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ABSTRACT Software vulnerabilities are among the significant causes of security breaches. Vulnerabilities
can severely compromise software security if exploited by malicious attacks and may result in catastrophic
losses. Hence, Automatic vulnerability detection methods promise to mitigate attack risks and safeguard
software security. This paper introduces a novel model for automatic vulnerability detection of source
code vulnerabilities dubbed DB-CBIL using a hybrid deep learning model based on Distilled Bidirectional
Encoder Representations from Transformers (DistilBERT). The proposed model considers contextualized
word embeddings using the language model for the syntax and semantics of source code functions based
on the Abstract Syntax Tree (AST) representation. The model includes two main phases. First, using a
vulnerable code dataset, the pre-trained DistilBert transformer is fine-tuned for word embedding. Second,
a hybrid deep learning model detects which code functions are vulnerable. The hybrid model is built on
two Deep Neural Networks (DNN). The first model is the Convolutional Neural Network (CNN), which
is used for extracting features. The second model is Bidirectional-LSTM (BiLSTM), which has been used
to maintain the sequential order of the data as it can handle lengthy token sequences. The utilized source
code dataset is derived from the Software Assurance Reference Database (SARD) benchmark dataset.
Final experimental findings show that the proposed model outperforms the state-of-the-art approaches’
performance by improving precision, recall, F1-score, and False Negative Rate (FNR) by 2.41%-8.95%,
4.0%-16.28%, 1.85%-12.74%, and 18% respectively. The proposed model reports the lowest FNR in the
literature, a significant achievement given the cost-based nature of vulnerability detectors.

INDEX TERMS Automatic vulnerability detection, BERT, deep learning, DistilBERT, transformers.

I. INTRODUCTION
Software vulnerabilities are a particular category of defects
that make software less secure and make it possible for
products to be used maliciously. Insecure coding is the pri-
mary cause of the significant number of security flaws that
occur nowadays. Software vulnerabilities continue to be a
major issue despite the effort put into developing secure
programming. This can be explained by the fact that in 2016,
there were roughly 6,500 vulnerabilities reported in the Com-
mon Vulnerabilities and Exposures (CVE) database, which
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increased to approximately 25,200 vulnerabilities in 2022.
As of the end of 2023, the number of published vulnerabilities
had reached approximately 28,961 [1].

Since security vulnerabilities are always present in the
source code and can have severe effects, it is necessary to
identify them as early as possible. Automated tools can help
software engineers explore software code, identify which part
of the code is likely to contain vulnerabilities at different
levels of granularity (package, file, class, or function), and
raise the alarm about them. Such tools and prediction models
can help prioritize effort and optimize the cost of inspection
and testing. They aim to reduce the time it takes software
engineers to find vulnerabilities and increase the likelihood
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that software engineers will find and fix them early in the
software life cycle [2].
Software vulnerability detection can guarantee software

security early in the development process and eliminate the
difficulty of manually reviewing complex software systems
for potential vulnerabilities, which is intrinsic to the organiza-
tion. There are two methods for detecting vulnerabilities. The
first is to use traditional vulnerability detection techniques.
The other involves deep learning (DL) or machine learning
(ML) methods.

Most traditional techniques employ vulnerability detection
methods based on patterns manually identified by secu-
rity practitioners, such as static analysis tools. This process
is challenging, exhausting and time-consuming. Currently,
a large variety of static analysis tools are available (such
as [3], [4], [5], and [6]) for source code analysis by auto-
matically checking the source code against defined coding
rules from standards or custom pre-defined rules to ensure it
is compatible, safe, and secure.

On the other hand, techniques based on ML and DL have
been explored [7], [8]. To identify vulnerability patterns,
these ML/DL-based techniques [9], [10], [11], [12], [13] can
dynamically learn the vulnerability patterns without manu-
ally specifying predetermined vulnerability patterns. ML (as
opposed to DL techniques) requires features or patterns –
defined by experts – to automate the detection of vulnerability
patterns from code entries.

The DL-based techniques usually start with a data
pre-processing module that includes code representation and
tokenization. To use deep learning for code analysis, software
code (source code) must be converted to vector represen-
tations that are understandable by DL algorithms (word
embedding). Hence, follows is a word embedding procedure
resulting in a vector representation that serves as an input
to a DL model. The DL model extracts the relevant features
and consequently classifies the source code entries as either
vulnerable or clean.

Most previous studies for software vulnerability detection
relied on static word embedding methods to generate vector
representations to distinguish between vulnerable and benign
source entities (see Related Work subsection). When used
for vulnerability detection, static word embeddings – such as
Word2Vec [14], GloVe [15], and FastText [16]– are only able
to train word embeddings based on a small context window
and are unable to capture meaning that depends on both
the target words and their context as a whole [17]. Since
software vulnerability detection is a process that requires
context-sensitive code analysis to comprehend better the
data flow, control flow, and relationships between data [11],
[18], [19], it’s crucial to capture the context of source code
tokens appropriately. Therefore, in recent studies, researchers
have begun to use language models based on natural lan-
guage processing (NLP) for contextualized word embedding,
such as ELMo [20], BERT [21], and GPT-2 [22]. Still, not
all the state-of-the-art (SOTA) language models have been

employed for software vulnerability detection – for instance,
DistilBERT.

The majority of the literature that classifies code entries
as vulnerable or clean is capable of detecting only two cate-
gories of vulnerabilities (for instance, CWE-399—Resource
Management Errors, and CWE-119—Failure to Constrain
Operations within the Bounds of aMemory Buffer, as in [11]).
Incorporating more categories of vulnerabilities entails DL
models capable of capturing varying patterns; this can be
addressed by designing hybrid DL models with components
capable of learning different patterns. Hybrid models for
software vulnerability detection were not by far investigated
within the literature, except in a handful of studies.

Despite the enormous progress of the emerging DL-based
vulnerability detection, there are still certain limitations in
detection performance regarding False Negative Rate (FNR).

Therefore, we leveraged deep-learning methods to build
our vulnerability detection model based on a SOTA language
model for contextualized word embedding (the DistilBERT
word embedding). Furthermore, to the best of our knowledge,
there has been no such approach that leverages a hybrid deep
learning model of BiLSTM with CNN to detect software
vulnerabilities.

In this paper, we propose DB-CBIL, a functions-level vul-
nerability detection approach, for vulnerabilities of varying
categories. The approach is based on the Abstract Syntax
Tree (AST) code representation, utilizing DistilBert Trans-
former (attention) technology for word embedding and using
a hybrid DL model that integrates CNN and BiLSTM. The
following are the paper’s main contributions:

• We start by generating an AST for source code rep-
resentation, then applying BERT tokenizer for code
tokenization.

• For word embedding, we leverage the language model
to capture deep contextualized word representations and
create several embeddings according to different word
contexts by fine-tuning the DistilBert Transformer.

• To capture context-aware code semantics and be capa-
ble of learning the long-term dependencies, reflecting
potentially vulnerable function patterns in the source
code, we designed a hybrid deep neural network based
on CNN and BiLSTM.

• Experimental results show that DB-CBIL outperforms
the SOTA methods [11], [23], [24], and [25] on the
Software Assurance Reference Database (SARD) [26]
dataset in terms of precision, recall, and F1-score,
with 0.0% FNR which is the lowest amongst the rates
reported in the literature.

The paper is organized as follows: Section II presents the
relevant background and the most related works. Section III
presents the research questions and the proposed model
overview, DB-CBIL. Section IV describes the experimental
setup, the experiments that were conducted, and the metrics
used for evaluation. Section V discusses the experimental
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FIGURE 1. DNN architecture.

results. Section VI discusses the limitations of DB-CBIL.
Section VII provides the conclusion and future work.

II. BACKGROUND AND RELATED WORK
This section briefly presents background and prior studies
related to vulnerability detection. We begin by defining the
research context and introducing all relevant concepts, such
as DNN, CNN, RNN, AST, transformers and word embed-
ding. We then conclude by referring to the most relevant
research studies.

A. DEEP NEURAL NETWORKS (DNN)
DL is a subset of ML. Most DL models now depend on artifi-
cial neural networks (ANN) [27]. An ANN is a complicated
neural network consisting of artificial neurons (ANs) inspired
by neurons in the human brain. The AN gets inputs from
several other ANs, processes them, and then generates an
output that is transferred to other neurons. Each AN processes
data in a simple way, but the general behavior of the network
as a whole - which results from the interaction of its ANs
allows complex problems to be solved. The ANN consists of
three types of layers:

1) Input layer: The initial data for the ANN.
2) Hidden layers: The intermediate layer between the

input and output layers is where all the computation
takes place.

3) Output layer: Generate the result for the given input.

A DNN, as shown in Figure 1, is an ANNwith more than one
layer between the input and output layers. DNNs implement
deep architectures in ANNs. ‘‘Deep’’ means more complex
functionality regarding the number of layers and units in each
layer.

DL has been effectively used in a variety of disciplines,
including software security [28], [29], [30], [31] as well as
traditional fields like object detection [32], NLP [33], image
classification [34], and recommendation systems [35]. Com-
paring DL to pattern-based approaches in detecting software
vulnerabilities reveals significant benefits:

1) DL techniques eliminate a lot of overhead because they
don’t require experts to define the features or patterns

FIGURE 2. CNN architecture.

and can achieve automatic extraction of vulnerability
patterns.

2) It is challenging to identify a precise pattern encom-
passing several vulnerabilities, even those of the same
type (because vulnerabilities of the same type exist in
different forms).

3) DL techniques have been demonstrated to simultane-
ously detect multiple types of vulnerabilities, in con-
trast to pattern-based techniques, which often can only
detect one specific type of vulnerability [11].

B. CONVOLUTIONAL NEURAL NETWORK (CNN)
A convolutional neural network (CNN) is a specific type
of ANN that is employed in different applications such
as text classification, image recognition, and NLP. CNN
can be classified as one-dimensional (1-D) CNN for NLP
tasks and two-dimensional (2-D) CNN for image recognition
tasks [36]. Figure 2 shows the architecture of CNN. A deep
CNN consists of three layers: a convolutional layer, a pooling
layer and a fully connected (FC) layer. The convolutional
layer is the core building block of a CNN.Most computations
take place in the convolutional layer. It indicates how many
convolutional filters (or kernels) there are. It is used on the
input data to create feature maps. CNN uses the max pooling
layer to reduce the dimensionality of the output by reducing
the number of input parameters. The FC layer and sigmoid
represent the output layer in the end, which produces the
classification results based on the features extracted in the
preceding layers [28].

C. RECURRENT NEURAL NETWORK (RNN)
Recurrent Neural Network (RNN) [37] is another type of
ANN that can be used to process sequential data (Figure 3).
In contrast to feedforward ANNs, which only allow infor-
mation to flow from input to output in one direction, RNNs
enable the connection between neurons in the same hidden
layer to allow information to flow in feedback loops or cycles,
enabling them to capture temporal dependencies. These loops
help RNNs process sequences of input data [38]. Recurrent
connections are the key feature of RNNs that enable the
network to preserve information about the past and use it
to leverage the current prediction. This is called the inter-
nal memory state of the RNN and is often referred to as
the ‘‘hidden state’’. It serves as a summary or memory of
previous inputs that the network has encountered. RNNs
are particularly suitable for time series or natural language
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FIGURE 3. RNN architecture.

tasks [39]. RNNs have a known problem called the Vanishing
Gradient (VG) problem [40], which causes RNNs to lose
long-term dependencies that can lead to ineffective model
training. RNN can alleviate the VG problem by using a
technique known as long short-term memory (LSTM) [41].
The LSTM network is a sequential ANN that preserves infor-
mation because it is primarily designed to avoid long-term
dependency problems.

A Bidirectional LSTM, also referred to as a BiLSTM, is an
RNN used mainly in NLP. It is a sequence processing model
consisting of two LSTMs, one to process the input in the
forward direction and the other to process it in the backward
direction. Due to BiLSTM’s ability to process data in both
directions, the model can better understand the relationship
between sequences and obtain context information that can
lead to more insightful outputs.

D. ABSTRACT SYNTAX TREE (AST)
Abstract Syntax Tree (AST) is typically amongst the first
intermediate representations generated by code parsers of
compilers and thus forms the basis for the generation of many
other code representations. This tree accurately represents the
nesting of statements and expressions that build programs.
ASTs are structured trees with both inner and leaf nodes. leaf
nodes that represent operands (such as variables or constants)
and inner nodes that are used for operators (such as addi-
tions or assignments). AST is used to capture various syntax
and semantic information of source code functions. Examine
Figure 4b, which depicts an AST for the code sample shown
in Figure 4a, as an illustration.

E. WORD EMBEDDING
The static word embedding (non-contextualized embedding)
methods [42] typically treat eachword as an independent unit,
disregarding the relationships between words, which makes it
challenging for these algorithms to learn expressive and rich
context-related semantics.

For example,Word2Vec [14] can only produce one embed-
ding for a single word. It cannot generate various embeddings
for a word with diverse meanings dependent on its con-
texts. The inability to produce diverse embeddings based on
multiple contexts may lead to inaccurate or insufficient repre-
sentations of code contexts, which may ultimately impair the
effectiveness of subsequent code analysis activities. Due to
the drawbacks of static word embeddings, recent deep neural
language models such as ELMo [20], BERT [21], and GPT-2
[22] are optimized to develop context-sensitive word repre-

FIGURE 4. a. Function code example. b. AST representation.

sentations [20] for a variety of NLP tasks. Effective vector
representation guarantees that the semantics and syntax of
the software code are maintained, better supports the learning
process, and ultimately benefits code analysis tasks.

Figure 5 illustrates two examples of vulnerable (a) and
benign (b) code examples to show the vulnerable context:
a local variable called testStr, defined at line 8, has a string
longer than the buffer’s size, which is defined at line 7.
No size check is performed on the variable testStr when
assigned to the buffer in the sprintf function at line 9, causing
a buffer overflow vulnerability. A detection method should be
able to comprehend the semantics of code tokens and identify
contextual dependencies, ranging from the declaration or
assignment of a local variable to the calling of the sprintf
function. The if statement determines whether the variable
testStr is large enough before calling the sprintf (code sample
(b) at line 9).

The vulnerability would be patched by this modified code
segment (b) since it prevents the sprintf from being called if
the testStr variable’s size surpasses the array size. Therefore,
the presence or absence of validation statements in the pre-
ceding code environment determines if the sprintf function is
vulnerable. Therefore, sprintf should be declared differently
depending on the situation (with or without parameter valida-
tion) and being able to recognize these variants is the key to
identifying vulnerable patterns.

F. TRANSFORMERS
Transformer [43] is a DL model and is a type of ANN archi-
tecture that uses an attentionmechanism to process sequential
data, such as sentences of text and time-series data. Compared
with traditional RNN and CNN, the transformer differs in
its ability to capture contextual information and long-range
dependencies. It has an encoder-decoder architecture. There
are exactly as many decoders as there are encoders, which
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FIGURE 5. The different contexts of the sprintf token (a) The vulnerable context of the sprintf token, (b) The
patched context of the sprintf token.

can be thought of as a stack of layers. Self-attention, posi-
tional embeddings, and multi-head attention are the three key
features that make the transformers extremely powerful. The
self-attention mechanism enables the transformer to identify
the relationship between pairs of input tokens (e.g., if the
input content is text, then the tokens are words), even if they
are far from each other. It can then evaluate how important
those relationships are, which enhances context understand-
ing. The position of each token in a sequence is encoded
by positional embeddings, which incorporate this positional
information into the word embeddings. By adding positional
embeddings into the input representation, the model will be
able to capture the order and position of words in a sequence.
The transformer uses multi-head attention, which enables a
greater ability to encode nuances of wordmeanings by repeat-
ing computations in parallel within the attention module. The
similar attention computations are combined to generate the
attention score.

1) BERT
BERT (Bidirectional Encoder Representations from Trans-
formers) [21] is a variant of the original transformer archi-
tecture. It consists of multilayer bidirectional transformer
encoders with 12 layers of transformer blocks. It is a
pre-trained model on a very large dataset and has the capa-
bility to understand the context of the input sentence. The
model can be fine-tuned on the specific tasks datasets to
achieve good outcomes. It can discover contextual relation-
ships between words (or sub-words) in a text. BERT could be
applied to a wide range of NLP tasks, by adding an additional
layer to the fundamental model. It attaches special tokens
to the sequence, such as the classifier token [CLS] and the
separator token [SEP]. [CLS] token is employed in sequence
classification (i.e., classifying the entire sequence in contrast
to individual tokens).

It is the first token of the sequence when built using special
tokens. [SEP] token is used when creating a sequence out of
multiple sequences (i.e., sequence classification). It is used as
the last token of a sequence.

2) DistilBERT
DistilBERT transformer (Lightweight Distilled Bidirectional
Encoder Representations from Transformers) [44] employs
a smaller BERT-base network with six layers of transformer

blocks, and it is trained using the proposed Knowledge Dis-
tillation technique [45]. DistilBERT is 60% faster and 40%
smaller than BERT-base.

G. RELATED WORK
Static vulnerability detection based on source code can
be classified into two methods: code similarity-based and
pattern-based. Detectors based on code similarity can only
detect vulnerabilities that occur due to code clones [46], [47].

Pattern-based techniques are also subdivided into
rule-based and ML-based methods. Rule-based approaches
employ vulnerability patterns, which are manually created
by human specialists, to detect vulnerabilities (e.g., Check-
marx [3], Flawfinder [4], Rats [5], and cppcheck [6]). These
tools often result in high false positive and false negative
rates. False positive (in this context) refers to benign entries
classified as vulnerable, while false negative refers to vulner-
able instances classified as non-vulnerable.

ML-based techniques [48] can be divided into three sub-
categories:

1) Vulnerability detection methods based on traditional
software metrics, such as code complexity, coupling,
and cohesion [49], [50], [51], [52].

2) Anomaly detection methods: These methods identify
vulnerabilities through abnormal patterns (e.g., missing
checks [53], API usage [54]), but they cannot handle
regular patterns that are rarely used.

3) Vulnerable code pattern identification techniques:
These techniques extract vulnerability patterns related
to code representation (e.g., from AST [55], code prop-
erty graphs [56]), or system calls [57], and identify
vulnerabilities using these patterns.

Recent years have seen researchers start looking into vul-
nerability detection utilizing ML and DL methods (Figure 6).
Harer et al. [58] employ ML techniques to detect vul-
nerabilities using two approaches. The first makes use of
features extracted from programs’ intermediate representa-
tions (IR), which are created during the build and compilation
phases — the second works directly with source code. Yam-
aguchi et al. [59] built an AST for each function, and
then applied latent semantic analysis using the bag-of-words
model. This approach uses the matrix singular value decom-
position (SVD) technique, which captures the structured
pattern in the syntax tree.
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FIGURE 6. A generic model of software security vulnerability detection using a DL approach.

One of the initial investigations on the use of DL for
vulnerability detection was conducted by Zagane et al. [60],
it used code metrics as features for software vulnerability
detection based on DL. The research revealed that while code
metrics are good, they are not the best attributes to employ in
DL-based vulnerability detection as gathering such software
metrics requires manual labor and takes time.

In order to automatically learn vulnerability patterns from
historical data, numerous DL-based techniques have been
proposed [9], [12], [13], [61]. Russell et al. [12] proposed
a DL-based detection system that works on the function-
granularity level. In order to extract the relevant meaning
of crucial tokens from the unprocessed source code of
each function, they created a unique lexer representation.
To extract useful features, they used an ensemble classifier
(namely, a random forest) of multiple neural representation
(based on ‘‘CNNs’’ and ‘‘RNNs’’). Lin et al. [62] proposed
POSTER, which is a framework for detecting function-level
vulnerabilities across different projects. They represented
functions using the AST. They used Bidirectional Long
Short-Term Memory (BiLSTM) for capturing the features of
a function. Another BiLSTM-based approach is presented by
Li et al. [63], the method identifies vulnerable and secure
functions in source code based on the extraction of semantic
features from the function names. They worked on CVE
entries submitted between 2008 and 2018. The method has
a lower false-positive rate and can identify different types
of vulnerabilities. Farid et al. [28] proposed CBIL, a hybrid
model that combines CNN andBi-LSTM to improve software
testing and review of code by identifying defective areas in
source code based on Word2Vec model.

VulDeePecker [11] presents a DL-based vulnerability
detection system that can automatically extract and iden-
tify features using ‘‘code gadgets,’’ which are semantically
connected code lines that are not necessarily sequential.
These code gadgets are transformed into symbolic repre-
sentations, and then variable-length vector representations
of code gadgets are transformed into fixed-length vectors
using Word2Vec embedding. VulDeePecker ’s design mainly
addresses vulnerabilities related to calls to library/API func-
tions. It used the BiLSTM model. The method does not
accommodate control dependency; only data dependency
is supported. The dataset used only contains two types of
vulnerabilities: buffer error and resource management error
vulnerabilities.

SySeVR [10], provides a program representation that
can include information about the vulnerability’s syn-
tax and semantics by focusing on semantic information

induced by data and control dependency. To generate vectors
SySeVR also usedWord2Vec embedding. However, SySeVR
addressed the shortcomings of VulDeePecker outlined above,
but the algorithms used for generating syntax and semantics
need to be improved to accommodate more semantic infor-
mation for vulnerability detection.

A transformer-based model for detecting vulnerabilities in
the software program is proposed by Hou et al. [23]. The
approach employs a Multi-Layer Perceptron (MLP) model
and is based on the AST for source code representation to
extract both data and control dependencies between the sen-
tences. This approach is superior to the traditional ML-based
vulnerability detection methods in that it uses the structure of
a transformer and the attention mechanism to learn and detect
system vulnerabilities.

Another transformer-based model for detecting vulnera-
bilities in source code is VulBERTa [24], which is based
on RoBERTa model [64]. Firstly, VulBERTa pre-trains the
RoBERTa model based on Masked Language Modelling
(MLM) [21] to create its code representation. Then, the
pre-trained VulBERTa model is used with the other two
models, MLP and CNN, to implement two different classi-
fication methods (VulBERTa-MLP and VulBERTa-CNN) for
fine-tuning vulnerability detection models. This approach is
evaluated on binary and multi-class vulnerability detection
tasks using different datasets (such as VulDeePecker, Draper,
and REVEAL).

VulDeBERT [25], is another DL-based vulnerability detec-
tion system for C and C++ source code based on BERT
model. They created their own code gadget generation
method to detect the vulnerabilities related to system function
calls. Using the generated code gadgets, the pre-trainedBERT
model is fine-tuned. They mainly worked on two vulnerabil-
ities (CWE-119 and CWE-399).

To the best of our knowledge, no research has been done
on applying a hybrid deep learning model to extract features
directly from source code in a big codebase based on con-
textual word embedding in order to identify different types
of vulnerabilities while taking into consideration code syntax
and semantics through the use of transformers.

III. METHODOLOGY
The research questions, proposed model, and several steps
involved in conducting the study are presented in this section.

A. RESEARCH QUESTIONS
To evaluate the effectiveness of the proposed model, we need
to answer the following three research questions (RQs) by
conducting experiments:
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RQ1: How accurate is DB-CBIL for detecting software
vulnerabilities at the function level?
RQ2: Does DB-CBIL achieve better vulnerability detec-

tion performance than state-of-the-art (SOTA) methods?
RQ3: Can hybrid deep learning based on a language model

be leveraged to detect multiple types of vulnerabilities?
RQ4: Can the proposed model achieve an improved Recall

and False-Negative Rate compared to the SOTA methods?

B. DB-CBIL MODEL OVERVIEW
The DB-CBIL model will be presented in this section.
Figure 7 depicts the entire model architecture. Our code is
made available at [65].

C. DATA PREPARATION
Before building the model, the dataset needs to be pre-
pared to produce feature representations that help the DNN
models comprehend the semantics and patterns of code
functions. Data preparation comprises two steps: parsing
the source code into an AST, followed by tokenization
using BERT.

1) PARSING SOURCE CODE INTO AST
Using the source code entities for training/testing the pro-
posed model involves two primary data pre-processing steps;
namely, the generation on an AST representation of the code,
followed by eliminating the irrelevant nodes from the gener-
ated AST.

The AST is generated using the ANTLR ‘‘CodeSensor’’
parser [66], [67]. ANTLR generates an AST per func-
tion, for each function available in the utilized dataset. The
AST are serialized; that is, the tree structure is converted
into a linear format (such as XML or JSON). This pro-
cess usually involves traversing the AST in a depth-first
manner and encoding each node’s type, value, and relation-
ships to other nodes in a format similar to that shown in
Figure 8.
Then, each of the resulting raw serialized-AST files is

processed further by selecting the important AST nodes as
tokens (therefore, eliminating any unnecessary nodes from
further consideration to avoid impairing the accuracy of the
model). Listed in Table 1 are the node-types to be selected as
tokens further consideration:

• Control-flow nodes (e.g., ‘‘if’’, ‘‘while’’, and ‘‘do’’),
• Function-call nodes (usually represented using solely
the function-name, without any parenthesis or argu-
ments), and finally,

• Declaration nodes (e.g., for declaring methods,
parameters-lists, and variables), which are listed along-
side their datatypes/return-types.

As an example, the representation of a function’s AST
nodes mapped to tokens can be:

• [return_type, void, function_name, parameter_list,
statements, decl, int,. . . ].

TABLE 1. The selected nodes of the serialized ASTs.

In which the first and second nodes (‘return_type’ and ‘void)
indicate the return type of the function, and the subsequent
nodes (‘parameter_list’, ‘decl’, and ‘int’) indicate that the
first parameter for the function in an integer, .. etc.

2) TOKENS ENCODING (BERT TOKENIZATION)
Tokenization involves transforming the text tokens into
integer tokens. That is, for each function, the selected
text-tokens from a serialized AST are transformed into
a sequence of integer values (namely, Token IDs). This
step is crucial for the subsequent generation of an embed-
ding vector (per AST), which is the input to the hybrid
DL model.

For efficient tokenization, the pre-trained BERT’s tok-
enizer (which involves aWordPiece model [55]) is fine-tuned
using the selected dataset. The fine-tuning process aims to
further train a pre-trained model on a more specific down-
stream task using relatively smaller datasets, which in this
study is the software vulnerability detection task, using the
SARD dataset.

The tokenizer encodes the input text (i.e., the selected AST
tokens) into a sequence of integers known as ‘‘Input tokens’’,
by representing each token with a unique integer termed a
‘‘Token ID’’. In addition, to indicate the start and end for a
sequence of tokens representing a single function, for each
function, the [CLS] token is added at the beginning of its
sequence of tokens, and [SEP] is added at the end of each
sequence. Finally, padding is utilized to make the sequences
for all functions of the same length. Since the body of the
functions in the dataset varies in length, padding ensures they
all conform to a length of 512.
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FIGURE 7. The proposed DB-CBIL model architecture.

FIGURE 8. Example of serialized AST representation.

3) PROPOSED WORD EMBEDDING USING DISTILBERT
The sequences of integer tokens cannot be used as input to
DL models; they must be transformed – or translated – to
word embedding vectors. However, not all word embedding
approaches can precisely capture and represent the context of

each AST. Therefore, to effectively learn the context for each
token, this study proposed and investigated the application
of DistilBERT transformer as a contextual word embedding
approach. That is, to represent the semantic information in
the function sequence, the output of DistilBERT is the con-
textualized vector representations for each input sequence.
The contextual embeddings are produced by the transformer
encoder using a self-attention mechanism.

In this study, the pre-trained DistilBERT transformer is
fine-tuned using the SARDdataset, and then each sequence of
integer tokens is converted into a dense vector using the fine-
tuned DistilBERT. Thus, for each function, the DistilBERT
model takes the sequence of numeric representation of the
selected tokens as an input and generates the corresponding
contextual embedding vector. Each integer vector must have a
specified length. The vector is masked by 0 if its length is less
than the identified length. Additionally, any excess lengthwill
be truncated if the vector length is greater than the identified
length (i.e., 512).
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4) PROPOSED HYBRID MODEL: CNN + BiLSTM
In addition to the DistilBERT Embedding layer, the proposed
DB-CBILmodel consists of three additional components: the
CNN layers, a BiLSTM layer, and a Dense – fully-connected
– layer.

a: CNN LAYERS
The architecture starts with two layers, a convolutional layer,
and a max pooling layer. The convolutional layer is used to
learn the features of software vulnerabilities automatically.
Since the source code entries are in fact textual data, this study
employed a 1-D convolutional layer which is suitable when
processing sequential data. Within the convolutional layer,
the number of filters (set to 15 in the experimental setup)
determines how many dimensions there are in the output
space, while the filter length (set to 20) reveals how long
the 1-D convolution window is. To select the most effective
settings for the convolutional filters, multiple experiments
using the SARD dataset have been conducted.

After performing the convolutional operation by the con-
volutional layer and extracting the data feature maps, the
dimensions of the extracted features are still very high. There-
fore, to solve this problem and reduce the cost of training the
model, the convolutional layer is followed by a max pooling
layer to reduce the dimensionality of the generated feature
maps, by retaining only the most important information. The
following equations explain their calculations:

lt = tanh(x t ∗ wt + bt ) (1)

where lt refers to the output value from the convolutional
layer, tanh is the activation function, xt is the input sequence,
wt is the convolution kernel’s weight, and bt is its bias.
The maximum pooling is chosen by the pooling layer. After
convolution and pooling, the output vector is as shown in the
equation:

Xt = fmaxpooling{tanh(x t ∗ wt + bt )} (2)

where Xt is the output from the CNN layer and fmaxpooling is
the operation of the maxpooling. Then the output of the CNN
layers is passed to the BiLSTM layer.

b: BiLSTM LAYER
The sequential order of the data (Input sequence) is main-
tained by the BiLSTM layer. BiLSTM implementation helps
in detecting long-term dependencies that can effectively
capture key features. The BiLSTM layer receives the max
pooling results as input to select the valuable information.
To detect both contextual – forward and backward – informa-
tion, it employs two LSTM networks. The LSTM consists of
a ‘‘memory cell’’ that can track and store long-term depen-
dency information in memory for long periods. The LSTM
unit consists of three gates: an input gate, a forget gate, and an
output gate. The LSTM is configured with 24 units. The basic
structure of the LSTM unit is shown in Figure 9. It includes
the logistic sigmoid function σ , the activation function tanh,

FIGURE 9. The Architecture of the LSTM unit.

the new input vector Xt , the output from the previous timestep
ht−1, the output ht , the old cell state Ct−1, and the new cell
state Ct .Additionally, ft , it , and ot , stand for the forget, input,
and output gates, respectively. The processes performed in
the input, forget, and output gates of the LSTM unit to cal-
culate the output ht can be expressed mathematically by the
equations 3 to 8, where Wand U are the weight matrices of
the three gates, b is the bias, and C∧

t is the candidate value.
As shown in Figure. 9, The information will be added

or deleted in the cell state using the three gates. The input
gate it manages the information flow to the memory cell.
The forget gate ft manages the information flow out of the
memory cell. The information flow out of the LSTM and to
the output is then managed by the output gate ot . The input
data will be passed through the sigmoid activation function.
The two inputs Xt (the input at the current timestep) and ht−1
(the output from the previous timestep) are fed to the forget
gate and multiplied, respectively, by the weight matrices Wf
and Uf ,followed by an addition of the bias bf .

ft = σ (Wf Xt + Uf ht−1 + bf ) (3)

The result is passed through the activation function, which
gives a binary output [0 or 1]. If the cell state output is 0,
the information will be forgotten, and if the output is 1, the
information will be retained for future use.

Useful information is then added to the cell state by the
input gate. Using the inputs Xt and ht−1, the input gate
processes the information using the sigmoid function, and the
values are either retained or not (thus behaving likewise the
forget gate).

it = σ (WiXt + Uiht−1 + bi) (4)

Next, using the weight matricesWc andUc, and the bias value
bc, a vectorC∧

t is generated using the tanh activation function
that results in output ranging from −1 to +1.

C∧
t = tanh(WcXt + Ucht−1 + bc) (5)

The current cell state Ct is calculated by adding the C∧
t to it ,

while the previous cell state Ct−1 is multiplied by ft (and thus
either included or ignored).

Ct = ft∗Ct−1 + it∗C∧
t (6)
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The output gate ot is responsible for extracting the useful
information from the current cell state to present it as an
output. Initially, a vector is generated by applying the tanh
activation function to the current cell state Ct . Additionally,
the information – i.e., Xt and ht−1 – is filtered using a sigmoid
function. Finally, the output ht – which acts as the input to the
next cell – is determined by multiplying the retained values
ot by the vector tanh(C t ).

ot = σ (WoXt + Uoht−1 + bo) (7)

ht = ot∗tanh(Ct ) (8)

c: DENSE LAYER
Finally, the dense layer – also known as a fully connected
(FC) layer – is connected to the BiLSTM layer to obtain the
final vulnerability detection results. The neurons of the dense
layer are connected to every neuron of the BiLSTM layer
which means that each neuron receives input from all the
neurons of BiLSTM layer. The dense layer in the proposed
DB-CBIL model consists of a single unit which reflects the
dimensionality of the output space. Thus, the dimensions of
the vectors resulting from the BLSTM layer is reduced by
the dense layer. We used sigmoid (logistic function) as an
activation function within the dense layer for a binary clas-
sification, where the dense layer’s low-dimension vectors are
fed into the sigmoid function responsible for generating the
classification result (a value between 0 and 1). The value can
then be interpreted as the probability of the sample belonging
to one of the classes (vulnerable, or non-vulnerable).

IV. ENVIRONMENT AND EXPERIMENTAL WORK
Several experiments are conducted to evaluate the perfor-
mance of the proposed DB-CBIL model. The results are then
compared to other DL models used to address software vul-
nerability detection. Details of the dataset used (the Software
Assurance Reference Database – SARD –) are discussed in
the dataset subsection. Experiments are performed on the
configuration and setup described in detail in the Experi-
mental Setup subsection. For each experiment, we report
multiple evaluation indicators detailed in the evaluation met-
rics subsection, including all metrics reported in the previous
work that utilized the SARD dataset. By doing so, our com-
parison will be fairer.

A. DATASET
We have selected a benchmark dataset which is frequently
used by security researchers to evaluate methods for detecting
vulnerabilities in C/C++ source code functions. It is made up
of samples from the SARD [26]. A publicly available subset
of SARD employed by numerous SOTA studies contains a
total of 33,360 functions, including 12,303 functions that
are vulnerable and 21,057 functions that are not vulnera-
ble. The dataset covers different categories of vulnerabilities
such as Buffer errors, Numeric errors, Resource management
errors, and more. Table 2 shows the list of CWEs (Common
Weakness Enumeration) that are included in this dataset. The

TABLE 2. Vulnerabilities in the dataset.

dataset is randomly divided into a training set, a validation set,
and a testing set, with the ratios of 6:1:1. The utilized dataset
has been made available at [68].

B. EXPERIMENTAL SETUP
The DNN models were implemented utilizing keras (version
2.10.0) with a TensorFlow backend (version 2.11.0) [69],
using Python 3.9.12. The Transformer package employed
is version 4.28.1. The server is running an Ubuntu OS
20.04.6 LTS, with a NVIDIA A100 GPU processor,
and 32 GB RAM.

For the proposed DB-CBIL model, the hyperparameters
are set as follows:

• The BERT tokenizer has a maximum sequence length of
512.

• The CNN layer is composed of 15 filters, each with a
length of 20, in addition to the tanh activation function.
However, varying numbers of filters and filter lengths
were investigated, with the results reported in the next
section.

• The number of LSTM units in the BiLSTM layer is set
to 24 and utilizing the tanh activation function. Also,
varying numbers of LSTM units were investigated, with
the results reported in the next section.

• The loss function of the model is set to
binary_crossentropy,Adamoptimizer is employed, and a
learning rate of 3e-5. Once more, varying learning rates
were investigated, with the results reported in Table 3.

• The dense layer utilized a sigmoid activation function.
• With all the aforementioned settings, the total number of
epochs is set to 20, with a batch size of 20 per epoch.

C. EVALUATION METRICS
The DB-CBIL model’s performance is assessed using several
evaluation metrics, including the AUC–ROC (Area Under
the Receiver Operating Characteristics Curve) and the F-
measure. These evaluationmetrics arewidely used to evaluate
prior research studies on software vulnerability detection
models [7]. Figure 10 presents the confusion matrix which
provides the model’s predicted outcomes by generating the
results of the following indicators: true positives (TP), true
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TABLE 3. Detailed performance measures of the DB-CBIL model.

FIGURE 10. The overview of the confusion matrix.

TABLE 4. Time complexity analysis of the proposed DB-CBIL Model.

TABLE 5. SOTA studies’ performances compared to the DB-CBIL model.

negatives(TN ), false positives (FP), false negatives (FN ).
These indicators of the confusion matrix are used to assess
the performance of the proposed model’s classification as
follows:

• Sensitivity/TPRate/Recall refers to the percentage of
actual vulnerable functions that themodel correctly clas-
sified.

Sensitivity/Recall =
TP

TP+ FN
(9)

• Specificity/TNRate refers to the percentage of actual
non-vulnerable functions correctly identified by the
model.

Specificity/TNRate =
TN

TN + FP
(10)

• FPRate refers to the percentage of actual non-vulnerable
functions that are misclassified by the model as vulner-
able.

FP =
FP

FP+ TN
= 1 − Specificity (11)

• FNRate refers to the percentage of actual vulnerable
functions misclassified by the model as non-vulnerable.

FN =
FN

FN + TP
(12)

• Precision refers to how often the proposed model is
correct when predicting vulnerable functions.

Precision =
TP

TP+ FP
(13)

• F − measure(orF1 − Score) combines both recall and
precision of the model; that is, it measures how effec-
tively the model can identify venerable functions while
minimizing the misclassification of vulnerable/non-
vulnerable functions.

F1 =
2 ∗ (precision ∗ recall)
(precision+ recall)

(14)

• The ROC is an evaluation metric used for binary classi-
fiers. It is like a report card for a vulnerability detector.
It shows how well the detector distinguishes between
vulnerable and non-vulnerable functions. Imagine it
as a graph where we measure how often the detector
correctly identifies vulnerabilities (i.e., T ) without mis-
taking non-vulnerable ones (i.e., FP). The closer the
ROC curve is to the top-left corner, the better the detec-
tor is at its job.

• Thus, theAUC in theROC graph is like grading the over-
all performance of the vulnerability detector. It is used
as a summary of the ROC curve, and thus it also rep-
resents the ability of the detector to distinguish between
vulnerable and non-vulnerable functions across different
thresholds. A higher AUC (i.e., AUC values that are
close to 1)means the detector is doing a better job overall
– it is a measure of the detector’s effectiveness across
various scenarios.

Note that a vulnerability detector is a cost-based classifier.
That is, in vulnerability detection, a misclassified vulnerable
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FIGURE 11. Loss versus the epochs for each of the five learning rates.

function (i.e., a false negative—predicting ‘‘non-vulnerable’’
for a function that is indeed vulnerable) is often more costly
given its direct impacts on security than a misclassified
legitimate/clean function (i.e., a false positive—predicting
vulnerable for a function that is non-vulnerable), where the
decision is merely inconvenient and will result in further
unnecessary manual checks. Accordingly, both the False
Negative Rate and Recall should be favourably considered
when assessing the performance of vulnerability detectors.

V. RESULTS AND DISCUSSION
This section presents the results of the proposed DB-CBI
model and discusses the research questions. Experiments
were carried out on the PROMISE dataset described in
Table 2. The experiments were conducted five times with
varying learning rates (1e-5, 2e-5, 3e-5, 4e-5, and 5e-5).
The learning rate is a hyperparameter used in optimization

algorithms like SGD (Stochastic Gradient Descent) to min-
imize the loss function that enhances model performance.
In our study, we applied the Adam optimization algorithm,
an SGD extension. Table 3 summarizes the results of the
evaluation of these experiments. The proposed model has a
maximumRecall of 100.00%, Accuracy of 99.81%, Precision
of 99.51%, AUC of 99.84%, F1-score of 99.75%, Specificity
of 99.70% and FNR of 0.0% using learning rates 3e-5 and
above. To measure the cost, since the proposed model is cost-
based, the FNR is used to evaluate the cost factor. Figure 11
presents a loss per epoch graph (using the binary cross-
entropy loss) of the five runs (each using a different learning
rate). This is an effective way to visualize the progress while
training our hybrid neural networkmodel. In addition, Table 4
shows the time complexity analysis of the DB-CBIL model
for both the training and testing phases. It is worth noting that
the minimum training and testing times are based on the 3e-5
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learning rate. We verified the effectiveness of the proposed
model by comparing it to other SOTA vulnerability detection
methods, shown in Table 5. The proposed model – DB-CBIL
– outperforms the SOTA methods in terms of precision by
2.41%-8.95% and also outperforms thosemethods in terms of
the F1-score by 1.85%-12.74%. But most importantly, given
the cost-based nature of vulnerability detectors, the proposed
model outperformed the SOTA methods in Recall by even
more significant improvements, 4.0%-16.28%.

This improvement results from achieving an FNR of 0.0%
(the lowest among the rates reported in the literature).

Hence, this study successfully addressed Section III’s four
Research Questions (RQs). Addressing RQ1, the DB-CBIL
model achieved the top Accuracy of 99.81%, which is
more accurate than the other SOTA approaches. To address
RQ2, the DB-CBIL model achieves an F1-score of 99.75%,
which is better than the other SOTA approaches. Regarding
RQ3, the model can effectively detect seven different vul-
nerabilities, which are: buffer overflow issues [CWE-121,
CWE-122, CWE-127, CWE-124], OS command injection
[CWE-78], conversion errors [CWE-195], and uncontrolled
format strings [CWE-134] by using a hybrid DNN of CNN
and BiLSTM layers based on contextual word embedding
using DistilBERT model. As for RQ4, the DB-CBIL realized
an FNR of 0% and outperformed the SOTA methods in
Recall.

VI. LIMITATIONS
The research study poses the following limitations that should
be addressed in future work:

• DB-CBIL is applied to detect software vulnerabilities
in source code written in C/C++ languages at present,
where we used (1) a dataset of C/C++ code entries and
(2) a specific parser for these languages. In theory, our
approach can also be applied to other programming lan-
guages, provided that corresponding datasets and parsers
are available in those languages. Theoretically, the pro-
posed approach is also applicable to other programming
languages. Thus, one of the future works will be to adapt
our method to different languages.

• DB-CBIL can detect many different types of vulnerabil-
ities, such as different buffer overflow issues, OS com-
mand injection, conversion errors, and uncontrolled
format string issues. We need to conduct experiments on
all available types of vulnerabilities.

• The evaluation of DB-CBIL is performed only on the
SARD dataset due to the lack of labelled vulnerability
datasets with their source code functions, as the existing
vulnerability datasets suffer from the wrong labels and
coarse-grained level vulnerabilities.

VII. CONCLUSION AND FUTURE WORK
In conclusion, this paper introduces a novel model employing
deep learning techniques and contextual word embedding
for software vulnerability detection. The newly designed
model, DB-CBIL, leverages languagemodels’ advanced con-

textual embedding capabilities using DistilBert transformer
to identify semantic features of source code functions to
identify software security vulnerabilities. Furthermore, DB-
CBIL integrates DistilBert with a hybrid deep-learningmodel
of CNN and BiLSTM. For extracting semantic features from
AST tokens, DB-CBIL uses the CNN model. Then, the
sequential order of the data can be maintained using the
BiLSTM model, and in addition, BiLSTM finds informa-
tion about long-term dependencies. Experimental results on
the benchmark dataset show the effectiveness of the pro-
posed model in improving the performance and accuracy
of software vulnerability detection in C/C++ source code
functions. DB-CBIL outperforms the state-of-the-art studies
for vulnerability detection using the structure of transformers.

In the future, we plan to conduct experiments on addi-
tional datasets and expand our method to other programming
languages as it is applied only to C/C++ source code
functions to make DB-CBIL more generalisable. Since the
proposed model works on binary classification (vulnerable
or non-vulnerable), it can be enhanced by converting it into
a multi-class classification model that classifies the different
types/issues of vulnerabilities. In addition, it is promising to
adapt DB-CBIL to other software engineering tasks, such as
defect detection and code clone detection, due to its ability to
handle NLP tasks based on the language models, which we
will work on in the future.
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