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ABSTRACT As machine and deep learning spread across diverse aspects of our society, the concerns about
the privacy of the data are getting stronger, particularly in scenarios where sensitive information could be
exposed as a result of various privacy attacks. This paper introduces a novel framework, DP Patch, aimed at
addressing these privacy concerns in image data by considering sensitive objects that could be located within
the image rather than considering the entire image as sensitive. DP Patch involves amulti-step pipeline, which
consists of differential privacy image denoising and ROI-based sensitive object localization, followed by
incorporating DP noise patches to obscure sensitive content. This process yields privacy-preserving images
with enhanced utility compared to DP images. Furthermore, a custom model is presented that harnesses
privacy-preserving and differentially private images to enrich feature representation and compensate for
potential information loss, explicitly excluding the noisy patch from the training process. Experimental
evaluations are conducted to assess the quality of the generated privacy-preserving images and to compare the
performance of the custom model against state-of-the-art counterparts. Additionally, the proposed method
undergoes evaluation under model inversion attacks, providing practical insights into its effectiveness.

INDEX TERMS Differential privacy, PPDL, privacy-preservation.

I. INTRODUCTION
The data has become the fuel for ubiquitous development as
machine and deep learning methods are deployed in every
aspect of our lives. However, such an increase in data needs
leads to continuously increasing concerns about data privacy.
For instance, Clearview AI faced fines and legal challenges
in the U.K., Italy, France, and several other countries for
its controversial practice of scraping images for its facial
recognition database without user consent [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was Peter Langendoerfer .

Adversaries can compromise data privacy in various ways,
such as during transmission over the unsecured network or
even reconstructed from the deep learning model trained
on that data. Specifically, various privacy attacks such as
model inversion [2] were introduced as an effective way to
reconstruct the images from train data with high confidence
due to the memorization characteristics of the deep learning
models.

Various anonymization, obfuscation, and encoding meth-
ods have been actively studied to protect the privacy of image
data. For instance, A. Huang et al. introduced InstaHide [3],
which encodes train images by mixing multiple images and
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FIGURE 1. High-level overview of the difference between (a) existing and
(b) proposed methods.

applying a pixel-wise mask. In comparison, T.Li and M.Choi
proposed the DeepBlur [4] method, primarily focusing on
facial obfuscation. Another way to protect the privacy of
the images is to generate a synthetic dataset. There are
various generative models such as variational autoencoders
(VAE) [5], generative adversarial networks (GAN) [6], and
diffusion models [7] adopted to the privacy-preservation
tasks [8], [9].
Differential privacy (DP) is also recognized as a powerful

concept to guarantee data privacy by adding random noise.
There are various strategies for generating differentially
private images. Adding random noise directly to the image
is one of the most substantial ways to guarantee its privacy
by making it utterly unrecognizable to the human eye. The
incorporation of DP into the training process of generative
models has been actively studied by researchers, resulting
in variations of differentially private GANs [10], [11], [12].
Also, B.Liu et al. proposed a novel way of generating differ-
entially private images by perturbating the feature space [13],
while L. Fan proposedmethods of differentially private image
pixelization [14] and differentially private image singular
value decomposition to obfuscate the images [15].

However, existing privacy-preserving methods have sev-
eral limitations that hinder widespread usage of these
methods. The first limitation is the privacy and utility trade-
off problem, which can be described as balancing the need to
protect individuals’ privacy with maintaining the usefulness
of data for analysis and deep learning applications. One
typical result of such a problem is that to protect the image’s
privacy from both human and machine adversaries, the image
is made visually unrecognizable both to the human eyes
and to the machine. Therefore, the accuracy of computer
vision tasks performed on such anonymized and manipulated
images is low. For instance, in the case of synthetic data,
the quality and realism of generated image samples play a
crucial role in its further usage. Meanwhile, in the case of
differentially private images, the addition of random noise
effects can distort critical features needed for computer
vision tasks. Even though some of the methods, such as
InstaHide [3], argue that generated images can both protect

privacy and preserve high performance in image recognition
tasks, N.Carlini et al. argue that encoding the train data only
and feeding into the regular non-private learning algorithm is
not enough to protect the data privacy [16], practically show-
ing the successful image reconstruction attack on InstaHide.

Another limitation of existing methods is the assumption
that the entire image is private. Consequently, privacy-
preservation techniques are often applied to all pixels within
the image, rendering it visually unrecognizable. However, it is
essential to note that sensitive informationmay be confined to
a small portion of the image ormight not be present. Applying
privacy-preservation techniques indiscriminately to pixels
lacking sensitive content can unnecessarily compromise the
image’s overall usability. Our focus here is not on specific
methods like facial de-identification [17], [18], which targets
face recognition systems, but on general-purpose techniques.

To address these limitations, the paper proposes DP Patch,
a novel framework that (1) generates privacy-preserving (PP)
images from a specified region of interest (ROI) within
differentially private images and (2) introduces a custom deep
learning model designed explicitly for privacy-preserving
images. In this method, differentially private images, which
are unrecognizable visually and by machines, are used
for secure transmission over networks. Subsequently, the
privacy-preserving image is generated from the differentially
private image, focusing on the ROI of sensitive objects within
the image. Furthermore, a tailored model architecture is
proposed to enhance the performance of computer vision
tasks on these privacy-preserving images. Fig. 1 shows the
high-level difference between the existing and proposed
methods.

The main contribution of this paper can be summarized as
follows:
• A privacy-preserving (PP) image generation technique
is developed, involving creating PP images using noisy
DP images and associated ROI of the sensitive objects.
This method incorporates a pipeline for DP image
denoising and sensitive object identification, followed
by the addition of DP noise patches to obscure sensitive
objects, resulting in PP images that retain higher utility
compared to DP images. The generated PP images also
include a supplementary binary mask indicating the
application of DP noise patches.

• A Deep Learning (DL) model tailored for privacy-
preserving image classification is presented in this
paper. This model considers PP and DP images as
inputs to enhance feature representation, compensat-
ing for potential loss during denoising. Incorporating
channel-wise attention blocks allows for accentuating
discriminative channels and suppressing less relevant
ones during feature extraction. Masked feature maps
are generated by utilizing a binary mask to identify the
location of the noise patch. A weighted concatenation,
assigning lower weight to DP images, serves as a feature
fusion technique before feeding into the classification
layers.
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• Additionally, the DP Patch framework is presented,
which combines privacy-preserving image generation
modules and customized deep learning modules to
guarantee higher utility in image classification and can
be applied across various scenarios, including federated
and distributed learning.

The rest of the paper is organized as follows. In section II,
the preliminary information is introduced, and a brief
overview of existing privacy-preserving image generation
methods and their comparison is provided. In section III, the
threat model needed to understand the motivation behind the
proposed framework is presented. Next, an overall workflow
and detailed description of the methodology of the proposed
method are provided in section IV, and the privacy expecta-
tions are discussed in section V and experimentally evaluated
in section VI. Finally, section VII concludes the paper.

II. PRELIMINARIES AND RELATED WORK
This section briefly describes the concept of DP, existing
methods to generate privacy-preserving images, and an
overview of the noise-robust deep learning models, including
the image denoising techniques.

A. DIFFERENTIAL PRIVACY
DP is recognized as the gold standard for privacy preserva-
tion. It bounds themaximum information leakage by ensuring
that the probability of any output does not increase by more
than a factor of eϵ due to the presence or absence of a
single individual’s data, with an additional small allowance
of δ for the probability of this guarantee being exceeded.
This protection is achieved by injecting carefully calibrated
random noise into the data.

Previous studies primarily focused on adding differen-
tially private random perturbations to statistical databases,
as described in [28]. More recent approaches, however,
extend the application of DP to the model’s hyperparameters
during the training process. This is exemplified in meth-
ods like Differential Privacy Stochastic Gradient Descent
(DPSGD) [29], which aim to protect the deep learning model
itself from privacy attacks, such as [2] and [30].

Nevertheless, even when a model is trained with differ-
entially private hyperparameters, there remains a possibility
that sensitive information can be recovered from the training
set as a result of such privacy attacks. Therefore, one of
the more effective strategies is to apply differentially private
random noise directly to the data, thereby safeguarding the
sensitive information from potential recovery. This approach,
however, presents challenges due to the privacy-utility trade-
off problem, where highly private data may become less
useful for subsequent analysis.

B. PRIVACY-PRESERVING IMAGE GENERATION METHODS
1) DP-BASED METHODS
L.Fan proposed generating differentially private images by
combining the random perturbations with previously known
methods such as image pixelization [14] and singular value

decomposition [15]. DP-Image [13] and IdentityDP [25]
are the frameworks to generate differentially private images
mainly targeting the face obfuscation task by introducing
random perturbations to the feature space.

In the case of generative models such as GANs [10],
[11] and diffusion models [31], the DP is reached by
injecting noise during the training process, usually by
incorporating the DPSGD algorithm to ensure differentially
private image generation. [19] utilized the PATE framework
among multiple discriminators to ensure the generator
model achieves DP. Unlike previous methods, J.Chen et al.
introduced DPGEN [20] to generate images using the
energy-guided network and Langevin Markov chain Monte
Carlo sampling. DP-MERF [21] and PEARL [22] are the
frameworks to generate images using differentially private
mean embeddings.

2) OTHER METHODS
GANs are widely adapted in the face anonymization tasks
such as DeepPrivacy [23] and CiaGAN [24] that utilize
conditional GANs to replace the original face with another
realistic face. Different from the approach that utilizes
generative modeling, Ko et al. [26] proposed a structural
image de-identification technique that aims to reduce the
ability of humans to recognize the image while preserving
the performance of computer vision task. Huang et al.
introduced InstaHide [3] that encodes the images by mixing
it with other randomly selected images. Yu et al. proposed
IPrivacy [27] that can automatically identify the presence of
sensitive information within the image using the multi-task
learning algorithm and blurring it. However, this method does
not utilize the potential benefits offered by more modern
approaches such as automated object detection, that can be
re-annotated according to the given task.

Table 1, provides a comprehensive summary of the existing
methods in image privacy protection, evaluated against
multiple criteria. These criteria include the specific target
deemed as private and the consideration of a specialized deep
learning model for the task. Based on our extensive review,
DP Patch emerges as the first framework that simultaneously
focuses on ROI-based protection of sensitive objects and
incorporates a custom DL model specifically designed for
processing such images.

C. NOISE-ROBUST DL MODELS
This section overviews the existing work in image denoising
and noise-robust deep learning models in computer vision
tasks.

1) IMAGE DENOISING
K.Zhang et al. introduced DnCNN [32]. This Gaus-
sian denoiser leverages residual connections to perform
high-quality image denoising under Gaussian noise up to
σ = 50, and later presented FFDNET [33] that can denoise
Gaussian noise up to σ = 75 with a single model.
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TABLE 1. Characteristics of the image privacy protection methods.

However, standalone image denoising is not considered in
this paper since the focus is not on the complete denoising
of the image, which would make the application of DP
ineffective.

2) NOISE-ROBUST DEEP LEARNING MODELS
Several works have studied the robustness of deep learning
models to random noise. M. Momeny et al. proposed
NR-CNN [34], which excludes noise pixels from the
classification task, relying on the not corrupted pixels.
While X.Meng et al. introduced the CNR-CNN [35], which
denoises the noisy input prior to the face recognition
task. [36] presents a different approach to extract the most
discriminative features from the single noisy input in the final
fully connected layer. However, existing methods primarily
consider a small amount of random noise that slightly affects
the computer vision tasks or may consider a large number of
clean and uncorrupted pixels. The differentially private noise
is way larger, and existing models are not able to perform
robust computer vision tasks, nor are they considering the
privacy preservation nature of the random noise.

D. OTHER IMAGE PROCESSING METHODS
Several other studies in the image retrieval and classification
field incorporatemultiple input images to augment the feature
extraction, considering the data uncertainty. For instance,
Regan and Khodayar [37] employs sparse representations
and dictionary learning to efficiently classify the weather
conditions frommultiple input sources using the triplet graph
network, while Saffari [38] incorporates multiple inputs to
improve the feature discrimination and retrieval performance
in the domain of traffic scene classification. These studies
emphasize the importance of multi-input integration to
advance the image classification task. Also, Qadir [39] pro-
posed an active learning method that significantly improved
the classification accuracy by selecting the most informative
samples.

FIGURE 2. Example of privacy exposures.

III. THREAT MODEL
Let us consider the threat model illustrated in Fig. 2. In this
context, two primary vectors that potentially compromise the
privacy of image data are identified.

The first vulnerability occurs during the transmission of
image data over network channels. Although encryption
protocols such as SSL and TLS secure the communication
channel, they are not entirely infallible [40], [41], [42]. For
instance, Man-in-the-Middle (MITM) [43] attacks can still
occur due to various factors, such as protocol misconfigura-
tion, compromised certificate authorities, SSL stripping, and
social engineering. As a result of a successful MITM attack,
an attacker can intercept, alter, and capture the data between
two communicating parties. Therefore, this stage is still prone
to attacks that allow attackers to access original images and
reveal sensitive information despite the implementation of
communication-level security.

The second major threat involves the deep learning model
trained on these images. If an adversary accesses this model,
they could execute model inversion attacks as introduced by
Fredrickson et al. [2], where an adversary infers sensitive
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FIGURE 3. The DP patch framework.

information about instances by analyzing the model’s out-
puts, like confidence scores. Zhang et al.introduced the Secret
Revealer [44], a model inversion attack based on generative
adversarial networks designed to accurately recover instances
from the training set, posing a significant privacy risk,
especially if the training set contains sensitive data.

IV. METHODOLOGY
This section provides a detailed description of the proposed
method by explaining the end-to-end methodology.

A. OVERVIEW
The proposed DP Patch framework is designed to facilitate
privacy-preserving image sharing and enhance computer
vision models’ ability to provide a robust classification of
images. The overall workflow of the proposed method is
shown in Fig. 3a, where the differentially private images are
generated prior to the application of the DP patch framework
to guarantee secure transmission over the network. Once the
data is received, privacy-preserving images are generated
based on the ROI of the sensitive object. Consequently,
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FIGURE 4. Examples of DP images generated with different ϵ values and
fixed δ = 10−6.

generated privacy-preserving images and received differen-
tially private images are fed into the custom deep learning
model designed to handle both images.

The detailed overview of the proposed framework is shown
in Fig. 3b, where the methodology is largely divided into two
concepts privacy preserving image generation and custom
image classification model.

The concept of privacy preserving image generation lies
in hiding only objects that are recognized as sensitive rather
than obscuring the entire image, which will distort the utility
of that image. The key idea of privacy-preserving image
generation is to run a denoising and object detection pipeline
on the differentially private input, locate the ROI based on
the predefined list of sensitive objects, and add patch noise of
different DP distributions to hinder further restoration.

However, the generated privacy-preserving image can not
guarantee the same performance in computer vision tasks as
the original image due to the following limitations: (1) the
denoising process results in a lower quality image, which
may lose important information; (2) the noise patch that
conceals the sensitive object may confuse the deep learning
model trying to extract the features from that area; To resolve
these limitations, we introduce a model that is customized for
privacy-preserving images. The model takes multiple images
as input, precisely the generated privacy-preserving image,
noisy differentially private image, and binary mask. Here,
the differentially private image is used as a source of a
complimentary feature set to compensate for the information
loss during the denoising process. In contrast, a binary
mask is used to divert the model’s attention from the noise
patch.

B. DIFFERENTIALLY PRIVATE IMAGE GENERATION
1) NOTATIONS
Let us denote the original images as Iorig, differentially private
images as IDP, DP privacy parameter as ϵ and relaxation
parameter as δ.

2) DESCRIPTION
Differentially private noise is applied to each pixel of
the clean image using the Gaussian DP mechanism. This
process can be formulated as IDP = Iorig + N (ϵ, δ), where
N (ϵ, δ) represents the noise calibrated according to the values

of ϵ and δ. In this context, ϵ is manually defined in the range
of 0.01 to 10. A value of 0.01 corresponds to the highest
level of privacy, accompanied by the greatest degree of image
distortion. Conversely, a value of 10 indicates the lowest
level of privacy and minimal image distortion. The relaxation
parameter δ assigned an extremely small value, such as 10−6,
to permit aminor deviation from the stringent privacy bounds.
Fig. 4 illustrates the examples of DP images generated under
different privacy parameter values with fixed δ values. Images
generated with small ϵ values has the highest amount of noise
added to the pixels.

The primary objective of employing this method for
differentially private image generation is to ensure the secure
transmission of images from the client side. The aim is to
produce an unrecognizable image for human observers and
automated systems.

It is important to note that current state-of-the-art image-
denoising models are primarily designed to reduce noise and
restore low-quality images. However, these models do not
typically account for the unique noise distributions associated
with differential privacy.

C. PRIVACY PRESERVING IMAGE GENERATION
1) NOTATIONS
Let us denote the list of sensitive objects as S. The denoising
and object detection modules are denoted as D and O,
respectively. The generated privacy-preserving image is
also denoted as IPP. Supplementary binary mask generated
alongside the IPP is denoted as BM .

2) DESCRIPTION
The procedure for creating a privacy-preserving image from
a differentially private input IDP is concisely outlined in
algorithm 1. To generate the privacy-preserving image IPP
from the noisy IDP, it is necessary to undertake image
denoising and sensitive object detection tasks. It has been
previously established that conventional, state-of-the-art
image-denoising models cannot effectively handle the noise
in a DP-enhanced image. Consequently, we have adapted the
architecture of the DnCNN denoising model by incorporating
additional residual connections. This modified model was
then re-trained to accommodate the noise distribution char-
acteristic of differential privacy, particularly Gaussian noise.

Considering the assumption that the DP noise adheres
to a Gaussian distribution, the denoising module D can
approximate the amount of random noise by estimating the
value of σ and accordingly denoise the IDP image as shown
in line 2 of the algorithm 1.

The following equation can calculate the actual σ values
of differentially private Gaussian noise addition:

σ 2
=

2 · ln(1.25/δ) ·1f 2

ϵ2
(1)

Given the privacy parameter ε = [1,3,10] and relaxation
parameter δ = [10−6, 10−5, 10−4], and the sensitivity
1f = 255, the calculated σ values vary from 1100∼ 1350 for
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Algorithm 1 Generate IPP
1: procedure Generate IPP(IDP, ε, δ)
2: σ 2

←
2·ln(1.25/δ)·1f 2

ϵ2
▷ Estimate σ

3: for each IDP do
4: Idenoised ← D(IDP, σ )
5: Osensitive← O(Idenoised ) ∩ S
6: Initialize patch to zero
7: for each o ∈ Osensitive do
8: patch(o)← Idenoised (o)+ DP(o)
9: end for

10: IPP← Idenoised + patch
11: Initialize BM as zero array
12: for each pixel p in IPP do

13: BM (p)←

{
0, if p ∈ patch
1, otherwise

14: end for
15: end for
16: return IPP
17: end procedure

ϵ = 1, 370 ∼ 450 for ε = 3, and 110 ∼ 135 for ε = 10. The
smaller the σ values, the easier it is to denoise the noisy image
and the better the quality of the result. Thus, the quality of the
denoised image, as well as the quality of the IPP image to be
further generated, directly depends on the ε value. Therefore,
the trade-off between image quality and the denoising process
is similar to the privacy-utility trade-off observed in regular
DP mechanisms.

Upon acquiring the denoised image as shown in line 4 of
the algorithm 1, the next step involves identifying the ROI,
precisely the location of sensitive objects within the image,
using the object detection module O. In this phase, a pre-
trained object detection model, such as Faster R-CNN [45],
is fine-tuned by incorporating additional instances of private
object classes.

Subsequently, the object detection module O scans the
image and proposes regions that might contain sensitive
objects and then executes a comparative analysis between the
list of detected objects and the predefined list of sensitive
objects S as shown in line 5 of the algorithm 1. This
comparison aims to identify objects that are common to both
lists. It is essential to highlight that the pre-trained module
O includes annotations for all potential sensitive objects
as defined in the list S. The location of sensitive objects
within the image can bemathematically represented using the
following equation:

Osensitive = O(D(IDP)) ∩ S (2)

Once the sensitive object within the image is accurately
located, the proposed method proceeds to overlay patch DP
noise onto the pixels encompassing the object’s bounding box
as shown in lines 7 to 10 of the algorithm 1. To augment
the privacy protection of the sensitive object, noise sourced
from the Laplace distribution is introduced, distinct from

FIGURE 5. Privacy-preserving image generation examples from the ϵ = 1,
3, and 10-differentially private images given different ROI of sensitive
objects.

the normal Gaussian distribution used earlier. The essential
characteristic of the Laplace distribution is its heavier tails,
which implies a higher likelihood of generating noise with
extreme values. Moreover, we generate the differentially
private noised patch with a smaller privacy parameter ε in the
range from 0.01 ∼ 1, calibrated according to the Lap(1f

ε
),

to guarantee larger noise distribution added to the bounding
box of the sensitive object. Consequently, this makes it more
challenging to estimate and denoise the region affected by this
noise accurately.

The process of generating privacy-preserving image IPP
can be summarized into the following equation:

IPP = D(IDP)+ DP(Osensitive) (3)

In this process phase, an additional component is gener-
ated: the supplementary binary mask BM as shown in lines
8-10 of the algorithm 1. This mask explicitly indicates the
areas where the DP noise patch has been applied to obscure
the sensitive object. In particular, it sets ’1’ if the pixel is
part of the area that corresponds to the non-sensitive part of
the image, and ’0’ if the pixel corresponds to the area where
differentially private noise was applied, thus protecting the
sensitive part of the image.

Crucially, generating BM is deterministic, ensuring consis-
tent and reproducible application across different instances.
However, it is essential to note that BM is neither shared
externally nor utilized for purposes other than its intended
function within our system. The primary aim of creating BM
is to assist in the seamless integration with a specialized deep
learningmodule, whichwill be elaborated upon in subsequent
sections of this paper.

It is important to note that in cases where the image does
not contain any sensitive objects, the final output will solely
result from the initial denoising process. Consequently, the
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Algorithm 2 Multi-Input Feature Extraction and Classifica-
tion
1: function ConvSE_Block(x)
2: xconv← Conv(x)
3: xSE← SE_Block(xconv)
4: return xSE
5: end function
6: procedure Custom Model(IDP, IPP,BM ) ▷ Extract

attention-enhanced feature maps
7: FMPP← ConvSE_Block(IPP)
8: FMDP← ConvSE_Block(IDP)
9: FMPPmask ← FMPP ⊙ BM
10: FMDPmask ← FMDP ⊙ BM
11: FMc← α · FMPPmask ⊕ β · FMDPmask

12: y← FC(FMc)
13: return y
14: end procedure

generated binary mask will not carry relevant information
under these circumstances.

D. CUSTOM MODEL
1) NOTATIONS
Let us denote the feature extractor module asConvSE_Block ,
and the extracted feature maps from IPP and IDP as FMPP and
FMDP, respectively. The masked feature map is denoted as
FMmask, and the concatenated feature map is denoted as FMc.

2) DESCRIPTION
In the proposed method, both IPP and noisy IDP are
passed through the shared feature extractor base, where each
convolutional block is followed by squeeze-and-excitation
(SE) blocks [46] as shown in the lines 1-4 in the algorithm 2.
In this context, the SE blocks function as channel-wise
attention mechanisms, recalibrating the extracted feature
representation after each block. They emphasize the most
relevant features while suppressing the less relevant ones.
Consequently, we obtain two attention-enhanced feature
maps FMPP and FMDP containing the most discriminative
features from both input sources as shown in lines 7 and 8
in the algorithm 2.

FMmask = FM ⊙ BM (4)

FMc = α · FMPPmask ⊕ β · FMDPmask (5)

The binary mask BM is generated alongside the IPP image
during the privacy-preserving image generation process. This
mask indicates the area of the DP noise patch that conceals
sensitive objects within the image, consisting of only 1s and
0s, where ’1’ in the mask represents pixels that are to be
retained, and ’0’ represents the pixels that were obscured by
differentially private patch noise.

By combining the binary mask BM with each of the
attention-enhanced feature maps, we can obtain the masked
FMPPmask and FMDPmask , which effectively exclude the noisy

DP patch from the process as shown in the equation 4 and
lines 9 and 10 in the algorithm 2. Specifically, this procedure
involves the element-wise multiplication of each feature in
the feature map with its corresponding element in the binary
mask. This operation preserves the features in FM that align
with a 1 in BM and nullifies the features that align with
a 0 in BM .

Subsequently, feature fusion is performed through a
weighted concatenation of the masked attention-enhanced
feature maps as shown in the equation 5, where the α and β

represent the weights as shown in line 11 of the algorithm.
The values of α and β are determined through empirical
testing. It is important to mention, that less weight β is
assigned to features extracted from the noisy input IDP since
the noisy input has too large pixel values distortion. However,
if the generated IPP lost most of the relevant information
during the denoising process, an interesting synergy arises
from the confluence of both feature maps. Even though the
IDP image was heavily perturbed by DP noise, the essence
of the original information is still retained within this image,
effectively compensating for information gaps that may have
arisen during the denoising phase. Next, the concatenated
feature map FMc is fed to the model’s further classification
layers, which are defined according to the final task, number
of classes, and other information.

Fig. 6 shows the operational example of the proposed
custom model that takes the differentially private noisy
image, generated privacy-preserving image as input. After
extracting the most discriminative features from both images,
the proposed model utilizes the binary mask to generate and
concatenate the masked feature maps of both inputs. Such a
method diverts the attention of the model from the sensitive
object concealed by the DP patch and guarantees robust
classification of the rest of the image.

V. PRIVACY DISCUSSION
The DP Patch framework proposed in this study is metic-
ulously designed to safeguard the privacy of sensitive
objects within shared and analyzed images. The framework’s
protection operates at two primary levels:
• Initial transmission security: The initial layer of pro-
tection is provided by utilizing differentially private
images for network transmission. This approach ensures
that even if an adversary intercepts an image instance,
it remains uninterpretable to both human and machine
adversaries, as demonstrated in Fig. 7 when the adver-
sary attempts to eavesdrop on the transmission. The
proposed method serves as a complementary safeguard
alongside the existing communication-level security
protocols, which are enabled by default to provide
protection in cases of protocol malfunction, as detailed
in section III.

• Protection against deep learning model attacks: The
second layer of protection guards against privacy attacks
targeting deep learningmodels, which aim to reconstruct
images containing sensitive information from the
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FIGURE 6. Operational example of the proposed custom model that takes privacy-preserving, differentially private, and binary mask as an
input.

FIGURE 7. Example of privacy exposure prevention with the proposed DP
Patch framework.

training set. Our methodology focuses on concealing
only the sensitive objects within an image, if present,
while leaving the non-sensitive parts denoised.
A custom-designed deep learning model facilitates
this ROI-based concealment. The model is trained
to disregard the DP noise patch that masks sensitive
objects, thus enhancing the utility of the images. This
architecture ensures that the model does not memorize
the sensitive objects, as its attention is deliberately
diverted away from them. Consequently, in the event of
a successful model inversion attack, any reconstructed
image would lack the sensitive object, given its absence
during the training phase, as shown in Fig. 7, when the
adversary attempts to attack the trained model.

An adversary might intercept the noised differentially
private images during transmission and attempt to denoise
them using existing denoising models or by developing
their own denoiser. However, within the proposed DP patch
framework, the architecture of the Gaussian denoiser has
been altered, rendering it a black box to the adversary.
Furthermore, even if the attackermanages to reverse-engineer
the model architecture, achieving successful denoising would
be challenging. In the proposed method, the denoiser model

was trained on a vast dataset of noised and denoised pairs to
familiarize it with various noise distributions corresponding
to different privacy parameters ε values. Consequently, the
likelihood of an adversary accurately deducing the exact ε

value and mastering the noise distribution is considerably
low.

VI. EVALUATION
The proposed DP Patch framework is evaluated by answering
the following research questions:
• RQ1: How effective are generated ROI-based privacy-
preserving images in hiding sensitive objects?

• RQ2: How does the proposed custom model improve
the classification of the generated privacy-preserving
images?

• R3: How does the ablation of certain components affect
the accuracy of the proposed framework?

• RQ4: How good is the performance of the proposed
framework compared to the state-of-the-art method?

• RQ5: How effective is the proposed framework in
defending against image reconstruction attacks?

1) EXPERIMENTAL SETUP
All implementation and experiments were performed on the
environment with Windows 10, AMD Ryzen 5 3600 6-Core
Processor, 16 Gb RAM, NVIDIA(R) GeForce RTX 2080 Ti
GPU, and Python 3.8.

2) IMPLEMENTATION
This study uses the Open Images Dataset V4 [47], a huge
dataset of nearly 9million images for various computer vision
tasks such as classification, object detection, and instance
segmentation. This dataset is sourced from the image hosting
service and contains over 15 million objects from 600 class
instances. Even though the images with PII are removed,
there is still a high possibility of finding non-trivial sensitive
objects.

For our experiments, we meticulously selected a subset
of the dataset comprising 500,000 images across 100 cate-
gories deemed potentially sensitive (such as mobile phones,
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FIGURE 8. Selection of the optimal weight values.

computer screens, and envelopes). This sampling was con-
ducted randomly to ensure representativeness.

To generate differentially private images, we perturb each
pixel in the image with Gaussian noise calibrated with the
following parameters: privacy parameter ϵ = [1,3,10], and
relaxation parameter δ = [10−6, 10−5, 10−4] to evaluate the
different levels of image distortion.

The implementation of the proposed DP Patch framework
is divided into (1) a privacy-preserving image generation
module and (2) a customized deep learning module.

In the case of the first module, the denoising and object
detection pipeline is implemented with the DnCNN [32] as a
denoiser network and Faster R-CNN [45] with inception as
an object detection network. Here, both networks are trained
to suit the dataset to be used, the Gaussian noise distribution
of different levels, and a rich set of annotations that might
be listed as sensitive objects. To hide the sensitive object,
we perturb the pixels within the bounding box with DP noise
from Laplace distribution, calibrated by privacy parameter
values ϵ = [0.1 ∼ 1].

In the case of the second module, the multi-class image
classification model is implemented. The feature extractor
module consists of multiple convolutional blocks followed by
a channel-wise attention mechanism implemented with SE
blocks [46]. Next, the obtained feature maps are combined
with a binary mask, so noisy patches and features are set
to 0. The feature fusion module is implemented as a layer
of weighted concatenation, where the optimal weights α and
β were experimentally determined, as shown in figure 8.
Intuitively, α and β should not be selected to extremes,
considering that IDP image may not be highly representative
on their own. Hence, the weight values are chosen to
best complement the feature representation of the IPP
image, which experimentally happened to be in the margin
of 0.6 - 0.4 and 0.7 - 0.3, respectively.

The time complexity of the proposed framework is denoted
as O(H × W ), depending on the height and width of the
image or the total number of pixels. Assume that each part
of the framework is implemented and optimized and that all
operations scale linearly with the number of pixels in the
image.

TABLE 2. Average ROI SSIM score between generated IPP and
corresponding original image.

TABLE 3. Average accuracy & confidence score of the sensitive object
detection task.

A. RQ1. HOW EFFECTIVE ARE GENERATED
PRIVACY-PRESERVING IMAGES IN HIDING SENSITIVE
OBJECTS DEFINED IN EACH CORRESPONDING SSI
PROFILE?
This section examines the efficacy of privacy-preserving
images generated from differentially private inputs with ϵ

values of 1, 3, and 10 in concealing sensitive objects defined
as ROI targets. We assess the structural similarity between
the generated IPP images and the original images Iorig, then
evaluate the sensitive object detection accuracy.

Our experiments were executed under two cases of regions
of interest (sensitive objects):
• Case A: ROI is defined as information about individuals,
such as human faces, persons, names, and vehicle
registration plates.

• Case B: ROI is defined as objects with digital infor-
mation, e.g., tablet screens, computer screens, computer
monitors, and mobile phones.

The structural similarity index metric (SSIM) is con-
ventionally employed to evaluate the perceptual quality of
the image in relation to its original counterpart. However,
straightforward evaluation of the IPP and Iorig images is not
possible due to the DP noise patch present in the arbitrary IPP.
To effectively evaluate the structural similarity between

the two images, we measure the SSIM within the region
of interest, which is the image without the noise patch.
Since the supplementary binary mask is generated during the
privacy-preserving image generation step, it can be also used
to perform an effective ROI SSIM calculation.

Table 2 presents the average ROI SSIM score for the
privacy-preserving images IPP generated from the ϵ = 1,
3, and 10 - differentially private images and comparing
them with the original images. The average ROI SSIM
score for the ROI case A was 53%, 65%, and 86%,
while for ROI case B was 57%, 63%, and 89% for the
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TABLE 4. Performance comparison of multiple computer vision models (Open Images [47] dataset).

ϵ values of 1, 3, and 10, respectively. These scores indicate
that the generated privacy-preserving images maintain high
structural similarity to the original images, making them
well-suited for image recognition tasks while effectively
obfuscating sensitive objects. To evaluate how well the
proposed method can localize sensitive objects within the
image, the performance of the object detection module on
the generated privacy-preserving image is evaluated and
compared it to the original images. Table 3 shows the results
for the sensitive object detection task for the original images
and privacy-preserving images IPP generated from the ϵ =

1, 3, and 10 - differentially private images and compared to
the detection rate of original images. For ROI case A, the
accuracy of the sensitive object detection task was 64%, 74%,
93%, and 100% for ϵ values of 1, 3, 10, and the original
images, respectively. The corresponding average confidence
scores were 57%, 60%, 67%, and 79%. For ROI case B, the
accuracy was 59%, 70%, 89%, and 100%, while the average
confidence scoreswere 50%, 56%, 69%, and 74% for ϵ values
of 1, 3, 10, and the original images, respectively.

These results show that both the accuracy and average
confidence score of sensitive object detection diminishes as
the ϵ value decreases. This decline can be attributed to the
increased distortion of the input image. The accuracy in ROI
case A is slightly higher than in case B. This difference can
be attributed to the nature of the objects in case B, which
predominantly include smaller items like mobile phones,
making them more susceptible to the effects of differential
privacy noise addition and subsequent denoising processes.

Answer to RQ1: The generated privacy-preserving
images IPP show sufficiently high ROI structural
similarity and acceptable rate of sensitive object detec-
tion compared to their corresponding original image
counterparts.

B. RQ2. HOW DOES THE PROPOSED CUSTOM MODEL
IMPROVE THE CLASSIFICATION OF THE GENERATED
PRIVACY-PRESERVING IMAGES?
In this section, the efficacy of the proposed custom model
for privacy-preserving image processing tasks is explored by

contrasting its performance against that of a standard model.
Specifically, comparisons are made between the proposed
model and state-of-the-art image classification models based
on VGG16, ResNet, and InceptionV3 architectures, using
various input images such as IPP generated from differentially
private inputs with ϵ values of 1, 3, and 10, as well as original
images.

Table 4 shows the comparative results of model per-
formance under consistent parameters, including a batch
size of 32, 100 epochs, and a dataset split into training,
validation, and test sets in a 70:15:15 ratio. It is worth
noting that during this experiment, privacy-preserving images
with a minor DP noise patch were assessed, enabling the
model to evaluate the remaining portions of the image.
Additionally, experiments within this section were conducted
across two distinct cases of sensitive objects considered ROI,
as introduced in section VI-A.

As observed from the table, the performance of the three
state-of-the-art models is strong when provided with original
input images without any visual distortion. For instance, the
VGG16model achieved a validation accuracy of up to 98.5%,
and a test accuracy of up to 97.4%. Similarly, the ResNet50
model achieved validation and test accuracy metrics of up to
97.8% and 93.1% respectively. Meanwhile, the InceptionV3
model achieved a validation accuracy of up to 98.9% and a
test accuracy of up to 95.0%.

Considering the ROI case A, designed to conceal human-
related information, the performance of the VGG16 model
on the privacy-preserving images generated from the ϵ =

10 - differentially private input decreased, resulting in the
validation accuracy of 54.9%, and the test accuracy of 35.4%.
Similarly, the validation accuracy of the ResNet50 and the
InceptionV3 model was 41.3% and 49.6%, while the test
accuracy was by as much as 37.1% and 42.7%, respectively.
For the IPP images generated from the ϵ values equal to
3 and 1, the validation accuracy of the VGG16 model was
by as much as 15.6% and 8.9%, and the test accuracy
was by as much as 11.2% and 10.5%, respectively. For the
ResNet50 model, the validation accuracy was by as much
as 16.9% and 7.5%, while the test accuracy was by as
much as 13.4% and 10.1% for privacy parameter ϵ values =
3 and 1. InceptionV3 model also showed poor performance
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TABLE 5. Performance comparison of multiple computer vision models (ImageNet [48] dataset).

for the privacy-preserving images generated from ϵ = 1 and
3 images, such as 21.1% and 12.0% for the validation
accuracy, and 17.3%, 11.1% for the test accuracy.

The ROI case B also exhibited a similar trend of the model
validation/test accuracy degradation as the ϵ value decreases,
with the occasional instances of improved performance, such
as the validation accuracy of the VGG16 model with the IPP
(ϵ=10) of 65.1%, or worsened performance, such as the test
accuracy of the InceptionV3 model with the IPP (ϵ = 3)
of 7.4%.

Different from the aforementioned computer visionmodels
that consider the privacy-preserving image as a whole,
incorporating the DP noise patch, and suffering from the
large input image quality degradation, the proposed custom
model is designed explicitly for privacy-preserving image
classification. Therefore, the are no experiment results
corresponding to the original images. As can be observed
from the table 4, the validation and test accuracy of the
proposed model in the ROI case A was by as much as 75.4%
and 69.3% for ϵ = 10, 46.3% and 49.1% for ϵ = 3, and 19.4%
and 22.5 % for ϵ = 1. In the ROI case B, the validation and
test accuracy were 79.1% and 79.4% for ϵ = 10, 50.6% and
47.1% for ϵ = 3, and 22.6% and 25.1 % for ϵ = 1.
Table 5 shows the test accuracy of the existing image

classification models and the proposed method under the
ImageNet [48] dataset, generated in a similar manner under
ROI case A. The performance of the DP Patchwas by asmuch
as 73.1%, 47.6%, and 25.0% for ε= 10, 3, and 1, respectively.

The proposed method shows an average performance
improvement of approximately 24.8%, 34.3%, and 16.17%
for ε = 10, 3, and 1, respectively, compared to other
models for Open Images dataset, and 26.0%, 20.5%, and
14.5% for ε= 10, 3, and 1, respectively for ImageNet dataset.
Currently, the performance degradation problem linked to
differential privacy remains an unavoidable trade-off for
privacy guarantees. Consequently, the proposed custom
model’s performance follows the same trend as regular state-
of-the-art models while yielding notably improved outcomes.

Answer to RQ2: The proposed custom model shows
satisfactory performance in multi-class classification of
the generated privacy-preserving images given various
privacy parameter ϵ values.

C. RQ3: HOW DOES THE ABLATION OF CERTAIN
COMPONENTS AFFECT THE ACCURACY OF THE
PROPOSED FRAMEWORK?
The ablation study was conducted to demonstrate the effects
of the binary mask BM and the differentially private image

TABLE 6. Accuracy of the model with ablated components.

IDP on the performance of the proposed custom model.
Table 6 summarizes the accuracy of the custom model with
one of the components ablated, comparing it to the baseline
accuracies of 25.1%, 47.1%, and 74.9% for ε = 1, 3, and 10,
respectively.

The first row corresponds to the ablation of the binarymask
BM and its combination with attention-enhanced feature
maps. The accuracy of the model was 11.0%, 13.6%, and
24.8% for ε = 1, 3, and 10. Since the primary goal is to
exclude features corresponding to sensitive objects concealed
by the noisy DP patch, removing this component of the
framework forces the model to classify based on the weighted
combination of IPP and IDP alone, including the noisy patches
if present within the IPP image.
The second row of Table 6 corresponds to the ablation of

the IDP input image from the custom model. The accuracy
of the model was 24.0%, 43.4%, and 67.8% for ε = 1, 3,
and 10. The primary goal of the noisy IDP is to complement
the IPP image, especially if the denoising process results in
significant information loss. However, this process is also
highly dependent on the amount of random noise applied and
the outcome of the denoising process. When this component
of the framework is removed, the model attempts to classify
the IPP with the noisy patch excluded.

Answer to RQ3: The binary mask component has a
greater impact on the performance of the proposed
custom model compared to the complementary power
of IDP.

D. RQ4: HOW GOOD IS THE PERFORMANCE OF THE
PROPOSED FRAMEWORK COMPARED TO THE
STATE-OF-THE-ART METHOD?
This section compares the proposed DP Patch framework
with the state-of-the-art method called InstaHide [3]. The
primary concept behind InstaHide is to randomly mix
an image’s pixels with those of other images. For this
experiment, the ‘‘inside-dataset’’ variant of InstaHide was
employed, which intermixes the training data images with
pixels from other images within the same dataset.
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FIGURE 9. Comparision of the (a) InstaHide and (b) proposed DP Patch
methods.

Fig. 9 shows the generated images from the InstaHide
and proposed DP Patch framework. As observable from
fig. 9a, encrypted images are not recognizable to the human
eyes as a result of the pixel mixing. However, the regular
VGG16model trained on that data shows robust classification
results of 87.1%. Fig 9b shows the privacy-preserving
images generated by the proposed framework from the ϵ =

10 differentially private input, where only arbitrary sensitive
objects were concealed with the patch of heavy ϵ = 0.1 noise
drawn from the Laplace distribution. At the same time, the
accuracy of the custom model was about 75 ∼ 80%.
However, the primary challenge in evaluating both meth-

ods stems from their distinct approaches. While InstaHide
treats the entirety of an image as private and randomly mixes
pixels of that image with those of other images, the DP Patch
approach deems only specific objects as private.

Answer to RQ4: While the proposed framework’s
distinct approach makes direct comparison with other
methods challenging, DP Patch still showcases com-
mendable performance relative to state-of-the-art solu-
tions.

E. RQ5: HOW EFFECTIVE IS THE PROPOSED FRAMEWORK
IN DEFENDING AGAINST IMAGE RECONSTRUCTION
ATTACKS?
As a practical evaluation method, a model inversion attack
is performed that tries to recover the instance sample from
the training set by reverse engineering using the model’s
output. In this experiment, a simplified version of the model
inversion attack introduced by [2] is implemented, which
considers the confidence score produced alongside the model
prediction. The higher the confidence score of the model
when predicting specific samples, the more likely it is that
it has seen that sample before during the training phase.
Specifically, the reconstructed image is created by iteratively
modifying an input image (random noise) to minimize a
loss function associated with the model’s prediction until the
image resembles the targeted class.

Fig. 10 shows the example of a model inversion attack
on the model to reconstruct the woman with a tablet

FIGURE 10. Example of the model inversion attack on the (a) original
image; (b) generated IPP in ROI case A that conceals human face;
(c) generated IPP in ROI case B that conceals tablet screen.

image sample. In the case of the original image without
any visual distortions, the reconstructed image is shown in
Fig. 10a, where the woman’s face and the tablet screen
were reconstructed successfully. Fig. 10b and 10c show the
reconstructed images for the IPP images generated from
ϵ = 10-differentially private input under ROI cases A and B.
In our experiments, ROI case A tries to conceal all human-
related information, such as face, and ROI case B tries to
conceal all digital-related information, such as tablet screen.
As observable from the result, the sensitive information was
not reconstructed in either case, even though the rest of the
image could be successfully reconstructed. Since the noisy
patch is excluded from the training process of the custom
model, the model inversion attack is likely to reconstruct only
the non-sensitive part of the image but omit the sensitive
object hidden under the DP noise patch.

Answer to RQ5: The proposed method shows satisfac-
tory results in defending against image reconstruction
attacks, preventing the concealed sensitive objects from
recovery.

VII. CONCLUSION
This paper introduces a novel framework, DP Patch,
designed to facilitate the secure transmission of image
data over networks and protect sensitive objects within
images from being recovered through model attacks while
maintaining adequate performance in computer vision tasks.
The proposed DP Patch framework encompasses two key
modules: (1) the generation of privacy-preserving images
from differentially private input, which effectively conceals
sensitive objects within the image based on the ROI of
the sensitive object, and (2) a custom model tailored
for privacy-preserving images, which processes both noisy
differentially private images and privacy-preserving images
to ensure robust classification. Furthermore, an experimental
evaluation was conducted to assess the quality of the
privacy-preserving images by comparing the performance of
the custom model with state-of-the-art models. Specifically,
the proposed method demonstrates an average performance
improvement of approximately 24.8%, 34.3%, and 16.17%
for ϵ = 10, 3, and 1, respectively, over other models.
Additionally, the proposed framework effectively counters
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image reconstruction attacks. As we look towards future
research directions, several avenues emerge from our work,
including adapting the proposed framework to specific
domains, such as medical imaging, incorporating alternative
DP image generation techniques, strengthening the proposed
method for more complex computer vision tasks, and
considering it for real-world deployment.
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