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ABSTRACT Federated Learning, a model-sharing method, and Data Collaboration, a non-model-sharing
method, are recognized as data analysis methods for distributed data. In Federated Learning, clients send
only the parameters of a machine learning model to the central server. In Data Collaboration, clients send
data that has undergone irreversibly transformed through dimensionality reduction to the central server. Both
methods are designed with privacy concerns, but privacy is not guaranteed. Differential Privacy, a theoretical
and quantitative privacy criterion, has been applied to Federated Learning to achieve rigorous privacy
preservation. In this paper, we introduce a novel method using PCA (Principal Component Analysis) that
finds low-rank approximation of a matrix preserving the variance, aiming to apply Differential Privacy to
Data Collaboration. Experimental evaluation using the proposed method show that differentially-private Data
Collaboration achieves comparable performance to differentially-private Federated Learning.

INDEX TERMS Differential privacy, dimension reduction, distributed machine learning, federated learning,

principal component analysis.

I. INTRODUCTION

Privacy-preserving data analysis methods for distributed data
are becoming increasingly important. In machine learning
and data mining, the size of the dataset is directly related
to the quality of the results obtained. However, a single
institution cannot always collect a sufficient amount of data.
Sharing data among multiple institutions is one way to build
large datasets, but the privacy of the data is a problem.
Therefore, there is a growing interest in data analysis
methods capable of analyzing distributed datasets across
multiple institutions or individuals without compromising the
confidentiality of personal information.

There are two types of data analysis methods for distributed
data: model-sharing and non-model-sharing. A central server
transmits a machine learning model to participating clients
in model-sharing methods. The clients train the machine
learning model with their own data and then send the param-
eters to the central server. In non-model-sharing methods,
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the clients send anonymized data to the central server, and
then the central server trains the model with the centralized
data. Federated Learning [1] is known as a model-sharing
method. The central server sends a machine learning model to
each client in Federated Learning. The clients train the model
with their own data and send back updated parameters to the
central server. Data collaboration [2], [3], [4] is known as a
non-model-sharing method. In Data Collaboration, the clients
anonymize their own data by dimension reduction and then
send it to the central server. The central server transforms
the data sent by the clients into a representation that can be
handled as a single dataset and then trains a machine learning
model using the integrated data.

These methods are designed to preserve privacy, but they
do not rigorously preserve privacy. Both of these two meth-
ods employ central server architecture, which potentially
introduce privacy risks if the server is compromised. They
use different techniques to allow the clients to avoid the
need to fully trust the server. Federated Learning attempts
to protect privacy by the clients sending only the parameters
of the model instead of data. Data Collaboration attempts
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to protect privacy by the clients sending data irreversibly
transformed by dimension reduction. However, a model
inversion attack for Federated Learning in which an attacker
infers about the training data by analyzing the parameters
has been reported [5]. Data Collaboration utilizes dimension
reduction as a means of privacy protection. While evaluations
of primary component analysis as a privacy-preserving
method have been reported [6], [7], these researches only
experimentally show that an attack accuracy decreases by
dimension reduction, lacking theoretical privacy analysis.

Differential privacy (DP) [8] is a standard method of
protecting privacy in data analysis. DP makes it difficult
to infer original data by adding artificial noise with appro-
priately tuned parameters and randomizing an algorithm’s
output. DP can also achieve greater and more rigorous
privacy protection for data analysis on distributed data.
An application of DP to Federated Learning has already been
proposed [9]. However, there is no research on an application
of DP to Data Collaboration.

Data Collaboration exploits dimension reduction to pre-
serve privacy. Intuitively, inferring personal information
contained in the original data from the dimension reduced
data is hard. The privacy of Data Collaboration is based
on this intuition. However, dimension reduction does not
inherently provide privacy protection, and no theoretical
analysis of the privacy or additional privacy-preserving
techniques have been studied. DP brings rigorous and
quantitative privacy to data collaboration.

In this paper, we propose the first application of DP to
Data Collaboration as a privacy-preserving and non-model-
sharing data analysis method for distributed data. We apply
DP to Data Collaboration by using a dimension reduction
algorithm that satisfies DP when a client performs dimension
reduction on the data. Especially, we used PCA (Principal
Component Analysis), which finds low-rank approximation
of the data matrix preserving the variance, for dimension
reduction method of Data Collaboration. In general, when
DP is applied, the utility of the results obtained is lower
than that of non-private cases. In Data Collaboration,
we expect that applying DP will reduce the utility of the
results, but the degree of the decrease is unclear. Therefore,
we experimentally evaluated the impact of DP on the utility
of Data Collaboration and compared the degree of the impact
with that of using DP for Federated Learning. The results
showed that the decrease in the utility of Data Collaboration
due to DP was about the same as in the case of Federated
Learning.

Il. PRELIMINARIES

A. DATA COLLABORATION

Data Collaboration is a non-model-sharing type data analysis

method for distributed data. Distributed data are not shared

among clients but are aggregated and processed on a central

server to analyze distributed data while preserving privacy.
Multiple clients with datasets and a central server that

trains machine learning models using the aggregated datasets
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perform Data Collaboration. Each client i(i = 1, ..., n) has
its own data X ; and auxiliary data X*"¢ common to all clients.
Clients transform data by arbitrary mapping function f;, and
then send the mapped data X, = fi( X)), )Z';mc = fi(X¥)
to the central server. The mapping functions are row-by-row
transformations defined arbitrarily by each client. In Data
Collaboration, mapping functions are typically dimension
reduction. Mapped and aggregated data cannot be integrated
and used to train a machine learning model because the
relation of records in the original data is not preserved in
the mapped representation X;. The central server generates
a mapping g; that maps X; into a space that reproduces the
relation in the original data, exploiting that the auxiliary data
mapped by each client, X ;-mc, are originally the same records.
That is, the central server constructs g; such that
giX;") ~ gi(X;")
for any i,j by solving an optimization problem. The data

X = gi(i' ;) have the same properties as the original data X.
The central server integrates X; from each client and trains
a machine learning model using the integrated dataset as a
single dataset.

Since the original auxiliary data X% are not shared with
the central server, it does not know the input and output for
f; simultaneously. Therefore, f; is said not to be inferable.
In addition, since the mapping functions f; are set arbitrarily
by each client and are not shared by the central server, it is
said that the original data X; cannot be reconstructed from
the mapped data X ;. However, the privacy of the mapped data
has not been theoretically analyzed, and personal information
may be statistically inferred. Therefore, in this paper, we have
applied DP to Data Collaboration to guarantee its privacy.

B. DIFFERENTIAL PRIVACY

Differential Privacy [8] is a quantitative measure of the
degree of privacy protection for randomized algorithms.
In less rigorous terms, an algorithm satisfying DP guarantees
theoretically that if only one sample in the dataset differs,
an attacker can infer little change from the algorithm’s output.
DP is the most widely used privacy criterion. For example,
the U.S. Census Bureau adopted DP as “‘the gold standard
for privacy protection in computer science and cryptography”’
[10] when publishing the results of the 2020 census.

The formal definition of (e, §)-DP is as follows. Pr[:]
is propability. € is a privacy budget, set by a user of a
randomized algorithm. Smaller ¢ means greater noise. In
(€, 8)-DP, the constraint is allowed to break with probability
8. When 6 = 0, it is just denoted €-DP.

Definition: A randomized algorithm A satisfies (e, §)-DP
if the following inequalitiy holds for € € (0, o], § € [0, 1),
any adjacent datasets D, D', and any subspace O of the range
of A:

Pr[A(D) € 0] < e“Pr[A(D’) € O] + 6.

An adjacent dataset is a dataset that differs in only one
record. The definition of an adjacent dataset varies depending
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on which structures in the dataset are considered unitary
records. The definition of adjacency concerns the granularity
of privacy protected by DP.

Privacy mechanisms or, simply, mechanisms are methods
to randomize an output of algorithms by adding noise
at some stage of the algorithms. Several general-purpose
mechanisms that apply DP to any algorithm under certain
conditions and mechanisms tailored for specific algorithms
have been proposed. Because privacy mechanisms perturb
data or algorithms, DP usually decreases the utility of the
data or algorithms. There is a trade-off between the utility
and the privacy in DP. In other words, the stronger the privacy
protection, the greater the utility loss.

Privacy mechanisms are classified according to which
stage the original algorithm is disturbed. Mechanisms
classified as output perturbation add noise to a non-
disturbed output of an algorithm. Laplace and Gaussian
mechanisms [11] are known as the output perturbation
mechanisms. These mechanisms achieve DP by adding
ii.d. noise drawn from Laplace distributions or Gaussian
distributions to an output of any function that outputs a
real vector. The noise scale depends on the LI1-sensitivity
of a function for Laplace mechanism and the L2-sensitivity
for Gaussian mechanism. For adjacent data D, D', the Ln-
sensitivity A is defined as follows:

A = sup |JA(D) — AD)|n.
DD’

In our experiments, we used Analytic Gaussian mecha-
nism [12], a variation of Gaussian mechanism that yields
a smaller variance. Let Z ~ N(0,02I) (N is Gaussian
distribution). Analytic Gaussian mechanism exploits that
f(x)+ Z satisfies (¢, §)-DP when the following inequality (1)
holds. @ is the cumulative distribution function of the
standard Gaussian distribution.

A €o A €o
Pl—— —)—e(—-——) <$. (1)
20 A 20 A

The smallest o that satisfies this constraint can be found
quickly by numerical computation using binary search.

DP applications to PCA have been extensively stud-
ied [13], [14], [15]. To the best of our knowledge, they
compute a differential-private projection matrix of PCA,
not a low-rank approximation of the data. These methods
assume the projector will be public and the projection will
be kept private. For example, on recommendation systems,
a recommendation made to a user is based on the global
covariance information and the user’s own information,
and there is no need to hide their own information from
the user [14]. We also propose a DP application to PCA,
but it publishes the projection or dimension-reduced data
differential-privately.

lll. RELATED WORKS

A. LOCAL DIFFERENTIAL PRIVACY

Local differential privacy (LDP) [16] is an applica-
tion of DP for when data aggregators are not trusted.
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The formal definition is as follows (this notation is
from [17]).

Definition: A randomized algorithm A satisfies e-LDP if
the following inequalitiy holds for € € (0, oo], any two data
records X, Y, and any output X of the range of A:

PrlAX) = X] < ¢PrlA(Y) = X].

In DP, data owners trust data aggregators, but in LDP,
they do not trust the aggregators and perturb their own
data records on the client side. Some LDP based methods
employ dimension reduction [17], [18]. These methods
aggregate locally perturbed data records, estimate the original
distribution of the data, and then synthesize artificial data
drawn from the estimated distribution. Due to the curse
of dimensionality, it is difficult to estimate the distribution
of high-dimensional data. These methods use dimension
reduction to estimate the distribution, not to preserve privacy.
Data Collaboration differs from these methods in this respect.

Our proposed method can be seen as a type of LDP but
not a typical one. LDP is client-side and per-record DP,
but in Data Collaboration, clients are also data aggregators.
When the data aggregators cooperatively train a machine
learning model, they perturb their aggregated data per record.
We assume the data owners trust the aggregators and give
them original data.

B. PRIVACY OF DATA COLLABORATION

When we consider privacy violations by a malicious central
server, the privacy of Data Collaboration depends on the
privacy of dimension-reduced data. Studies on PCA to add
noise to dimension-reduced data to increase privacy have
been reported. In the study by Chen et al. [7], an attacker
attempts to reconstruct the original data by performing
the inverse transformation on the dimension-reduced data.
That is, for original data X, dimension-reduced data X s
transformation matrix of PCA W, and reconstructed data X,
dimension reduce of PCA is performed as follows

X=WxX.
The attacker attempts to reconstruct the original data by
X, =X xW'.

However, they only re-transform the dimension-reduced data
from a latent space to the original space and do not restore
the information lost through the dimension reduction. Chen
et al. experimentally evaluated the privacy increase for such
attackers by adding noise to the dimension-reduced data.
A success rate of the Re-identification attack [19] was used
for the privacy evaluation. This attack links corresponding
records x; € X and §; € X for the original data X and
anonymized data X. In the experiment by Chen et al., they
performed the Re-identification attack on the original data
and the restored dimension-reduced data. The results showed
that even if the cumulative ratio of the variation of PCA was
99%, i.e., 99% of the information was preserved before and
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after the dimension reduction, the attack success rate was
still less than 70%. This result indicated that the dimension
reduction was robust against the Re-identification attack.
While the attack success rate decreased as the cumulative
ratio of the variation decreased, the performance of machine
learning models trained on the dimension-reduced data also
decreased, confirming that there was a trade-off between the
utility of data and privacy.

Following the results of Yamashiro et al. evaluated the
privacy of PCA with a more realistic attacker [6]. In the
attack model of Chen et al., an attacker uses a transformation
matrix of PCA that is actually used to dimension-reduce to
reconstruct original data. However, in practice, this matrix
is not always publicly available and accessible to attackers.
Therefore, Yamashiro et al. proposed an attack model in
which the attacker estimates W using auxiliary information
and experimentally evaluated the privacy of PCA using
this model. In this model, the attacker obtains data drawn
from the same distribution as the original data and uses
these to estimate W. Experimental results with this model
confirmed that the success rate of the Re-identification
attack significantly decreased when the attacker used the
estimated W.

In the two studies above, the dimension-reduced data is
mapped to the original space to reconstruct the original data,
but information lost through the dimension reduction is not
reconstructed. In the study by Yamazoe et al. [20], they
proposed a method to recover the original data from the latent
space using GAN. In GAN, a generator G(z) generates false
data from the input, and a discriminator D classifies whether
the given data is false data produced by the generator or
true data, which are trained simultaneously. If the training
is successful, the generator can estimate the generative
distribution of the data with high accuracy. In the proposed
method, an attacker has external data X,, as auxiliary
information. These external data are not necessarily the same
in distribution or domain as the original data and, thus, are
not necessarily labeled in the same way as the original data.
Therefore, the attacker first trains a classification model with
dimension-reduced data X; aggregated from each client and
then labels the external data by classifying X., with the
model. The classification model is trained by integrating X,
and X; into a representation that can be handled as a single
data set through the procedure of Data Collaboration. GAN
is trained by taking the labeled external data as true data. The
generator takes the dimension-reduced data X; as input. In the
experiment, the original data was MNIST, a handwritten digit
data set. As external data, “‘digits,” handwritten digit data
sets like MNIST, “letters,” handwritten alphabet data sets,
and “‘balanced” data sets with a mixture of “digits” and
“letters” were used. The experimental results showed that
when ““digits,” which were in the same domain as the original
data, were used as external data, the reconstructed data was
successfully restored to a level where the digits could be
visually distinguished. When “letters,” which were in a
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different domain from the original data, were used as external
data, the restored data was difficult to identify visually. In the
case of “balanced,” the results were intermediate between
“digits” and “letters.”” It was confirmed that there is a privacy
risk that the original data is recovered from the dimension-
reduced data. The risk varies depending on whether an
attacker can estimate the domain of the data and collect data
from that domain.

C. FEDERATED LEARNING
Federated Learning is a model-sharing type data analysis
method for distributed data. A central server transmits a
machine learning model to clients. The clients train the model
with local data and send back only the model parameters to
the central server.

There are several variations of Federated Learning.
A method called federated average trains the model by
repeating the following steps.

1) The central server transmits a global training model to
clients.

2) The clients train the global model with their own local
data.

3) After a specified number of training epochs, the clients
send the updated parameters to the central server.

4) The central server takes a weighted average of the
clients’ parameters, updates the global model with the
averaged parameters, and transmits the new global
model to the clients.

The central server need not always transmit the global model
to all clients. Instead, it may only transmit the model to
randomly selected clients.

Privacy threats in Federated Learning and the application
of DP as a countermeasure are known. Federated Learning
preserves privacy by allowing clients to transmit only the
parameters of machine learning models. However, model
inversion attack [21] reconstructs the data used for training
from a trained machine learning model. In Federated
Learning, the training data can be inferred from the global
model transmitted to the clients even if the central server is
honest. Therefore, applications of DP to Federated Learning
have been proposed. In the method by Wei et al. [9], used
in our experiments, the clients train the global model with
their own data and then clip the updated parameters so that
the norm is below a threshold. The clients add noise to the
clipped parameters and send the noised parameters to the
central server. The central server takes the average of the
parameters sent by the clients and adds noise.

D. COMPARING DATA ANALYSIS METHODS FOR
DISTRIBUTED DATA

Federated Learning, a model-sharing distributed data analysis
method, and Data Collaboration, a non-model-sharing dis-
tributed data analysis method, have different characteristics
in practical use. Figs. 1 and 2 show the overview of Data
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FIGURE 1. Overview of data collaboration.
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FIGURE 2. Overview of federated learning.

Collaboration and Federated Learning for comparison of
these two methods.

Regarding communication cost, Federated Learning sends
and receives machine learning models between a server and
clients at each learning iteration. Hence, its communication
cost depends on the size of the machine learning model,
the number of clients, and the number of iterations. In Data
Collaboration, communication is limited to aggregating
anonymized data to a central server. Its communication cost
depends on the data size. Although their communication cost
depends on different factors, typically, Data Collaboration
requires less time and network resources.

Regarding computational resources, Federated Learning
requires that all clients with data have enough computational
resources to train a machine learning model. In Data Collab-
oration, clients with data must have enough computational
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resources to perform dimension reduction, and resources
capable of training machine learning models are required
only at the central server.

Data Collaboration tends to require fewer resources than
Federated learning. Also, Data Collaboration performs better
than Federated Learning when the number of clients is
small [22]. Therefore, Data Collaboration is lightweight and
suitable for relatively small cases. Testing the effectiveness
of distributed learning across multiple institutions with Data
Collaboration easy to introduce is a possible scenario.

It is also noted that both Federated Learning and Data
Collaboration have low explainability for machine learning
models obtained. The explainability of the models is
important to interpret the relation between the inputs and
outputs of the models. It allows us to prevent the models
from learning bias or prejudice in real-world. SHAP [23]
is a widely used model-agnostic explainability method.
SHAP calculates the importance of each attribute on a
single record by averaging differences in a machine learning
model’s outputs caused by adding an attribute to all possible
combinations of the other attributes. By calculating this
record-wise importance for all records, SHAP obtains the
importance of each attribute on the model. Because SHAP
is relative to a dataset used to compute the attributes’
importance, it may not calculate proper importance when one
dataset holder performs it on distributed datasets. A method
that extends Data Collaboration to obtain highly explainable
machine learning models using distributed data has been
proposed [24]. This method utilizes the auxiliary data X "¢
of Data Collaboration that is common to all clients.

It is difficult to describe the accuracy and security of
trained machine learning models based on the characteristics
of the two data analysis methods because they depend
highly on use cases. For example, in typical use cases,
Federated Learning involves thousands or tens of thousands
of unspecified clients. In contrast, in Data Collaboration,
learning occurs with relatively few institutions. At this point,
which actors are trusted and which are not depends on the use
case and acceptable security risks.

IV. METHOD

A. APPLYING DIFFERENTIAL PRIVACY TO DATA
COLLABORATION

We propose a new method for applying DP to Data
Collaboration. There are two possible cases where privacy
can be violated in Data Collaboration.

1) Malicious central serversinfer original data from data
anonymized by dimension reduction.

2) Clients infer data held by another client from a trained
machine learning model.

To prevent (1), the clients must share the data mapped
by a differentially-private method with the central server.
Applying DP at this stage will also prevent (2). Therefore,
as an application of DP to Data Collaboration, we consider the
sharing of mapped data by clients in a manner that satisfies
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FIGURE 3. Deriving a dimension-reduction function.

DP. If only (2) is a problem, after aggregating data through
Data Collaboration, a differentially-private training method
such as DP-SGD [25] can be used.

The specific method of applying DP to Data Collaboration
depends on a dimension reduction algorithm a client uses.
Regardless of the dimensionality reduction algorithm, the
following two points should be considered.

1) Itis dimension-reduced data itself that is shared. To the
best of our knowledge, most differentially-private
dimension-reduction methods compute a function that
maps original data to a latent space. For example,
differentially-private PCA has been widely studied.
However, they privately compute a transformation
matrix that projects the original data to the principal
components and does not guarantee DP for the
dimension-reduced data itself.

2) Privacy mechanisms cannot simply be applied to a
function that maps original data to a latent space.
As shown in Fig. 3, the function that performs the
dimension reduction is derived from the original data
and receives the original data as input. Therefore, the
function’s sensitivity depends on the original data, but
privacy mechanisms require a global sensitivity that is
independent of the data.

B. METHOD

An overview of the proposed method for PCA, which
differential-privately publishes dimension-reduced values,
is shown in Fig. 4. The dataset is represented as a data matrix
X € R™" where row vectors represent the records.

1) Normalizing each component of the row vectors of
the data matrix to range L. That is, normalizing to
[L1, o)Ly — Ly = L).

2) Applying the regular PCA procedure to the normalized
X to obtain the dimension-reduced data ¥ € R"*K,

3) By Gaussian mechanism, adding noise to the
dimension-reduced data. Let the L2-sensitivity of the
function be L.

In (3), letting the mapping matrix obtained by PCA be W, the
privacy mechanism is applied to the function f : R” — RK
such that f(x) = Wx.

It is sufficient for the privacy analysis of our proposed

method to show that the sensitivity of f (x) = Wx is less than
or equal to L since we apply DP to PCA using the existing
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FIGURE 4. Applying DP to data collaboration using PCA.

privacy mechanism. A spectral norm for matrixes is defined
as follows:

| Wxll2
[Wil2 = sup(
x20  l1xll2

).

Since x is normalized to the range L, for adjacent, that is,
different only in one component x, X, the max of ||x — X||
is L. Therefore, since the following inequality holds for the
L2-sensitivity A = sup,; [[f (x) — f(X)|l2, we have A <
LIWll,.

If @) = f@)ll2 = [[Wx — Wx|I2

=W =22
= IWl2llx — %2
= LIWl.

Here, W is an orthogonal matrix, and it is known that the
spectral norm of an orthogonal matrix is 1, so we have
A < L|W]|> = L. W is an orthogonal matrix because
W is a matrix that consists of eigenvectors of a covariance
matrix of X, and eigenvectors of a real symmetric matrix like
a covariance matrix are orthogonal.

V. EXPERIMENTS

A. SETTINGS

We compared the performance of classification models
trained by Data Collaboration and Federated Learning.
We used MNIST [26], a handwritten digit dataset and
Fashon-MNIST [27], a clothing image dataset for evaluation.
Each sample of MNIST and Fashion-MNIST is a grayscale
28 x 28 image. We used these two datasets to evaluate the
proposed method on tasks with different difficulty; Fashion-
MNIST is compatible with MNIST but harder to classificate
than MNIST. For both Data Collaboration and Federated
Learning, the number of participating clients was 10, and the
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number of overall training data was 1,000 and 10,000. In other
words, the number of training data per client is either 100 or
1,000. For testing, we used 10,000 data sets that differed from
the training data.

A neural network consisting of fully connected and
activation layers was used for classification. This network
takes flattened vectors of records as input, while original
records have a two-dimensional structure. Specifically, the
network takes a 784-dimensional vector as an input and
outputs a 10-dimensional vector through hidden layers of
512 and 128 nodes. We used ReLLU for activation layers.

For Data Collaboration, we varied the following
conditions.

o Number of post-reduce dimensions: Varying from 10 to
100 by 10.

« Differential Privacy: We used the regular non-private
and our proposed differentially-private methods.

In the experiments, clients on Data Collaboration used
PCA as a dimension reduction algorithm with the common
parameters among the clients. For Federated Learning,
we used a regular non-private method (fed-avg) [1] and
differentially-private method [9].

In any settings, we used ¢ = 50,5 = 0.01 when DP
was involved. e = 50 is larger than the typical magnitude of
privacy budgets. We took this epsilon from the experiments in
literature of the differentially-private Federated Learning by
Wei et al. In the literature, the authors evaluated the method
they proposed using multiple epsilons, and € = 50 was the
minimum one. In addition, when we used smaller epsilon, say
€ = 2, the differentially-private Federated Learning could not
be trained properly. We have assumed that the larger privacy
budget than the typical one is acceptable for the experimental
evaluations and comparison.

B. RESULTS

Figs. 5 to 8 show the accuracy of the classification models.
The y-axis of the graphs is the accuracy of the classification
model (%), and the x-axis is the number of dimensions after
dimension reduction in Data Collaboration. Figs. 5 and 7
shows the results for Data Collaboration and Federated
Learning, where each client has 100 records each, for a
total of 1,000 data items. Figs. 6 and 8 shows the results
where each client has 1,000 records each, for a total of
10,000 records. In the legend of the graphs, DC and DC-DP
denote the cases trained with regular Data Collaboration
and one with DP, respectively. Similarly, FL. and FL-DP
denote the case trained by regular Federated Learning and one
with DP, respectively. individual denotes the case where
the classification model is trained directly on 100 or 1,000
records without using distributed data. This case corresponds
to the case where the client trained the model individually and
served as a baseline for evaluating the results using distributed
data analysis. centralized denotes the case where the
model was trained by aggregating all the institutions’ data in
one place. Since no dimensionality reduction is involved in
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FIGURE 5. The classification accuracies when # of data is 100 per client
on MNIST.
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FIGURE 6. The classification accuracies when # of data is 1,000 per client
on MNIST.

FL, FL-DP, individual, centralized, they are
straight lines parallel to the x-axis.

The experimental results are shown as tables in
Tables 1 to 6. Tables 1, 2, 4 and 5 show the accuracy of the
classification models trained on Data Collaboration. In
Tables 1, 2, 4 and 5, Non-DP and DP denote the case without
and with DP, respectively. Tables 3 and 6 show the accuracy
of the model trained by Federated Learning and a single
institution. In Tables 3 and 6, FL(Non-DP) and FL(DP)
denote the case when DP is not applied in Federated Learning
and when DP is applied, respectively. Individual denotes the
results for a single institution.

Compared to the baseline case individual, both Data
Collaboration and federated learning, regardless of DP,
outperform the accuracy in almost all conditions. Thus,
these distributed data analysis methods are more useful than
training a machine learning model on a single organization,
even with the privacy preservation of DP. The loss of
the accuracy due to DP is only a few percentage points.
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TABLE 1. The classification accuracies of data collaboration when # of data is 100 per client on MNIST (%).

# of components

10 20 30 40 50 60 70 80 90 100
Non-DP 7287 79.11 80.45 8237 8294 8334 83.68 84.07 839 84.88
DP 67.52 75.11 7596 76.85 7656 7733 7598 78.04 79.06 79.55

TABLE 2. The classification accuracies of data collaboration when # of data is 1,000 per client on MNIST (%).
# of components

10 20 30 40 50 60 70 80 90 100
Non-DP  89.06 94.14 94.82 9496 9504 95.1 9492 95.11 9501 95.14
DP 87.41 91.66 92.03 91.81 9199 9194 9201 92.01 92.04 92.14

100-individual 1K-FL —— 1k-DC TABLE 3. The classification accuracies of federated learning and a single
~=- 1lk-centralized 1k-FL-DP  —é— 1k-DC-DP institution on MNIST (%).
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FIGURE 7. The classification accuracies when # of data is 100 per client
on Fashion-MNIST.
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FIGURE 8. The classification accuracies when # of data is 1,000 per client
on Fashion-MNIST.

Comparing the results of Data Collaboration with those of
Federated Learning, the accuracy is equal to or slightly
worse than the corresponding Federated Learning with

VOLUME 12, 2024

# of data per client 100 1,000
FL (Non-DP) 8543 95.1
FL (DP) 1197 89.3
individual 65.81 925
centralized 89.0 96.1

respect to DP, provided that the number of dimensions after
dimension reduction is sufficient. As a differentially-private
data analysis method for distributed data, Data Collaboration
can achieve the same level of utility as Federated Learning.
When the number of data per client is 100 (Figs. 5 and 7),
the accuracy of Federated Learning with DP is significantly
lower, but the accuracy did not change when the number of
local and global epochs was adjusted.

VI. DISCUSSION

This work has two major limitations. First, we don’t
adequately consider the effect of dimension reduction on Data
Collaboration. On the privacy aspect, it is obvious intuition
that a smaller number of dimensions provides greater privacy
protection. On the performance aspect, we can see that the
number of dimensions significantly affects the performance
of Data Collaboration in the experimental results. The size of
latent space is an important parameter of Data Collaboration
that greatly affects privacy and performance. However, the
proposed method doesn’t take into consideration the effect of
dimension reduction.

Second, this work lacks the implications for real-world
applications of Data Collaboration. This work does not give a
criterion for choosing the parameters in Data Collaboration,
i.e., how small a privacy budget and a number of dimensions
should be or how much privacy risk Data Collaboration has.

Thus, two types of studies about data collaboration are
needed. The first is a more sophisticated method to apply
DP to Data Collaboration. Our approach is straightforward
and can be more efficient regarding noise magnitude. Also,
as described above, a method that takes the effect of
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TABLE 4. The classification accuracies of data collaboration when # of data is 100 per client on Fashion-MNIST (%).

# of components

10 20 30 40 50 60 70 80 90 100
Non-DP  69.82 7247 7281 7438 7457 7461 7489 7524 7499 7574
DP 78.18 81.38 8236 825 82.88 8291 832 8295 83.05 83.17

TABLE 5. The classification accuracies of data collaboration when # of data is 1,000 per client on Fashion-MNIST (%).
# of components

10 20 30 40 50 60 70 80 90 100
Non-DP  78.18 81.38 8236 825 82.88 8291 832 8295 83.05 83.17
DP 76.3 79.27 80.19 80.24 80.57 80.73 80.79 80.8 81.22  81.12

TABLE 6. The classification accuracies of federated learning and a single
institution on Fashion-MNIST (%).
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