prioritizing the comparison of relative
performances across different models. However, it is crucial
to emphasize that this paper serves as an enhancement
and refinement of our previous research [4]. To maintain
continuity, comparability, and validate the effectiveness of
the methodology introduced here, all baseline methods
experimental consequences, apart from the IESHGI model’s
experimental data, are sourced from our earlier studies [4].
This approach ensures a coherent and comparative frame-
work for assessing the advancements presented in this
work.
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TABLE 3. The experimental results from various baseline methods and the model IESHGI, as applied to the ogbl-collab dataset, are documented.

TABLE 4. The experimental outcomes from a range of baseline methods and the model IESHGI, as implemented on the ogbl-ddi dataset, are presented.

Besides, the final evaluation of performance is con-
ducted by calculating the mean and standard deviation
of the peak results from 10 iterations. Detailed find-
ings, showcasing the comparative superiority of all base-
line methods across diverse datasets, are systematically
presented in Tables 3 to 5. This methodical approach
underscores the robustness and consistency of our evalu-
ation process, providing a clear demonstration of model
efficacy.

In our analysis of the ogbl-collab dataset, we have adhered
to the experimental protocol as described by OGB and broad-
ened our methodology to include temporal aspects, utilizing
the data splitting technique outlined in OGB. Our main
objective is to forecast future author collaborations using
historical data, placing a particular focus on prioritizing true
collaborations.

Table 3 clearly demonstrates that the IESHGI method
introduced in this paper outperforms other baseline methods,
including our previously proposed LVGANN approach based
on link value assessment. It achieves an average accuracy of
0.5356 and shows an average performance improvement of
6.3% compared to the LVGANNmethod. Given the dynamic
and complex nature of the multi-graph dataset ogbl-collab,
link enclosure subgraphs are more adept at capturing the
local characteristics of links. They also delve into the high-
and low-frequency information within the link enclosure
subgraphs. This not only captures the similarity in subgraph
node representations but also highlights the differences,
effectively reflecting the intrinsic mechanisms through which
nodes form links. These features enable IESHGI to more
accurately predict the existence of a link between two
nodes.

For the ogbl-ddi dataset, we employed a protein-target
splitting method. This strategy aims to forecast drug-drug
interactions based on data from established interactions
previously. The experimental data in Table 4 clearly indicate

that the IESHGI method introduced in this paper has
achieved an average performance improvement of 17.7%
over our previously proposed LVGANN method, attaining
an average performance of 0.6780. Fortunately, compared
to GraphSAGE, which also derives network representa-
tions by learning from the network’s local structure, our
method has shown a notable performance enhancement. The
ogbl-ddi dataset is notable for its dense network structure,
featuring 4,267 nodes and an impressive 1,334,889 edges.
However, GraphSAGE’s innovative node sampling strategy
demonstrates significant effectiveness in addressing these
challenges. By judiciously choosing nodes for the training
process, GraphSAGE effectively navigates the complexities
of the dataset’s large-scale graph. It addresses the com-
putational intensity of updating gradients over the entire
graph and enhances training efficiency, illustrating a strategic
approach to handling high-density networks. Fortunately, the
IESHGI method proposed in this paper also predicts links
by indirectly learning from the local structural enclosure
subgraphs of a network. Overall, for dense network, local
structures are more prevalent and better reflect the network’s
characteristics, making IESHGI particularly suited for these
environments.

For the ogbl-ppa dataset, we adhere to the partitioning
strategy outlined in the established OGB framework. The
primary goal of this article is primarily aimed at predicting
specific types of protein relationships, emphasizing the
prediction of physical protein-protein interactions. These
auxiliary connections have demonstrated a significant cor-
relation with the targeted interactions, thereby boosting the
reliability and accuracy of predictions within the realm
of protein relationships. Experimental data from Table 5
reveal that, in comparison to the ogbl-collab and ogbl-ddi
datasets, all methods, including IESHGI, did not achieve
optimal results on ogbl-ppa, despite IESHGI showing a
slight improvement over our previous method LVGANN. The
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TABLE 5. The experimental consequences from various baseline methods alongside the modelIESHGI, applied to the ogbl-ppa dataset, are detailed.

primary reason lies in the high sparsity structure of ogbl-ppa,
which owns 576,289 nodes and 30,326,273 edges, making
local structures like enclosure subgraphs less prevalent than
in ogbl-collab and ogbl-ddi. This suggests that existing
methodsmay bemore suited to dense networks and thosewith
high assortative.

Synthesizing the experimental results and analyses, it is
evident that the IESHGI method proposed in this paper
demonstrates strong overall performance, outperforming our
previously introduced LVGANN method as well as con-
ventional baseline methods, thereby advancing and refining
our earlier work [4]. Data from Tables 3 and 4 indicate
that both the existing baseline methods and the newly intro-
duced IESHGI are particularly effective in dense networks,
where local structures like enclosure subgraphs are more
prevalent and exhibit high clustering. Additionally, IESHGI
excels in learning and updating network representations by
not only capturing low-frequency information that reflects
commonalities among nodes but also high-frequency infor-
mation that highlights node differences. This comprehensive
approach to learning network representations is one of the
key reasons IESHGI surpasses our previous link prediction
methodologies.

Additionally, based on the dataset statistics shown in
Table 2, the datasets employed in this study are of
moderate size and exhibits high sparsity. Firstly, a sparse
network implies fewer connections between nodes, lead-
ing to longer and more dispersed paths for informa-
tion propagation. In such complex networks, conventional
GNNs may face challenges in effectively propagating and
aggregating information, resulting in information loss or
decay. Secondly, the node degree distribution in sparse
networks may be more uneven, with a few highly con-
nected central nodes and a majority of nodes with lower
degrees, which can impact GNNs’ ability to recognize and
learn the overall network structure and important nodes.
Fortunately, the proposed IESHGI model in this article
effectively integrates high-frequency and low-frequency
information, improving themodel’s generalization ability and
applicability.

V. CONCLUSION
This study introduces an inovative framework for pre-
dicting links within complex networks, a vital endeavor
for uncovering latent or forthcoming node relationships

applicable across diverse fields. Our research proposes a
unique strategy that conceptualizes link prediction as a
classification task of enclosure subgraphs, encapsulating
both observed and unobserved links. This strategy lever-
ages both high- and low-frequency information within
these subgraphs, integrated via an attention mechanism,
to construct a GNN specifically designed for acquiring
intricate subgraph representations. This innovative approach
not only sidesteps direct link prediction but also substan-
tially boosts the accuracy of classifying link enclosure
subgraphs.

Our method stands out by rectifying the biases present
in conventional GNNs, showcasing impressive perfor-
mance enhancements and robust generalization across
well-established benchmark datasets. The strategy of using
enclosure subgraphs to represent links simplifies link predic-
tion into a straightforward optimization challenge. It captures
a broad range of frequency information, effectively amal-
gamates features of adjacent nodes with a versatile graph
filter, and sets a strong foundation for future link prediction
endeavors.

Despite these advances, there remain areas ripe for
further exploration and enhancement, particularly concerning
the time complexity, attention mechanism refinement, and
adaptability to highly sparse complex networks. (1) Time
Complexity: A key challenge with sophisticated GNN mod-
els, including ours, is their substantial computational demand,
which escalates with the network’s size and intricacy. The
incorporation of both high- and low-frequency data, along
with an attention mechanism for detailed subgraph repre-
sentation learning, significantly contributes to the model’s
increased time complexity. Future efforts could aim at
optimizing these computational aspects, perhaps through
refined algorithmic methods or by harnessing advancements
in parallel computing. Such improvements would aim to
lower the overall time complexity, enhancing the model’s
suitability for real-time analysis and application to extensive
datasets. (2) Refinement of the Attention Mechanism: The
utilization of an attention mechanism is central to our model’s
enhanced performance, enabling more precise integration of
features from enclosure subgraphs. However, the potential
for optimizing this mechanism further remains vast. Future
research might investigate more advanced or dynamic atten-
tion frameworks that adjust responsively to the network’s
specific features or the task at hand. Enhancements in this
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area could yield more accurate link predictions by more
effectively discerning the network’s structural nuances and
node interrelations. (3) Adaptability to Sparse Complex Net-
works: Our model shows exceptional performance in dense
networks, where enclosure subgraphs are common. Yet, its
efficacy in highly sparse complex networks, which typify
many real-world environments, could be improved. Future
work should consider devising strategies or adaptations to the
model that bolster its performance in sparse contexts. This
may involve creative approaches to deduce or reconstruct
local structures in such networks or introducing novel mech-
anisms to capture essential long-range dependencies more
effectively.

In summary, this study propels the link prediction field and
the use of GNNs for network analysis forward. Yet, the iden-
tified avenues for enhancement underscore the roadmap for
future investigations. By tackling these identified challenges,
forthcoming studies have the opportunity to expand GNNs’
utility further, affirming their role as comprehensive tools for
navigating and understanding the complexities of vast and
diverse networks.
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