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ABSTRACT Electric vehicles (EVs) have created a revolution in sustainable transportation. The number
of EV users has increased significantly within a short period globally. EVs running largely on the battery
source require large-capacity battery packs to handle the range anxiety. The primary lifetime of such batteries
in EV applications is said to end when their capacity drops to 80% of their initial capacity. This is termed
as the end of-life of these batteries. These batteries can still be utilized for secondary applications based
on their remaining capacity. Batteries undergo many degradations throughout their lifecycle which affects
their capacity. This paper carries out a detailed study on the major degradation factors like solid electrolyte
interphase and lithium plating which results in loss of lithium inventory. These affect the capacity of the
battery in the long run. Remaining useful capacity must be accurately estimated to identify if the cells are
useful for the next phase or must be recycled. Many estimation techniques are available with attention rising
towards data derivational methods due to their accuracy and their sensitivity towards battery degradation
which thereby makes it easy to track them. Incremental capacity analysis is one such method which is
discussed in detail in this paper. The method starts from the initial stage of data extraction and extends to the
training set of the models. This method is greatly beneficial as it can reveal the deviations in battery behavior
with the help of the valley peak locations and alterations in the slope. The quantitative insights make it an
advantageous technique in the field of battery health monitoring and diagnostics. These are discussed in
detail and validated by experimental analysis and results. This paper also discusses the market prospects,
developments, various ageing mechanisms in batteries, applications, comparison with other estimation
techniques and challenges related to secondary life applications. The complete analysis of the estimation
method along with the detailed steps also aims to serve as a foundation for the upcoming developments and
research in this field.

INDEX TERMS Electric vehicle, incremental capacity analysis, second life of EV battery, state of health
estimation.

I. INTRODUCTION
EVs have created a breakthrough from conventional internal
combustion (IC) engines. Multiple sustainable advantages
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supported by advanced power electronics have helped in the
rapid adoption of EVs in the market. Starting at a slow pace,
the market has currently reached billions globally and is
expected to rise by 40-50% by 2030 [Fig. 1].

Incentives are being provided to users from governments
to promote the usage of more EVs [2]. EVs cannot be
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technically termed as pollution-free transportation as they
only shift tailpipe emissions to the source side. This can be
considered as a sustainable transportation when the source of
electricity generation also becomes sustainable. More EVs in
the market require higher grid electrification that eventually
uses more fossil fuels to produce electricity. With the emer-
gence of renewable energy along with the capability to tap
into this energy using power electronics, electrification will
become sustainable soon [3]. Charging stations are expected
to be completely dependent on sustainable energy like wind,
solar etc. EVs can run solely on battery packs (BEV), or in
combination with ICE engines (HEV and PHEV). Two major
types of energy storage systems (ESS) are present in the
battery field. They are lithium-ion (Li-ion) and lead acid
based. Li-ion batteries usually are more expensive than lead
acid but manage larger cycles, less cost/cycles, lesser main-
tenance, and high total cost of ownership (TCO) [4]. Lead
acid batteries usually are manufactured for 50 % depth of
discharge (DoD) whereas Li-ion can provide up to 75-80 %
DoD and support faster charging as well, which is critical
from an EV application standpoint. Hence, if we require
an actual battery pack capacity of 20 kWh, considering the
50 % DoD of lead acid, a 40 kWh battery pack is to be
used whereas a 25-30 kWh pack is only required if using
Li-ion batteries. This means the higher specific energy of
the lead acid battery is not very advantageous. However,
Li-ion batteries need a battery management system (BMS) to
prevent overcharging/discharging, temperature management,
cell balancing, etc. [5] Various batteries are used in EVs like
nickel manganese cobalt (NMC) and lithium iron phosphate
(LFP). However, LFP is gaining attention in the present due
to its omission of the usage of cobalt. Cobalt has several
disadvantages like fragile chain of supply, labor cost, volatile
price etc. Although LFP has lower energy density, due to its
high safety and temperature handling capabilities, they are
widely being implemented in EVs and other applications.
Figure 2 represents a comparison between three different
majorly used Li-ion compositions concerning their safety, life
cycles, etc. [6]

FIGURE 1. Projected sales of EVs by 2040 [1].

The demand for lithium-ion is also rising proportionally to
the penetration of EVs into the grid. The estimated lifetime
for Li-ion batteries during their primary application period
is known as the EOL. The EOL of the battery in electric

FIGURE 2. Comparison between various lithium-ion compositions.

mobility is said to take place when its capacity drops to 80 %
of its initial capacity [7]. This retirement criterion set by
the United States Advanced Battery Consortium (USABC)
is widely followed at present. Research shows even a higher
EOL is also possible since the battery capacity of most vehi-
cles is also being increased annually. Once an EV battery is
retired, three options are possible – Reuse, recycle or reject.
Discarding these batteries is an environmental concern as
their chemical chemistries make them harmful to accumulate
in landfills. Recycling these batteries to get back the raw
materials; is a good option, but the lack of high-functional
facilities makes this a challenging task [8]. Recycling to
get back the raw materials must be considered after finally
utilizing the pack capacity to its maximum. The best option is
to reuse/repurpose these batteries for other applications. This
will help in gaining both economic and environmental bene-
fits. By giving EV batteries a second life, the overall lifespan
of the battery is extended, reducing the need for frequent
manufacturing and disposal of batteries. This aligns with
the Sustainable Development Goal (SDG) 12 (Responsible
Consumption and Production) of United Nations Develop-
ment Programme (UNDP) [9]. The primary goal of electric
vehicles and their batteries is to reduce reliance on tradi-
tional internal combustion engine vehicles, thus lowering
greenhouse gas emissions. Extending the life of EV batteries
through their secondary use supports the reduction of carbon
emissions, aligning with the SDG 13 (Climate action) [9].

Degradations occur throughout the lifetime of a battery.
Batteries are electrochemical devices, and they undergo
tremendous internal changes that affect their capacity. Many
degradation mechanisms result in the power and capacity fad-
ing of these batteries. Solid electrolyte interphase (SEI) is the
primary reason behind the degradation, and they ultimately
take up the lithiumwhich is critical for its operation [10], [11].
Other factors like loss of active material, graphite exfoliation,
and electrode cracking are also types of degradation. State
of health (SoH) estimation is a critical part of the secondary
life of EV batteries. Once the EV batteries are retired and the
healthy cells are taken out after inspection, the next step is
to determine the SoH of the battery [12]. Based on its SoH,
the optimum application in which the cells must be used is
decided. Proper SoH estimation is a hotspot of research at
present.
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The beginning of SoH estimation was from the Raman
microscopy used in batteries [13]. The insights from this
study paved the way for a deep understanding of the
electrolyte-electrode compositions in the battery. Model-
based SoH estimations are also widely being studied [14].
Semi-empirical models that help to understand the relation
between capacity and cycles were discussed [15], [16]. The
loss of lithium is a major factor in the loss of capacity of
the battery as it ages. Equivalent circuit models are a suitable
method to learn about cyclic and calendar ageing. Extended
Kalman filter with these models can also be used for state
of charge (SOC) estimation which is essential in the battery
management system [17]. These model-based estimations
give a fairly accurate SoH value, but the time consumption
is high. Data-driven models are another method to determine
the SoH. The remaining useful life (RUL) prediction of these
models is gaining high attention. A large dataset of battery
cycles is required for these methods and accuracy depends on
the confidence level of these datasets. Machine learning (ML)
and data analysis (DA) based models are popular in these.
ML-based Gaussian regression models and random forest
models are discussed in the research. Data analysis models
make use of prominent features from the data curves and
train the model on this basis. Incremental capacity analysis
and differential voltage analysis are some of the major SoH
estimation techniques in this DA method [18].
Many research papers do not entirely explain the SLB

topic from the fundamentals. They aim to cover wide areas
of SLB without creating the foundation for the study which
is important for budding researchers. SoH estimation given
in research papers begins with a wide range of complicated
studies which makes it difficult for the new authors to under-
stand the essential points of the study conducted.

The major contributions of this paper can be summarized
as:

1. The fundamental concepts of secondary life of batter-
ies are discussed in detail along with the study of battery
degradation. Major reasons for battery ageing are elabo-
rated extensively. Aided by detailed images, this includes the
present areas of focus such as solid electrolyte interphase and
loss of lithium inventory.

2. ICA-based SoH estimation is analyzed from the funda-
mentals starting from the extraction of the physical data to
the training of the model based on its analysis. The study on
the ICA based SoH is later validated using test data and the
effectiveness of the ICA is evaluated.

3. This paper also deals with the various applications and
challenges faced in the implementation of secondary life
batteries. Also, a comparison study of ICA method with the
other estimation techniques is conducted.

II. SECONDARY LIFE OF EV BATTERIES – OVERVIEW
The secondary life of EV batteries in simple terms means
repurposing the retired batteries that were used in the EV
applications. Lithium batteries used in EVs are said to reach
their end of application when their capacity drops to 80 %
of their original capacity. The remaining huge storage capac-
ity inside the battery gets wasted if they are discarded or

recycled. This also creates a threat to the environment as well.
It is necessary to completely utilize them before sending them
for discarding.

Table 1 depict the major difference between recycling
vs repurposing batteries for secondary life. Several factors
like complexity, feasibility, efficiency are considered for the
detailed comparison between both.

TABLE 1. Comparison between recycling and secondary life repurposing.

As the number of EVs is rising exponentially every year,
the number of retired batteries is going to skyrocket. This
leads to a tremendous opportunity for the utilization of these
batteries in other applications.

The steps that are conducted during the secondary life cycle
are:

A. DISASSEMBLE
As the individual cells need to be taken from the used battery
packs, the first step is to disassemble and obtain the cells [19].
Various cell types are present like pouch, prismatic, cylindri-
cal, etc. and these cells can be segregated based on this or
any other parameters [20], [21]. This dismantling should be
done in a controlled environment to ensure that no oxidation
of electrodes happens. The solid electrolyte interphase (SEI)
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developed on the electrode-electrolyte surface can be cleared
to a small extent and this is said to restore its performance.

B. VISUAL INSPECTION
Cracks and other physical damage can be seen on the cells
during visual inspection. These help to separate the good
physical cells from the damaged ones.

C. RUL ESTIMATION AND PREDICTION
Various tests must be done to estimate the SoH and the RUL
of cells. Once battery packs with such cells are designed,
estimation for the number of years that it would sustain should
be done. The life span of these battery packs is said to be 20-T
years, where T is the original first life. It is important to ensure
that the cells are in a good state of health before they are
used for these secondary applications. Detailed testing of the
retired battery packs is necessary to ensure proper functioning
in their secondary life.

D. SAFETY CHECKS AND GROUPING
Cells must be organized into one homogenous battery pack
based on their parameters after a safety checkup [22].
Homogenous cells can be later grouped into modules
like ordinary battery packs and taken out for secondary
applications.

After these four main steps, the batteries are taken for
assigned secondary applications. After their secondary life-
time, they can be either recycled or discarded. Figure 3 shows
the secondary life cycle flow of batteries which results in
secondary applications followed by recycling or discarding
finally after their secondary purpose.

FIGURE 3. Secondary life cycle – Flow.

III. DEVELOPMENTS IN SLB – MARKET SCENARIO
Many companies are investing in joint ventures with battery
companies to utilize the secondary life of retired batteries.
These ventures help the companies to overcome the chal-
lenges of discarding these batteries, which could be difficult
owing to environmental constraints as well. Table 2 shows

the present developments and ventures in the field of SLB
undertaken by EV companies.

TABLE 2. SLB initiatives by EV companies [23].

Apart from these joint ventures, several other develop-
ments are also taking place in this field. Japanese automaker
Mitsubishi uses their retired batteries to partially power the
Okazaki City plant which is their EV manufacturing facility.
Berlin-based company known as BELECTRIC used retired
batteries fromAudi to create a 1.9MWh based energy storage
system. Used batteries from Nissan Leaf were deployed to
power up many stadiums in Europe.

Battery packs from Rivian trucks were used to create
microgrid storage systems in Puerto Rico. These are a few
of the many projects undertaken by many such companies.
These examples prove that the market is ready for innovative
developments in the field and the race for sustainable utiliza-
tion of retired batteries has already been started.

IV. DEGRADATION STUDY OF BATTERIES
A battery’s lifetime is the time for which it can handle the
application that it is designated. The primary application of
the lithium batteries in the EV is over when its capacity
drops to 80 % of its initial value. The capacity of the battery
keeps on dropping as the number of cycles increases. This is
due to the degradation happening within the electrochemical
parts of the cell. Two types of ageing are present in batteries.
These are calendar ageing and cyclic ageing. Calendar ageing
occurs due to the storage and natural degradation occur-
ring between the electrodes and electrolyte over time [24].
These degradations become more concerning parameters like
the state of charge (SOC), and storage temperature. Cyclic
ageing occurs during the charging and discharging cycles.
This type of ageing is affected by calendar ageing as well.
As calendar ageing takes place, the charging and discharg-
ing capabilities of the battery are also affected resulting in
cyclic ageing. The C rate of the battery, and charge discharge
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FIGURE 4. Battery degradation chart.

cut-off voltages are the major factors that contribute to cyclic
ageing of the battery. Degradation of the battery is usually
expressed as capacity fade or power fade [25], [26], [27], [28].
Capacity fade occurs due to electrolyte-electrode interactions
within the battery, loss of active material, graphite destruc-
tion, lithium inventory loss etc. The factors leading to these
are discussed in detail in the next section. Figure 4 shows
the factors, degradation mechanism, modes, and their effects
leading to either capacity fade or power fade.

Loss of lithium inventory (LLI) which is characterized by
SEI is the most important factor leading to degradation of
lithium cells. Reduction of the lithium directly affects the
capacity and performance of the battery to a huge extent. It is
necessary to understand the charge and discharge mechanism
of lithium-ion cells to understand the fundamentals of the
formation of SEI.

A. BASICS OF LITHIUM CELL CHARGING / DISCHARGING
MECHANISM
A lithium-ion cell, like any other electrochemical cell, con-
sists of a positive electrode (i.e., cathode), negative electrode
(i.e., anode), electrolyte, and separator (Fig. 5). The cathode
consists of the current collector, and the cathode mate-
rial which could be Lithium ferro phosphate (LFP) / LMO
depending on the battery composition used [29]. Graphite is
generally used as the anode in most cases. Lithium salt-based
liquid composites are used as electrolytes. The electrolyte
material is chosen in such a manner that it allows only the
transfer of ions and does not allow the electrons to pass
through it. This is done to provide a second path for the
electrons to flow and thereby generate current in that required
path. The separator is present for protection purposes in
cases where the electrolyte may dry up and cause hazards.
The lithium-ion atoms can be broken down into lithium ions

and electrons through chemical reactions. The ions transport
through the electrolyte, and the electrons go through the
external circuit when they undergo charging/discharging. The
electrodes can be considered as storage sites for the Li atoms.

FIGURE 5. Li-ion cell chemistry.

B. CHARGING & DISCHARGING IN A LI-ION CELL
[30], [31]
During the charging period of a Li-ion cell, as shown in Fig. 6,
the Li atoms present in the cathode breakdown into an ion
and an electron. The electron moves in the external circuit
and reaches the anode whereas Li ions are absorbed by the
electrolyte and transported to the anode. Both the ion and
electron reach the anode and are temporarily stored in the
anode material. This state of the cell is not considered to be
very stable. Unlike lead-acid batteries, the electrode atoms
do not react with the electrolyte material to produce ions
(redox reactions). In a Li-ion cell, the electrolyte absorbs the
atoms and merely transports them to the other electrode. The
ions get stored in the lattice structure with the electron. This
process is also termed intercalation. During the discharge
(Fig. 7), the Li atoms stored in the anode are now separated
and the same process that happened during the charging is
reversed. This is called deintercalation.

C. LOSS OF LITHIUM INVENTORY (LLI) – FACTORS
1) SOLID ELECTROLYTE INTERPHASE
[32], [33], [34], [35], [36]
SEI is one of the most important phenomena in a Li-ion cell
structure. This layer is formed thinly during the first charging
of the cell. The Li ions that pass through the electrolyte during
the charging, will be combined with the electrolyte solvent.
As they reach the anode, the solvent along with a small per-
centage of lithium forms a layer on the electrode-electrolyte
interphase leading to the formation of SEI. (Fig. 8). Although
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FIGURE 6. Li-ion cell charging.

FIGURE 7. Li-ion cell discharging.

this layer was formed in an unplanned manner, it is a blessing
in disguise as it prevents electrons from meeting electrolytes
which may lead to its degradation. It is, at the same time,
porous enough to allow intercalation. In the long run, how-
ever, SEI becomes one of the primary causes that leads to
capacity and power fading in a cell. Most of the over limits of
electrical and thermal parameters like SoC, voltage, tempera-
ture, and high C rate affect this layer. High temperature, SoC,
voltage aids in SEI growth and thereby leading to the loss
of active lithium for cell functioning. Frequent use of cells
in higher C rates leads to the passing of solvent materials as
well to the anode resulting in gas pressure building, swelling
of cells, etc. Every major parameter of the cell directly or
indirectly affects the SEI. The SEI growth is seen to be
predominant in the negative electrode but can exist on the
cathode surface as well.

FIGURE 8. SEI formation in Li-ion cells on the anode-electrolyte surface.

2) LITHIUM PLATING [37], [38]
Lithium plating is the phenomenon where lithium instead
of intercalating into the anode crystal gets deposited on the
anode surface. These are usually formed due to charging
at a high current or at a low temperature. During the fast
charging, the rate of lithium deposition is greater than the
rate of intercalation that results in this degradation. Lithium
plating is one of the biggest challenges when dealing with
fast charging. Physical and chemical properties of the anode
also play a part in the level of lithium plating. The deposited
lithium is difficult to remove. This plating can further aid in
the development of secondary SEI and may result in loss of
energy density and an increase in cell resistance. Dendrite for-
mation is also a side effect of this kind of plating. An increase
in the resistance at the anode or changes in the polarization
of the electrolyte are possible indications of lithium plating
in cells.

FIGURE 9. Lithium plating causes degradation.

Lithium plating can be homogenous or heterogeneous.
When plating occurs at a larger area of the anode, it is
termed homogenous lithium plating. Heterogenous are
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localized lithium plating that usually occurs at edges, corners
or near separators.

3) ELECTROLYTE DECOMPOSITION
The decomposition of electrolytes during battery cell oper-
ation can result in highly complex mixtures. Fast charging
initiates this degradation to produce different compounds.
The molecule of the electrolyte decomposes into the surface
of the electrode contributing to the further formation of solid
electrolyte interphases. The SEI can later make the electrode
surface passive and further results in more electrolytes being
decomposed on the surface resulting in the significant degra-
dation of the battery performance.

V. SOH ESTIMATION
Batteries undergo many degradations throughout their oper-
ating lifetime. The loss of lithium inventory and the plating
of the lithium are the most prominent reasons that affect
battery degradation. These issues arise more when the cells
deviate from their operating parameters of voltage, current,
temperature, etc.

The state of health of a battery can be expressed as the ratio
of the present battery capacity (Qp) to the initial capacity of
the battery (Qi) as shown in equation (1).

SOH = (Qp/Qi) × 100 (1)

The state of the health of the battery is, therefore, an indicator
of the available capacity of the battery [39]. Accurate deter-
mination of the SoH is therefore a very crucial part of the
BMS as well as in the application of the SLBs. Proper estima-
tion of the capacity of the battery will help in prolonging the
life of the battery as well as accurately predict the remaining
useful life (RUL) of the battery in their secondary life [40].
SoH prediction and estimation has therefore become a key
area of research in EVs and battery systems. The most widely
used simple yet time consuming method for estimating the
capacity is the Coulomb Counting Method (CCM). The bat-
tery is discharged completely and then charged again and later
integrated to find the capacity as given in equation (2).

Q = 1/3600
∫
idt Ah (2)

where Q is the capacity in Ah and i is the current. There
are many types of SoH estimation techniques broadly clas-
sified as model-based estimation and estimation using data
analysis and prediction. Model based SoH estimation is car-
ried out by creating electrochemical and equivalent models
of the cell/battery circuit and analyzing it by subjecting to
changes in parameters [41], [42]. Data driven methods focus
on collecting the data carried out from cycling testing and
later using these data to understand a pattern that can be
later used to train models to predict SoH [43]. Data driven
methods are widely being researched due to the emergence
of high-quality data analysis and machine learning features.
A brief comparison between the model-based estimation and
data driven estimation is given in Table 3.

TABLE 3. Advantages and disadvantages of estimation techniques.

The next factor that is considered during the SoH estima-
tion is whether the current that is analyzed is under constant
current or dynamic varying condition. Many studies focus
on the constant current process during the degradation phase
of charging because generally CC-CV charging is carried
out in lithium-ion batteries. Model based SoH estimation
techniques follow the constant current method due to its
simplicity. At the same time, this method gives optimal
results about degradation. Gaussian regression models are
showing great potential to estimate the SoH under dynamic
discharge conditions. Three fused health indicators i.e., dis-
charge voltage integration, discharge time, net discharge
energy are obtained from the experiments and given as inputs
to Gaussian process regression model in [48]. Such dynamic
operating conditions will help to create a robust and accurate
model for battery capacity estimation. Six physical features
that affect the degradation of battery were obtained in [49]
where the cells were subjected to constant current-voltage
tests. The physics based Gaussian model is then validated
against testing cells operating under mixed conditions. The
results proved to be effective even when the training data con-
sidered were constant current based. Cells were charged with
CC-CV profile but subjected to dynamic stress/discharge
tests to validate in [50]. Voltage curves are converted to
trajectories with NN modelling with respect to their constant
current profiles and these served as inputs to the training
model. Error was limited to 2 % and the method proved
to be working fine under dynamic operating conditions as
well. Different current rates of 1C, 1.5C at different depths
of discharge (DOD) were used for training data set in [51].
This method of SoH estimation using discharge curves using
empirical linear model provided results with error percentage
lying below 3 %.
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Based on the numerous studies on the training set data,
it can be concluded that the dataset which is taken from the
experimental setups can be of cells which are subjected to
constant current conditions. They are still validated or proven
to give accurate results with error percentage below 4 % in
many research studies. For the ICA in this paper as well,
the cells are subjected to CC-CV and the data set during the
constant current part is taken for study. This is done for ease
of understanding the estimation technique in detail and for
implementation.

A. SOH ESTIMATION USING INCREMENTAL CAPACITY
ANALYSIS (ICA) [52], [53], [54], [55], [56], [57]
The ICA was developed to learn about the electrochemical
interactions happening within a cell. These IC curves give
valuable information about the reactions within these cells
without requiring the necessity to open them. Both prog-
nosis as well as diagnostic analysis is possible using the
ICA curves. The ICA analysis comes under the differential
analysis method of SoH estimation which can be considered
as a subset of the data driven method. The ICA curves are
obtained by differentiating the change in capacity with the
change in voltage as given in equation (3).

ICA = dQ/dV[AhV−1] (3)

where dQ is the change in capacity and dV is the change
in voltage. The voltage and capacity determined through
equation [2] are taken as the inputs to derive the ICA curve.
These curves are measured and the noise within the derived
data is eliminated and then the pattern is studied. Few indi-
cators known as health indicators (HI) have been identified.
These are susceptible to changes in the ageing of the battery.
These HIs are identified and extracted. These are later bene-
ficial to train the models and predict the value of SoH for a
particular set of HIs.

The major steps in the study of ICA based SoH Estimation
are:

1) STEP 1: EXTRACTION OF DATA
Extensive data of voltage, capacity, cycles of different cells
are required for doing the analysis. The higher the data, the
better will be the accuracy. The voltage and capacity for
different ageing of the battery are taken as the inputs to the
next step.

2) STEP 2: ANALYSIS OF EXTRACTED DATA
The V versus Q data is obtained and then the required parts of
the graphs are interpolated for higher accuracy. The capacity
data is then differentiated concerning the change in V using
mathematical tools. The derived dQ/dV curves are bound
to have noise which may affect the proper identification of
health indicators. Filtering is carried out to eliminate the
noise and obtain a smoother signal. The HIs of the signal
are identified. These are usually the peaks and the location
of these peaks in the curves. The data of these HIs are then
given as inputs to the next step.

3) STEP 3: TRAINING AND PREDICTION
The HIs are taken as a set and given to a model to find
the pattern/relation between them and the output variables
which are SoH or cycles. Multiple regression analysis, recur-
rent neural network (RNN) with long short-term memory
(LSTM), deep neural network can be used to train these
models with the help of finding a relation. These models are
then used to predict the output for the next set of possible
HIs. Extensive computation and data extraction will help to
increase the precision of the model tremendously. A detailed
methodology about SoH estimation using ICA is depicted in
Fig. 10. This figure includes all the steps mentioned along
with their description.

The accuracy of the model can be determined by running
test data and comparing it with actual data. The battery degra-
dation test data can be obtained online by Oxford, CATL,
NASA and these data can be used for studying ICA.

FIGURE 10. ICA methodology.

B. EXPERIMENTAL SETUP
The experiment to estimate the SoH using the ICA is carried
out in this paper at the cell level. The data for experimental
cell is taken from the Oxford battery degradation dataset
which is an open source dataset [Birkl, C. (2017). Oxford
Battery Degradation Dataset 1. University of Oxford] The
cycle ageing of the battery for various C rates is carried out
and given as a dataset having voltage, capacity as the data
variables. The experimental steps are carried out as per the
methodological steps mentioned above.
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1) STEP 1: DATA EXTRACTION
The Oxford Dataset 1 contains an ageing dataset from eight
small 740 mAh lithium-ion pouch cells for every 100 cycles.
The cells were all tested in a thermal chamber at 40◦ C. The
cells were subjected to a constant-current constant-voltage
charging profile, followed by an urban Artemis drive cycle
discharging profile. One cell is taken for the analysis and the
various cycles along with its SoH are plotted as shown in
Fig. 11. The SoH versus voltage graph obtained from the data
set for various cycles is shown in Fig. 12. The capacity of the
cell is seen to drop as the cycles/ageing is increased.

FIGURE 11. SoH versus cycles graph of the cell.

FIGURE 12. SoH versus terminal voltage graph of the cell.

2) STEP 2: ANALYSIS OF THE DATA EXTRACTED.
The capacity versus voltage dataset is first interpolated. Inter-
polation helps to increase the dataset between the points
and helps to increase the accuracy of the set. Interpolation
between two points (X1, Y1) and (X2, Y2) in a graph is given
in equation 4.

Y − Y1 = (Y2 − Y1)(X − X1)/(X2 − X1) (4)

After interpolation, differentiation of the capacity concerning
the voltage is carried out and plotted as seen in Fig. 13. This
is the ICA curve that is fundamental to the study.

The presence of noise in this signal is a negative trait
that must be removed. Various filtering techniques can be
deployed to filter out the noise and get a smooth waveform.
Five-point FFT based filtering is carried out in this project to
filter the noise. The DFT formula is given in equation 5.

FIGURE 13. Projected dQ/dV versus voltage graph (ICA) of the cell.

X (k) is the discretized frequency domain signal,W is the
twiddle factor, N is the number of computations, k varies
from 0 to N-1. The signal is decomposed into lesser short
transforms and then recombination is done.

X (k) =

∑
x(n)W nk

N (5)

Figure 14 shows the comparison between ICA curves with
and without FFT filtering. FFT filtering provides a smooth
signal for further analysis.

FIGURE 14. ICA curve containing noise.

Once the smooth ICA curve/data is obtained as shown in
Fig. 15, the same process is carried out for other cycles/ageing
of the cell.

Various cycles of the cell are taken and the ICA curves after
the three steps of interpolation, differentiation, and filtering;
are obtained. Figure 16 shows the respective curves as the
ageing of the cell increases.

Two dominant peaks can be identified in the ICA curves
where the second peak is superior. A zoomed version of the
peak is shown in Fig. 17. As the cycles increase, the value of
the peak is seen to be decreasing. The relationship between
the peaks and the ageing of the cell is therefore seen to be
inversely proportional and can be finalized as a main health
indicator of the cell.
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FIGURE 15. ICA curve after FFT filtering.

FIGURE 16. ICA curves’ variation with the ageing of the cell.

FIGURE 17. Peak variation with increasing cycles in the ICA curve.

3) DETERMINING HEALTH INDICATORS FROM THE ICA
CURVE:
The curves are analyzed to determine the distinctive features
that keep changing when the ageing of the cell takes place.
Four health indicators were the most prominent ones in the
study. These include the Y-axis values of the two peaks and
the distance of these peaks from a starting position. All these
four features were found to be changing when the ageing of
the cell takes place. The Y axis health indicators, which are
the peak of the wave, were found to be reducing concerning
ageing whereas the X axis indicators which are the location of

these peaks seem to be shifting to the right with the increased
ageing. Figure 18 shows the four HIs numbered as HI 1-4
which are given as the inputs to the training model of the next
step.

FIGURE 18. Projected ICA curves with health indicators detection.

4) STEP 3: TRAINING AND PREDICTION OF SOH
The relationship between the four health indicators and the
SoH is made into a scatter plot and the trendline is plotted as
shown in Fig. 19.
These data are taken for multiple regression analysis

(MRA) to determine a relation between these four indepen-
dent variables. The four independent variables in our case
are the health indicators (HI1, HI2, HI3 and HI4). MRA is
a statistical method which can be utilized effectively when
the data set has a linear relation as seen in the Fig 19. The
output variable will help to get a weighted relation between
all the independent variables.

The model equation for the MRA is

Y = A0 + B1X1 + B2X2 + B3X3 + B4X4 (6)

where Y is the weighted output, A0is the intercept, B1, B2,
B3and B4are the coefficients associated with the independent
variables. This method of regression is chosen due to its
simplicity in the presence of linear data.

The goal is to estimate the coefficients that minimize the
sum of squared differences between observed and predicted
values. Hypothesis testing helps to determine the significance
of each variable. Measures like R-squared assess the overall
model fit. Interpretation of coefficients involves understand-
ing the change in the dependent variable for a one-unit change
in the corresponding independent variable, with other vari-
ables held constant. Multiple regression is a valuable tool for
modeling complex relationships in diverse fields.

In this study, the health indicators are the X values, and
the predicted SoH is the output value. MRA is considered for
the analysis for easy understanding of the model. Ten sets
of cycles were taken as the training inputs for the MRA, and
three sets were taken as the testing for the model. After MRA,
table 4 shows us the values of the coefficients obtained from
it from an R2 value of 0.9.

63744 VOLUME 12, 2024



J. John et al.: Secondary Life of Electric Vehicle Batteries: Degradation, State of Health Estimation

FIGURE 19. SoH versus selected HI plot.

These coefficients help in the prediction of the testing sets.
The idea is to test new cells and find their health indicator

TABLE 4. Values of coefficients from MRA.

location. These values are employed in the equation (6) along
with the coefficients; to obtain an average estimated SoH
based on the linear regression model equation. It is assumed
that the HI positions will shift but will stay linear throughout
the life cycle.

Three sets of data are taken for testing and the results are
shown in table 5.
From the experimental analysis, ICA is found to be a highly

effective method for SoH estimation. The error percentage
obtained for the testing data was less than 4 % and the
accuracy can be improved further if a greater number of
datasets can be used for training. Only 10 sets of training
data were taken for easy understanding and experimentally
analyzing the basics of the ICA-based SoH estimation. The
experimental results prove that the method is highly effective.
It gives significantly accurate results even when the study
has a smaller number of training sets. The study focuses on
building a strong fundamental on data-driven SoH estimation
methods like ICA that can be carried out further in the future.
Stepwise analysis helps in the clear understanding of creating
a dQ/dV curve. ICA can be further developed formodule level
testing which will be greatly beneficial for applications like
secondary life of batteries.

The results obtained in this case study are for a cell level
analysis. Those can be extended to module level through
extrapolation techniques.

VI. COMPARISON BETWEEN VARIOUS SOH ESTIMATION
METHODS
Many estimation methods are present widely in research
with emphasis given to model-based methods, data driven,
machine learning, hybrid models etc. Each method has its
own pros and cons. Table 6 highlights an extensive compari-
son between various established estimation techniques. Each
method is provided with its advantages and disadvantages as
well as their recent developments.

VII. STANDARDS ASSOCIATED WITH SLB
Policies or standards associated with repurposing of used
EV batteries are not many. Few of the standards at present
include:

A. UL1974
This standard, developed by Underwriters Laboratories (UL),
primarily focuses on safety and performance evaluations for
second-life batteries. It outlines certification guidelines and
procedures to assess the safety and functionality of repur-
posed batteries. UL 1974 ensures that these batteries meet
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TABLE 5. Results of the model using test data.

specific safety benchmarks, like fresh battery systems, before
they are repurposed or reintegrated into other applications.

B. IEC 62933-5-3
Part of the International Electrotechnical Commission (IEC)
standards, this document specifically addresses safety con-
cerns related to SLB systems. However, it requires adaptation
to encompass systems using components sourced from used
batteries. It aims to ensure that safety standards for these
repurposed systems are aligned with those for new systems.

C. ISO12405
This International Organization for Standardization (ISO)
standard provides testing procedures and requirements for
lithium-ion batteries used in electric vehicles. While it does
not focus solely on second-life applications, it sets bench-
marks and testing protocols that indirectly influence the
evaluation and potential reuse of batteries after their primary
EV use.

D. EUROPEAN UNION BATTERY DIRECTIVE
This directive within the European Union aims to regulate
the handling, collection, recycling, and disposal of batter-
ies, including EV batteries. It emphasizes the significance
of sustainable resource use and environmental protection in
managing batteries throughout their lifecycle, including their
secondary use. It says that 50 % of an EV LIB weight shall
be recycled.

VIII. COST ASSESSENT OF SLB
Secondary electric vehicle (EV) batteries, commonly repur-
posed for stationary energy storage applications after their
initial use in electric vehicles, present an intriguing cost
assessment challenge. One key factor to consider is the SoH
of these secondary batteries, which reflects their remaining
useful capacity relative to their original state. The cost of
secondary EV batteries can be mathematically expressed as:

Csecondary = Cinitial(1 − D)R (7)

where Csecondary represents the cost of the secondary bat-
tery, Cinitialis the original cost of the new battery, D is the
degradation factor (a decimal between 0 and 1, representing
the degree of degradation) and R is the remaining capacity
factor (also a decimal between 0 and 1). D accounts for the
wear and tear experienced by the battery during its initial use,
while R reflects the portion of the original capacity that is
still available for use. The cost assessment thus incorporates

both the initial investment and the impact of degradation on
the secondary battery’s performance, providing a quantitative
measure for decision-making in repurposing EV batteries for
stationary applications.

The biggest benefit of the retired batteries over the new
units is the price of procurement. The LFP battery that is
decommissioned costs around $0.5/kWh whereas the new
one costs about $1.3/kWh [78], [79]. Retired batteries are
estimated to be only half of new battery price and almost
close to the lead acid battery packs. As they are competing
with the lead acid packs in terms of price, the potential
for such batteries is huge since lead acid are widely used
even at present in many applications. Their advantage of less
price even when they are not environmentally friendly are
overtaken by the retired lithium batteries that are both low
in price as well as environment friendly.

The price for these retired batteries is determined consid-
ering the refurbishment expenses, cost incurred due to power
electronics devices and operational expenses. Refurbishment
includes sorting, dissembling, equipment costs and labor
costs. According to [80], for energy storage applications, the
price of SLB was $72/kWh and the fresh battery pack costs
about $232/kWh. In [81], Mathew et al., suggested that for a
PV-SLBESS system, the retailers sell the SLBs for less than
60% of price of the fresh packs. Study in [82] showed that the
revenue generated from the secondary batteries compensates
for about 19 % of the fresh battery cost. Cost considerations
cannot be precise as they may vary from application and
could be variable depending on the storage, transportation,
and uncertainties in replacements.

Economic models play a crucial role in assessing the
profitability of SLBs across different applications. These
models, as evident in existing studies, encompass various
metrics such as net present value (NPV), levelized cost of
electricity (LCOE), levelized cost of storage (LCOS), and
the cost–benefit model [83], [84]. The NPV model evaluates
cash inflows and outflows throughout the project, indicat-
ing profitability when yielding a positive result. However,
conflicting conclusions arise based on specific analyses,
as seen in studies comparing distributed solar PV systems in
China and the European electricity market. The LCOEmodel
facilitates a direct comparison between SLBs and fresh-life
batteries (FLBs), demonstrating potential cost reductions
in specific applications, such as fast charging. Addition-
ally, the Cost–Benefit model proves beneficial in analyzing
expenditures and gains in ESS for numerous services, includ-
ing energy arbitrage and frequency regulation [85], [86],
[87]. Notably, studies reveal that grid-connected applications
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TABLE 6. SoH estimation methods.

tend to be more profitable than off-grid applications, par-
ticularly in peak shaving, area and frequency regulation
and renewable firming. The efficacy of SLBs in reducing
the cost of energy (COE) is emphasized in several stud-
ies considering local tariffs in different countries. These

economic assessments underscore SLBs as viable alterna-
tives to FLBs, highlighting potential reductions in capital
investment and COE across diverse applications, including
supply-side management. Investment costs can be signifi-
cantly reduced, up to 60 %, when integrating SLBs with
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PV panels, 70 % when used as energy backup sources, and
73.62 % in grid-connected renewable energy systems [81],
[88], [89].

IX. APPLICATIONS FOR SLB
A. RENEWABLE ENERGY STORAGE SYSTEMS [90], [91]
Penetration of sustainable sources into the electricity grid is
happening at a fast pace and energy storage systems are a vital
part of any renewable source whether it is solar, wind, etc.
The intermittent nature of such sources is a major problem
and even though ESS is a solution, costs associated with such
storage systems are remarkably high.

EV batteries in their second life can be repurposed for
stationary energy storage. These batteries can store surplus
renewable energy generated during periods of low demand
and supply it during peak demand, aiding to balance the
grid and encourage the use of renewable energy sources.
This contributes to SDG 7 (Affordable and Clean Energy)
[9]. To reduce the cost of associated ESS and thereby the
overall system, SLBs can be utilized with these packages.
SLBs can thus play a good role in the upcoming integration
of renewables into the grid.

B. FREQUENCY REGULATION APPLICATIONS [92]
Mismatch between the load demand and the generation
results in variation of frequency. To ensure the stability of
the power system, the active and reactive power must be con-
trolled by area regulation. ESS can be used for this purpose.

However, the usage of primary Li-ion battery is not eco-
nomical. SLB can be used for such ancillary area frequency
regulations.

C. LOAD LEVELLING APPLICATIONS [93], [94]
Storing electricity during off-peak time and supplying it dur-
ing the peak period is a helpful way in reducing electricity
bills, reducing grid stress, etc. SLB based ESS can be used for
such arbitrage applications. Traditional battery ESS has a pro-
hibitive cost and makes the application less economical. SLB
having 80 % capacity remaining can be utilized effectively at
a lower cost for peak shaving and valley shifting purposes.

D. ASSET MANAGEMENT [88]
The generation side requires maintenance from time to time
but due to the high demand from the load side, backup sources
like diesel generators need to run during the maintenance
period. SLB based energy storage systems; when used in
sufficient numbers; will have enough capacity to coordinate
along with the diesel generator. This will also help to reduce
the stress and fuel consumption of the diesel generators.

E. OFF GRID APPLICATIONS
Batteries are the most vital component needed in isolated
microgrids. These types of grids run in renewable energy
sources or other sources like fuel cells, diesel generators,
etc. Power quality and its reliability with minimal cost can
be achieved by integrating SLBs into such off-grid energy
storage applications.

F. FAST CHARGING STATIONS
Using Li ion during their primary life in the EV charging
station is not very economical due to their high price. How-
ever, SLB can be utilized in the charging stations for the fast
charging off board application with or without coordination
with the actual AC-DC converter supply inside the charger.

Table 7 gives insights regarding some of the projects under-
took in various countries regarding SLB and a brief overview
about their approach to the work.

X. MARKET OPPORTUNITIES OF SLB
Based on the various SLB capacities available, a plethora
of opportunities for their utilization is present. Brief details
about their applications were given in section IX. Technical
details regarding their purpose in those applications are given
here.

Many studies present several practical applications of SLB
in various fields like load leveling, renewable firming, backup
systems, etc. [99] concluded that the best possible applica-
tion for SLB at present is in the renewable firming field in
the grid application and the automated guided vehicles in
the mobility application. Table 8 depicts details about the
capacity required, C-rating, and their potential of usage in the
application with the ∗ representing the effectiveness.

XI. CHALLENGES TO SLB
Various challenges are faced in incorporating lithium-ion
batteries for secondary life applications. Although the cost
of secondary life batteries would be lower than the pri-
mary ones, the economical standard for pricing SLBs is not
yet developed. The price could include dismantling, testing,
refurbishing, etc. in the overall cost of the SLB based ESS.
Globally, the recycling and reuse of Li-ion batteries are in the
developing stage. In India, many start-ups and companies are
focusing on the recycling of Li-ion batteries to recover the
raw materials, at present. Several challenges related to SLB
are given below [100], [101], [102], [103], [104].

A. BATTERY DISMANTLING ISSUES
Battery disassembly is an important stage to accurately deter-
mine SoH. It usually involves disassembling to module level
since at cell level, the process is difficult and complex. The
main challenges behind this are the labor-intensive manual
processes which inflates the cost of labor though these rates
vary based on the local labor rates. The difficulty of the
disassembly process largely depends on the battery’s struc-
ture, interconnections, and factors such as the number of
bolts, fasteners, and accessibility, all of which contribute to
determining the overall expenses of disassembly and repur-
posing. When it comes to dissembling into individual cells,
it becomes a tiresome task and can pose safety issues. This
is owing to the thermal runaway; which could be hazardous.
Lack of skilled workers and automation in the field of battery
dismantling also is a major challenge and makes this initial
stage difficult. As more electric vehicles hit the roads and
their onboard batteries have a limited lifespan, there is an
increasing need for disassembling and screening second-life
batteries. This situation offers a chance to create a scalable
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TABLE 7. Applications of SLB in various fields.

TABLE 8. Application specific considerations of SLB [95], [96], [97], [99].

automated machine that combines robotic disassembly with
automatic screening processes.

B. EV BATTERY PACK VARIANT DIFFICULTIES
Battery modules differ significantly between vehicle lithium-
ion batteries, including variations in form factor and chem-
istry. This diversity might not be right for mixing modules
in a second-life application due to increased variability and
potential mismatches. Present day EVs have high capacity
and power to handle range anxiety. But many EVs use differ-
ent variants of batteries which makes it difficult to segregate
and reassemble faster. Diverse battery compositions require

different handling and treatment methods, increasing the
complexity and cost of establishing effective secondary life
strategies. Moreover, different cells will have different SoH
and capacities and must be made into a homogeneous pack.
Otherwise, the SLB pack will not have its expected capacity
and performance.

C. TECHNOLOGICAL CHALLENGES IN BATTERY
REPURPOSING
Accurately determining when EV batteries retire is crucial for
planning repurposing and recycling. To seamlessly integrate
batteries from different manufacturers into energy storage
systems, research must focus on understanding their degra-
dation rates within limited supply windows. Flexible control
systems enabling communication with diverse second-life
batteries and their management systems are vital for optimiz-
ing these systems. Various methods like Kalman filters, fuzzy
logic, parity relations, etc. are available for SoH measure-
ment. There is a trade-off between various methods. Proper
SoH assessment is necessary for the proper utilization of SLB
in the market. The BMS designed for an electric vehicle’s
Li-ion battery might not suit its second-life application. Each
new use requires a specifically engineered BMS to effectively
monitor and regulate the battery modules for that particular
purpose.

D. LACK OF POLICIES AND STANDARDS
Defining clear standards for regrouping batteries, especially
regarding cell-to-cell variation, remains unclear in repur-
posing efforts. Understanding how these variations impact
overall pack performance is crucial. Establishing a stan-
dardized quantitative approach considering self-balancing
mechanisms among cells is essential. While certain cool-
ing structures can reduce cell-to-cell variation, there is a
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cost trade-off. Stabilized cell-to-cell variation could serve
as an upper limit for second-life battery parameters. New
regulations and testing standards, like UL 1974, address
safety and performance evaluation for used batteries. UL
1974 applies the same certification standards for second-life
battery systems as it does for those built with fresh compo-
nents. However, standards such as IEC 62933-5-3, focused
on the safety of second-life battery systems, need adapta-
tion to cover systems using components from used batteries.
Yet, uncertainties remain regarding how testing standards
can accommodate the variable quality of used batteries and
accurately represent their performance in these systems.

E. EVOLVING ENERGY SOURCE MARKET
Various research works are being carried out to develop
new energy sources for storage applications. Superconduct-
ing magnetic energy storage (SMES), hydrogen fuel cells,
supercapacitors are being developed and there are many
uncertainties whether Li-ion will be present in the long run.
The present scenario, however, predicts a massive upsurge in
the usage of Li-ion batteries by 2030. Solid state batteries are
also an area of research and are claiming to be safer than
lithium batteries. The energy market is constantly diversi-
fying to create the next best energy source. But extensive
research must be carried out in any field before being brought
into themarket. Lithium-ion batteries have already taken their
place in the industry and are expected to stay for more than a
decade at least.

F. SAFETY CONCERNS WITH SLB
Electric vehicle batteries vary in chemistry and configuration,
requiring a deep understanding of capacity fade, impedance
increase, and potential ageing issues like dendrite formation.
Mitigating this degradation caused by ageing mechanisms
to optimize the second-life potential of EV batteries is cru-
cial. Operating second-life batteries safely without extensive
historical data poses challenges, underscoring the impor-
tance of collaborating with original equipment manufacturers
(OEMs). Such collaboration facilitates insights into bat-
tery history and safety guidelines, aiding in ensuring safe
operations.

G. LOGISTICS CHALLENGES
Efficient reverse logistics for used batteries is a critical chal-
lenge in the battery supply chain. Safe transportation of
end-of-first-life batteries requires specialized technologies.
The availability of retired EV batteries drives the develop-
ment of stationary energy storage systems. Forecasting the
supply of used batteries is vital for a sustainable second-life
battery ecosystem, ensuring stability for stakeholders amidst
market price fluctuations.

XII. CONCLUSION
The EV battery’s secondary life has become a major area
of research and is expected to skyrocket as more electric
vehicles enter the market. Discarding these batteries should
only be a last resort and utilizing them in secondary applica-
tions ensures zero wastage of their energy capacity. Utilizing

these discarded high potential batteries will also reduce their
carbon footprint. The industry’s success on secondary battery
life hinges on proper testing, estimation, validation, pric-
ing, and global efforts toward reuse and recycling. Studies
show that repurposing batteries for secondary applications
can reduce the overall cost by around 20-25%. Standards,
expertise in thermal management, battery compositions, and
predictive SoH methods are critical to this achievement.
Accurate SoH prediction methods are pivotal for both pri-
mary and secondary battery applications. This paper presents
a comprehensive data-driven SoH estimation approach in
detail along with the degradation mechanism, challenges, and
applications which can pave for any new researcher aiming
to start their journey in secondary EV battery life as well
as SoH estimation. The ICA technique accompanied with
graphical understanding helps to get a clear idea about the
importance of thismethod in the SoH estimation. Comparison
study of the ICA with other estimation methods also conveys
the reason why such data derivational methods are becoming
the need of the hour.
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