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ABSTRACT Three-dimensional reconstruction plays a crucial role in capturing plant phenotypes and
expediting the process of agricultural informatization. However, the reconstruction of small objects such
as plant specimens and grains often faces challenges like low two-dimensional image resolution and
sparse textures. To enhance the three-dimensional reconstruction of plant specimens like wheat grains for
comprehensive phenotypic characterization, this study proposes a novel super-resolution reconstruction
network called T-transformer net. The network leverages the self-attention mechanism of Transformers to
extract extensive global information from spatial sequences. By employing a hourglass block structure to
construct spatial attention units and combining channel attention with window-based self-attention schemes,
it effectively harnesses their complementary advantages. This encompasses utilizing global statistical data
while capitalizing on potent local fitting capabilities. Evaluation of the model on publicly available datasets
Set5, Setl4, and Mangal09 demonstrates superior overall performance of T-transformer net compared
to mainstream super-resolution algorithms at upscaling factors of 2x, 3x, and 4x. In the context of
super-resolution tasks involving wheat grain datasets, the peak signal-to-noise ratio reaches 42.89 dB, and the
structural similarity index attains 0.9643. Subsequently, we subject the super-resolved wheat grain images to
three-dimensional reconstruction. Through comprehensive extraction of high-level semantic information by
neural networks, the reconstruction accuracy is improved by 38.96% compared with the unprocessed image,
effectively mitigating challenges arising from sparse textures and repetitive patterns in wheat grain structures.
This study contributes valuable methodology and insights to the realm of three-dimensional reconstruction
in botany, holding significant implications for advancing agricultural informatization.

INDEX TERMS Three-dimensional reconstruction, super-resolution reconstruction, wheat grains,
transformer, channel attention.

I. INTRODUCTION

Plant phenotypic traits to some extent reflect the influence
of genes and the environment on characteristics such as
plant yield, quality, and stress resistance [1], [2]. Researchers

The associate editor coordinating the review of this manuscript and

approving it for publication was Wei Wei

have combined computer vision technology with agriculture
[3] to explore new methods for overcoming the limitations
of traditional crop breeding. High-throughput and rapid
measurement of plant phenotypes can facilitate the study
and cultivation of crop varieties [4], thereby enhancing
breeding efficiency and advancing the development of
phenomics.
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Currently, the main techniques for obtaining plant phe-
notypes include 2D images and 3D models. Among these,
methods based on 2D images have made progress in capturing
one-dimensional and two-dimensional phenotypic features
[5], [6]. However, in cases of severe occlusion and complex
structures, the accuracy of the acquired phenotypic features
is low [7]. Additionally, 2D images cannot fully capture the
three-dimensional structure of crops, leading to the loss of
3D phenotypic information. In the field of agriculture, 3D
reconstruction methods can be divided into active vision and
passive vision. Active vision methods include laser scanning
[8], [9], structured light [10], shadow methods [11], Time-
of-Flight (TOF) technology [12], radar technology [13],
Kinect technology [14], etc. Passive vision methods involve
obtaining image sequences through visual sensors and then
reconstructing the 3D structure. This approach first captures
image sequences, extracts useful information, performs
reverse modeling, and obtains the object’s 3D structure.
However, active vision methods are expensive, influenced
by manual operations, time-consuming, and less widespread.
In contrast, passive vision 3D reconstruction only requires
capturing 2D images of plants with a camera and applying
relevant algorithms to complete the 3D reconstruction.
It offers advantages such as low cost, ease of use, and
wide applicability [15]. Many researchers have reconstructed
plant crops into 3D point clouds to extract 3D phenotypic
information of plants. For instance, Chenxi et al. used a
3D scanner to acquire wheat plant phenotypic parameters
[16]. Zhibin et al. employed a binocular vision system and
SUREF algorithm to obtain 3D point cloud information of
crops like mustard and celery [17]. Paproki et al. measured
the 3D model of cotton plants along with stems and leaves
using multi-view stereo vision and segmentation techniques
[18]. These studies indicate that rapid and high-precision
reconstruction of plant 3D models is of great significance for
accelerating the development of agricultural informatics.

In terms of wheat grains [19], [20], [21], image process-
ing techniques have successfully extracted key phenotypic
parameters such as spike number, spikelet number per row,
and spikelet number per spike. However, challenges still
exist in reconstructing the 3D model of grains and obtaining
3D information. Due to the small volume of wheat grains,
similar surface textures, low pixel ratios, and a lack of
sufficient feature information, accurate reconstruction of
detailed features is difficult. Traditional passive methods
perform well in the ideal Lambertian reflectance model but
show lower accuracy when measuring the similarity in weak
textures, repetitive textures, and non-Lambertian areas.

In recent years, a plethora of passive vision-based 3D
reconstruction methods have emerged. Moulon et al. [22]
proposed a motion recovery structure algorithm based
on adaptive parameters. While achieving high reconstruc-
tion accuracy, this method is computationally intensive.
Bao et al. [23] introduced a semantic motion recovery
structure algorithm that enhances algorithm robustness
through the recognition and estimation of high-level semantic
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information such as regions and objects in the 3D scene.
Wu et al. [24] presented the VisualSFM algorithm, which
employs preprocessed conjugate gradient descent to improve
computational efficiency while maintaining accuracy. Schén-
berger et al. [25] introduced the COLMAP algorithm,
enhancing key steps such as geometric calibration, viewpoint
selection, and triangulation. It has made significant progress
in both reconstruction accuracy and completeness, standing
out as one of the best-performing algorithms among tra-
ditional passive methods. With deeper exploration of deep
learning techniques, scholars have found that convolutional
operations can introduce global semantic information, and
supervised feature extraction can address stereo matching
challenges under adverse conditions such as weak textures
and non-Lambertian characteristics [26], [27]. Eigen et al.
[28] conducted experiments on monocular depth estimation
using convolutional neural networks, dividing the network
into a global coarse estimation network and a local fine
estimation network. This provided essential guidance for
further research in multi-view 3D reconstruction. Yao et al.
[29] introduced an end-to-end neural network model called
MVSNet, pioneering multi-view depth learning for 3D
reconstruction. Zhang et al. [30] proposed Vis-MVSNet,
an end-to-end network structure that considers pixel visibility
information, explicitly infers and integrates pixel-level occlu-
sion information in the MVS network through uncertainty
estimation and uses joint inference of pairwise uncertainty
maps and depth maps as weighted guidance in multi-view
cost volume fusion, effectively suppressing the adverse
effects of occluded pixels.

3D reconstruction based on single-view images is an active
research field in computer vision and graphics [31], which
aims to reconstruct the 3D structure from a single image.
Although 3D reconstruction based on single-view images
has made some progress, single-view 3D reconstruction still
faces many challenges because recovering three-dimensional
information from only one two-dimensional image involves
a high degree of uncertainty and ambiguity, including the
consistency of reconstruction quality. And the ability to
process complex scenes, as well as the generalization ability
to different object types and different viewing angles. Con-
sidering that this research hopes to achieve high-precision
acquisition of the three-dimensional point cloud model of
wheat grains, 3D reconstruction based on single-view images
is not used to achieve the goal of this article.

For low-resolution or blurry images, researchers have
attempted to enhance image quality using super-resolution
techniques [32]. Super-resolution technology aims to
enhance the resolution and clarity of images by recovering
detailed information from low-resolution images. This
technology has a wide range of applications in various
fields, especially in medical imaging, remote sensing, and
facial imaging, where significant progress has been made.
In the field of medical imaging [33], super-resolution
technology can improve the resolution of imaging techniques
such as magnetic resonance imaging (MRI) and computed
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tomography (CT), providing doctors with more diagnostic
information. In remote sensing [34], super-resolution tech-
nology can enhance the quality of satellite images and aerial
images, providing more accurate data for environmental
monitoring and urban planning. In the field of human-
computer interaction [35], super-resolution technology can
enhance the performance of video surveillance and facial
recognition systems, improving the accuracy of image recog-
nition. Traditional image super-resolution reconstruction
methods primarily include three categories: interpolation-
based algorithms such as nearest neighbor interpolation
[36]; degradation model-based algorithms like iterative back-
projection [37]; and learning-based algorithms including
sparse coding methods [38]. Traditional super-resolution
algorithms have achieved considerable success, but with
increasing scale factors from 2x to 4x, 8x, the required
information for super-resolution reconstruction becomes
more demanding. Artificially defined prior knowledge
cannot meet the requirements, making it difficult to achieve
high-quality image reconstruction. With the significant
success of deep learning in computer vision, Dong et al.
[39] first introduced deep learning methods to image super-
resolution tasks, achieving better results than traditional
methods due to the powerful learning capacity of neural
networks. Subsequent researchers proposed a series of
continuously optimized algorithm models, from the earliest
SRCNN (super-resolution convolutional neural network)
model based on convolutional neural networks [40] used
in the waifu2x project to the SRGAN (super-resolution
generative adversarial network) [41] model based on gener-
ative adversarial networks. The field of deep learning-based
image super-resolution reconstruction continues to make new
breakthroughs. Jiang et al. [42] proposed a combination of
association learning and Transformer architecture to solve
the image denoising problem. Jiang et al. [43] proposed
A dynamic association learning model that combines
self-attention and convolution in the image restoration task
to find an effective combination between self-attention
mechanism and traditional convolution to take advantage
of the advantages of both. Xiao et al. [44] proposed
an improved model for the temporal dependence of the
self-attention mechanism, and improved the performance
of video super-resolution at local and global scales,
Jiang et al. [45] proposed a hierarchical dense recursive
network structure for image super-resolution. However,
existing models do not consider the relationship between
channels to better grasp the global relationship of image
information.

Therefore, addressing the aforementioned issues in current
research on 3D reconstruction of wheat grains, this study
proposes a novel super-resolution network, namely the
T-transformer net, based on the Transformer architecture.
In the context of 3D reconstruction of wheat grains,
an economical and high-precision reconstruction approach is
investigated. The key findings and notable objectives of this
study can be summarized as follows:
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o We establish an economically viable data acquisition
system by employing industrial-grade cameras for
capturing RGB images. Simultaneously, a standardized
dataset of wheat grain samples is curated, encompassing
four distinct varieties, each represented across twelve
moisture gradients.

o A Transformer-based super-resolution reconstruction
network is introduced, incorporating channel attention
modules to enhance feature utilization and information
propagation, thereby extending the model’s receptive
field. Compared with existing super-resolution net-
works, the T-transformer net incorporates a channel
attention mechanism, leading to significant improve-
ments in image quality, as evidenced by PSNR and
SSIM metrics. Furthermore, it specifically addresses
the challenges associated with processing wheat grain
images. This includes a demonstrated stronger ability to
handle sparse textures and distinguish difficult repeated
patterns.

o The proposed model is evaluated using the custom-
designed dataset of wheat grain samples, and sub-
sequently applied to 3D reconstruction using Vis-
MVSNet. By adeptly extracting high-level semantic
information from images, the reconstruction precision
of wheat grains is notably enhanced under challeng-
ing conditions such as sparse or repetitive textures.
Furthermore, the insights garnered herein serve as a
reference for attaining high-precision 3D models of
other agricultural products.

Il. MATERIALS AND METHODS

A. MATERIALS

This study takes wheat as the research object and conducts
experiments using four different varieties of wheat grains
produced in North China in 2023, namely Huaimai 22, Vanke
189, Zimai 19 and Yangmai 15. Following the ASAE method,
wheat samples were subjected to continuous drying in a
130°C oven for 19 hours. The difference in mass of the
wheat samples before and after drying was measured to
determine the moisture content of the wheat, resulting in an
initial moisture content of 13.7% (w.b.). The wheat samples
were grouped and labeled as samples 1 to 12. Each sample,
weighing (200+1) grams, was sealed in self-sealing bags
and stored in a constant-temperature chamber at 4°C. Prior
to usage, the wheat samples were removed and gradually
brought to room temperature.

The method outlined in literature [46] for adjusting grain
moisture was employed to establish experimental samples
with moisture contents ranging from 8% to 30% in twelve
distinct gradients. The formula for calculating the change in
moisture mass during the grain moisture adjustment process
is provided below 1:

(wr —wy)
mi, W > w;
Am=1 =% 0
(Wi —wy)
—m;, Wf < W;
1— wy
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In the equation provided: m; represents the initial mass
of the grain to be conditioned; Am represents the change
in mass of water during the conditioning process; w;
represents the initial moisture content of the grain; wy
represents the moisture content of the grain after condi-
tioning. The specific steps for moisture adjustment are as
follows:

1) STEPS FOR INCREASING GRAIN MOISTURE CONTENT
1) Take a sample of 0.5 kg of grain, and calculate the

required increase in water mass Am using Equation 1.

2) Add distilled water with a mass of Am to the grain
sample and stir for 10 minutes to ensure uniform
distribution of moisture.

3) Place the water-added grain into a sealed plastic bag,
remove excess air, and store it in a refrigerator at 4°C
for 72 hours. This allows the moisture to be thoroughly
absorbed into the grain while the low temperature
minimizes biological activity.

4) Transfer the grain sample to an open container at
room temperature (25°C), and let it stand for 12 hours.
During this period, stir every 2 hours. This process
helps the grain sample return to room temperature and
facilitates the evaporation of any unabsorbed surface
moisture.

2) STEPS FOR DECREASING GRAIN MOISTURE CONTENT

1) Take a sample of 0.5 kg of grain, and calculate the
required decrease in water mass Am using Equation 1.

2) Place the grain sample in a 130°C drying oven. Remove
the sample at regular intervals, weigh it, and thoroughly
mix it to ensure uniformity.

3) Calculate the mass loss of the grain sample. If the mass
loss is less than Am, repeat step 2 to continue the drying
process. If the mass loss exceeds Am, the conditioning
process is complete.

By employing the conditioning process, 12 samples of wheat

with varying moisture content were obtained, as illustrated in
Table 1.

TABLE 1. Moisture Content Variation Among Different Varieties of Grain.

Moisture Huaimai ~ Wanke Zimai 19  Yangmai
gradient 22 189 15

8 8.691 8.179 7.899 7.924
10 10.487 10.453 9.900 9.645
12 12.239 12.148 11.160 11.452
14 14.257 14.838 13.553 13.832
16 16.593 16.260 15.411 15.709
18 17.757 18.533 17.976 17.916
20 20.289 20.754 19.535 19.559
22 22.734 22.527 21.623 22.305
24 24.453 24.708 24313 24.003
26 25.863 25.679 25.499 25.550
28 28.575 28.446 27.447 28.707
30 30.264 29.781 29.885 29.978
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B. DATASET ACQUISITION

1) IMAGE ACQUISITION

During the image acquisition phase, we employed the
following method to capture images of wheat grains. Initially,
wheat grains were positioned at the suction nozzle location,
and utilizing the action of an air compressor, the wheat
grains were affixed to the nozzle. Through the rotation of a
stepper motor, the wheat grains adhered to the nozzle were
set in rotational motion. Subsequent to each complete rotation
executed by the stepper motor, the camera captured an image
of the wheat grain. The imaging equipment used included a
Canon EOS R5 C digital camera and a Canon EF 100mm
/2.8L IS USM macro lens, both sourced from Tokyo, Japan.
The air compressor operated at a speed of 1450 revolutions
per minute, with an airflow rate of 0.3 cubic meters per
minute. The stepper motor, the Nanotec PD4-EX model, was
set to rotate at 5 degrees per step, with a 5-second interval
between captures. With these settings, we could capture a
total of 72 images of wheat grains every 6 minutes, leading
to a comprehensive image sequence over the week. In our
study, we controlled image illumination using LED lights on
the camera lens and conducted the capture in a darkroom
to ensure consistent lighting and minimize external light
interference, enhancing the experiment’s validity.

The acquired images had a resolution of 8192 x 5464 pixels
and were saved in JPG format. Macro lenses with exposure
times ranging from 0.1 to 3 seconds were used during the
capture process. The camera settings included an aperture
of 1/8, a focal length of 100 millimeters, and a lens-to-
grain distance of 5 centimeters. To maintain the accuracy
of experimental data and ensure model robustness, image
acquisition was performed under these specific conditions for
four different wheat varieties, with each variety comprising
50 grains per moisture level. A total of 600 grains per variety
resulted in approximately 172,800 images. Furthermore, five
grains from each moisture gradient were randomly chosen as
the test set, ensuring a comprehensive representation within
the dataset. This extensive collection of images is crucial for
improving the model’s generalization ability and robustness.

2) IMAGE PREPROCESSING

This study identifies several distractions in the original
images, including the suction device’s nozzle and background
noise points. These elements could lead to inaccuracies
and disruptions in later stages, such as when training
super-resolution models or aligning feature points for
three-dimensional reconstruction. Thus, image preprocessing
becomes a critical step.

Fig. 1 shows that, although the background appears black,
the RGB values reveal subtle textures not actually pure black.
These textures do not contribute to our analysis and can affect
the accuracy of the super-resolution network by diminishing
the precision of feature point extraction. This, in turn, could
impact the precision of three-dimensional reconstruction and
result in longer matching times. To mitigate this, we trans-
formed the background to pure black using a brightness
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FIGURE 1. Original wheat grain image.

threshold technique. This process involved converting the
image to grayscale and then applying a threshold; pixels with
values below the threshold were turned to pure black, while
those above remained unchanged. For this study, we set the
threshold at 40.

After eliminating background noise points, removing the
nozzle area from the image becomes the next step. The
color of the nozzle is quite similar to certain parts of
the particles, this makes it challenging to depend only
on color information for nozzle removal without risking
damage to the main body. To resolve this, we incorporated
spatial information. First, we sum the pixel values of each
row and then subtract the pixel values between successive
rows, resulting in an interpolated difference. Plotting these
interpolated differences reveals a peak corresponding to the
region with the most significant color variation, located above
the particles. Using this peak as a reference, we crop the
image, turning pixels outside this area to pure black to isolate
the clean main body of the particle, as illustrated in Fig. 2.

FIGURE 2. The image after setting the background to pure black and
removing the suction nozzle.

Furthermore, to mitigate the impact of rotational deviations
introduced by the attachment system during image capture
and to reduce the computational burden caused by excessive
black regions during subsequent processing, we calculate
the centroid of the colored information region—the area
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containing wheat particles. This centroid is then positioned
as the center of the image, followed by cropping to achieve
an image size of 1440 x 2560 pixels. Consequently, an image
containing only the particles is obtained, as depicted in
Fig. 3. These preprocessing steps are automated through our
specially designed Python program, thereby enhancing the
accuracy and efficiency of subsequent tasks.

FIGURE 3. Crop to remove the redundant background, and only keep the
pixel part of the image of the wheat grain.

Post-image preprocessing, issues become observable
within the dataset, as depicted in Fig. 4. These problems
mainly stem from the inaccurate focus during capture,
leading to blurred grain textures and unclear details. Given
the relatively small diameter and volume of wheat grains,
avoiding these issues during image acquisition is challenging.
In response, one approach to address this challenge involves
the increase of exposure time. However, to construct a
three-dimensional model of the wheat grains, it is necessary
to capture images from different angles. Merely extending
exposure time would not only substantially increase the
image capture time but also escalate workload and time costs.
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FIGURE 4. Image of wheat grain with blurred parts.

Hence, in this study, we utilize super-resolution technology
to tackle these problems. The core idea behind this approach
is to improve image resolution, which simultaneously
preserves clear texture information and compensates for
the blurriness resulting from focus issues. Through this
method, we are able to obtain clearer images without
notably increasing image capture time and workload, thus
providing improved input data for subsequent wheat grain
three-dimensional model construction.

C. METHODS

The network architecture is illustrated in Fig. 5, which com-
prises three main components: a shallow feature extraction
module, a deep feature extraction module, and an image
reconstruction module.

Given a low-quality image I.q € RI*W*Cin as input,
with dimensions of height H, width W, and a channel
count Cj, corresponding to the input image. The shallow
feature extraction module is a 3 x 3 convolutional layer,
expressed as Hsr (-) is employed to extract shallow-level
features, as indicated in (2), where C represents the number
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of channels:
Fo = Hsr (Iq) . 2

Subsequently, the depth feature Fpr € RA*W*C js
extracted from Fj:

Fpr = Hpf (Fp) , 3)

Hpr (+) is a deep feature extraction module, which includes
K residual Fusion attention modules (RFAB) and a 3 x 3 con-
volutional layer. The intermediate features Fi, Fp, ..., Fg
and the output deep features Fpr are processed one by one
as:

F; = Hgstg; (Fi—1),i=1,2,...,K,
Fpg = Hconv (Fk) , 4

where HRpas; (1) is the i-th RFAB module, and Hconv
is the last convolutional layer. As shown in Fig. 5, the
residual Swin Transformer module is a residual module with
L Fusion attention layers (FAL) and a convolutional layer.
Given the input feature F;o of the i-th RFAB, we first
extract intermediate features F; 1, F; 2, ..., F; 1 by L Fusion
attention layers as:

Fij=Hear,, (Fij-1).j=12,....L, (5

HeaL, () is the jth FAL layer in the ith RFAB. Subse-
quently, a convolutional layer is added before the residual
connection. The output formula of the RFAB is:

Fiou = Heonv; (Fi.L) + Fio. (6)

Hconv; () is the convolutional layer in the i-th RFAB.
Many works have shown [47], [48] that convolution can
help Transformer to obtain better visual representation or
achieve easier optimization. Therefore, we incorporate an
attentional convolution-based channel block into the standard
Transformer block to enhance the representational power of
the network. As shown in Fig. 5, after the first LayerNorm
(LN) layer, a Channel Attention Block (CAB) is inserted.
The CAB module is a network module that utilizes the
channel attention mechanism. It is mainly used to enhance
the deep learning network’s attention to important features,
thereby improving the performance of the network. The
CAB module assigns different importance to the features
of different channels, adaptively evaluates the importance
of each channel (i.e., feature map), and automatically
adjusts the weight distribution between channels according
to task requirements, so that the network can pay more
attention to the current task. A more helpful feature is that
although the CAB module introduces additional computation,
since its operations are mainly concentrated in the channel
dimension, its computational overhead is smaller relative to
spatial dimension operations. The CAB module is parallel
to the Multi-headed Self-attention (MSA) layer to avoid
conflicts between CAB and MSA in optimization and visual
representation. If there is a conflict, multiply a small constant
o by the output of the CAB. Among them, the MSA module
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FIGURE 5. Network structure Image.

and the Self Attention layer are consistent with the standard
Transformer structure [49]. For a given input feature X, the
entire process of FAL is computed as:

Xy =LN(X),
Xy = MSA (Xy) 4+ aCAB (Xy) + X,
Y = MLP (LN (Xp)) + Xu, @)

Xy and Xjs represent intermediate features. Y represents
the output of the FAL. MLP is a multi-layer perceptron used
to calculate the self-attention module. The channel attention
module enhances the performance of deep learning networks
by reinforcing the network’s focus on crucial features
and optimizing the utilization efficiency of these features.
This module achieves performance improvement through
adaptively assigning different weights to the features of each
channel, thereby strengthening the focus on features that are
more important for the current task. Traditional convolution
operations are typically confined to local receptive fields,
meaning that each unit in the output is only able to
access information within its corresponding region, thus
failing to capture contextual information beyond the region.
The channel attention module, however, compresses the
two-dimensional channel features into real-valued numbers
with a global receptive field, effectively capturing the global
distribution information of features in the channel dimension.
This real-valued number reflects the overall importance of
each channel feature. Another advantage of the channel
attention mechanism is that, despite introducing additional
computational steps, these operations primarily target the
channel dimension. Compared to operations in the spatial
dimension, the computational overhead is smaller, enabling
the module to be efficiently integrated into various network
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architectures without imposing significant performance bur-
dens. Given an input feature of size H x W x C it is first
divided into I}/I—vg local windows of size M x M, and then
self-attention is computed within each window. For a local
window function Xy € RM 2x C the query matrix, key matrix,
and value matrix are computed by linear mappings such as Q,

K, and V. Window-based self-attention is formulated as:
Attention (Q, K, V) = SoftMax (QKT JN/d + B) V., ()

Among them, d represents the dimension of the key-value
ratio. B is the relative position code, and the calculation
method is [49]. A CAB consists of two standard convolutional
layers with a GELU activation [50] and a channel attention
module, as shown in Fig. 5. Since the Transformer-based
structure usually requires a large number of channels for
token embedding, directly using constant-width convolutions
will incur a large computational cost. Therefore, we compress
the number of channels of the two convolutional layers with a
constant . For an input feature with C channels, the number
of output feature channels after the first convolutional layer
is compressed to C/f8, and then the feature is expanded
to C channels by the second layer. Next, the channel
characteristics are adaptively scaled using a standard Channel
Attention module [51].

The image reconstruction module aggregates shallow and
deep features into features to reconstruct high-quality images

IRHQ:
Irnq = Hrec (Fo + FpF) , 9

Among them, Hrgc (-) is the function of the reconstruction
module. Shallow features mainly contain low frequencies,
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while deep features focus on recovering lost high frequen-
cies. T-transformer net can directly transmit low-frequency
information to the reconstruction module through residual
connection, helping the deep feature extraction module to
focus on high-frequency information and stabilize training.
For the implementation of the reconstruction module, we use
sub-pixel convolutional layers [52] to upsample the features.
In this task, the Loss function optimizes the parameters of
T-transformer net by minimizing the L1 pixel loss:

Loss = “IRHQ - IHQ ”l s (10)

IRHQ is obtained by taking /1 ¢ as the input of T-transformer
net, and Iyq is the corresponding real image. For classical
and lightweight image SR, we only use the same L1 pixel
loss as previous work, to demonstrate the effectiveness of the
proposed network.

IIl. RESULTS

A. EXPERIMENTAL ENVIRONMENT AND CONFIGURATION
The primary experimental environment utilized Python
3.8.10, PyTorch 1.10.0, and CUDA 11.3. The specific
host configurations are outlined in Table 2, while select
experimental parameters can be found in Table 3.

TABLE 2. Experimental environment.

Hardware Specific Configuration

CPU Intel(R) Xeon(R) Platinum
8255C

GPU RTX 4090

TABLE 3. Experimental parameters.

Experimental Specific Parameters
Parameters

Number of iterations 100000

batch size 4

Initial learning rate 1x1074
optimizer adam

B. EVALUATION METRICS

In the experiment, the evaluation metrics of Peak Signal-to-
Noise Ratio (PSNR) and Structural Similarity Index (SSIM)
were utilized for quantitative assessment. PSNR is one
of the most commonly used metrics for evaluating the
reconstruction quality in lossy transformations, such as image
compression and image inpainting. In the context of image
super-resolution, PSNR is defined in terms of the maximum
pixel value (L) and the Mean Squared Error (MSE) between
images. Given a ground truth high-resolution image /4 with N
pixels and a reconstructed image s, the PSNR between /& and
s is defined as follows:

L2
PSNR = 10 x log Can
’ ( N (I ) — Iy (i)Z))
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In the formula: L = 255 when the image pixel is
represented by 8 bits. PSNR is only related to the mean
square error at the pixel level and only concerns the difference
between corresponding pixels. PSNR is currently the most
widely used evaluation criterion in SR models. SSIM is used
to measure differences in brightness, contrast, and structure
between images. For a real high-resolution image 4 and a
reconstructed image s with N pixels, SSIM is defined as:

Quspn + Cr) Qoo + C2) (wg, + C3)
(U2 + 1} + C1) (02 + 0} + C2) (o500 + C3)
(12)

SSIM =

In the formula: g represents the average value of image
s, o represents the variance of image s, up represents the
average value of image /, o}, represents the variance of image
h, wgy, represents the covariance of image s and image h.

C. EXPERIMENTAL RESULTS OF SUPER-RESOLUTION
RECONSTRUCTION

1) EFFECT OF DIFFERENT HYPERPARAMETERS

We initiated our study by training the network on the
DIV2K dataset [53], followed by testing on the Mangal09
dataset [54]. Evaluating at a magnification factor of 4,
we employed PSNR as the benchmark metric to investigate
the impact of varying channel numbers, RFAB quantities,
and FAL quantities on performance. As depicted in Fig. 6,
the influences of channel number, RFAB quantity, and FAL
quantity on model performance are depicted. The observed
outcomes indicated a positive correlation between PSNR and
these three hyperparameters.

Regarding channel numbers, while performance demon-
strated continuous enhancement with increasing channels,
the total model parameters exhibited a quadratic growth
trend. Striving for a balance between performance and model
size, we opted for 120 channels for subsequent experiments.
Regarding RFAB and FAL quantities, experimental find-
ings revealed diminishing performance improvements with
increasing module quantities. Thus, we chose 6 RFABs
and 6 FALs to achieve a relatively compact model.

2) ABLATION STUDY
We conducted experiments to demonstrate the effectiveness
of the proposed CAB module. This article introduces an
attention-based convolution channel block in the standard
Transformer module. In order to verify that this choice is
reasonable, we replaced the FAL module in the previous
article. After removing the CAB module, the FAL module
was replaced with the standard Transformer module as a
comparison, and then train separately, obtain the weight file,
and test it on the quantitative performance test set of the x4
SR Urban100 data set, and then compare it with the model
effect after adding the CAB module.

As can be seen from the 4, compared with the baseline
results, the performance gain of CAB is 0.1 dB. This result
proves that after the introduction of the CAB module, thanks
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FIGURE 6. PSNR test results under different hyperparameters.

to the channel attention mechanism, the network can better
capture the global information of the image for clearer and
more accurate super-resolution reconstruction.

TABLE 4. Ablation study on the proposed CAB.

SSIM PSNR
v 29.71 0.8362
X 29.61 0.8357

3) COMPARATIVE EXPERIMENT

To explore the reconstruction performance of the
T-transformer net across different datasets, we compared
it with contemporary high-performing reconstruction algo-
rithms, namely EDSR [55], RCAN [51], SAN [56], and
SwinlR [57]. For fair comparison and testing, we employed
an image degradation mathematical model involving Gaus-
sian blurring followed by downsampling on the original
high-resolution images, yielding low-resolution images.
Subsequently, we fed the initial high-resolution images
into the model, enabling network learning and parameter
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optimization to generate the final high-resolution images.
Throughout the experiments, we employed network models
with the same iteration count for scaling factors of 2, 3, and
4 to ensure an objective and sound comparison. A summary
of the experimental results is presented in Table 5.

The experimental results demonstrate the remarkable
performance of the proposed model across various mag-
nification levels and datasets. This better performance
can be attributed to the utilization of a channel attention
mechanism, which enables the network to better capture
global information within images and consequently facilitate
training and reconstruction based on these features. This
mechanism was validated on datasets such as Set 5, Set 14,
and Mangal09, encompassing diverse image subjects and
resolutions. The T-transformer net has a parameter size of
19.8M. Table 6 shows the performance and model size of
other methods. Among these methods, SAN, RCAN, and
SwinlR contain far fewer parameters, but at the expense
of degraded performance. In contrast, our model has fewer
parameters than EDSR but achieves higher performance,
which means that our model can provide a good trade-off
between performance and model complexity.
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TABLE 5. The average PSNR/SSIM score of different models in wheat grain test set.

Set 5 [59] Set 14 [60] Mangal09 [61]
Method Scale PSNR SSIM PSNR SSIM PSNR SSIM
EDSR [55] X2 38.11 0.9602 33.92 0.9195 39.10 0.9773
RCAN [51] X2 38.27 0.9614 34.12 0.9216 39.44 0.9786
SAN [56] X2 38.31 0.9620 34.07 0.9213 39.32 0.9792
SwinlR [57] X2 38.42 0.9623 34.46 0.9250 39.93 0.9800
T-transformer X2 38.73 0.9637 35.13 0.9282 40.71 0.9819
net(ours)
EDSR X3 34.65 0.9280 30.52 0.8462 34.17 0.9476
RCAN X3 34.74 0.9299 30.65 0.8482 34.44 0.9499
SAN X3 34.75 0.9300 30.59 0.8476 34.30 0.9494
SwinIR X3 34.97 0.9318 30.93 0.8534 35.12 0.9537
T-transformer X3 35.16 0.9335 31.33 0.8576 35.84 0.9567
net(ours)
EDSR X4 32.46 0.8968 28.80 0.7876 31.02 0.9148
RCAN X4 32.63 0.9002 28.87 0.7889 31.22 0.9173
SAN X4 32.64 0.9003 28.92 0.7888 31.18 0.9169
SwinIR X4 32.92 0.9044 29.09 0.7950 32.03 0.9260
T-transformer X4 33.18 0.9073 29.38 0.8001 32.87 0.9319
net(ours)

TABLE 6. Computational and parameter comparison (2x Set5).

Method parameter PSNR FLOPs(G)
EDSR 43M 38.11 9387
RCAN 15.7M 38.27 15445
SAN 16M 38.31 15861
SwinIR 11.9M 38.42 11752
T-transformer 20.8M 38.73 17584
net(ours)

180 x 320, respectively. Ultimately, a dataset comprising
4608 training and validation images was compiled.
Subsequently, training and testing were conducted accord-
ing to the parameters outlined in Table 3. The conclusive
experimental outcomes are summarized in Table 7.

TABLE 7. The average PSNR/SSIM score of different models in wheat
grain test set.

Once the network’s efficacy was established, the focus
shifted to the primary objective of this study: three-
dimensional reconstruction of wheat seeds. While the image
data of wheat seeds involve a singular object, namely, the
wheat seed itself, the high similarity in seed texture, coupled
with potential focus-related blurring during image capture,
could lead to partial image blurriness. Should the network
fail to effectively learn the global information of the seeds,
the reconstructed high-resolution images might suffer from
inadequate texture details, thereby jeopardizing the success
of the three-dimensional reconstruction. Thus, employing the
model enhanced with the channel attention mechanism for the
super-resolution reconstruction of original wheat seed images
becomes inherently essential.

Initially, the image sets utilized for training and validation
were determined. Seventy-two original images of the same
wheat seed were downsampled by a factor of four, reducing
their resolutions to 360 x 640. Simultaneously, to control
parameter count during training, the original and down-
sampled images were segmented, dividing each image into
8 x 8 sub-images. Following segmentation, the pixel dimen-
sions of training images and original images were 45 x 80 and
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Method Scale PSNR SSIM
EDSR X4 36.64 0.9075
RCAN X4 36.70 0.9077
SAN X4 36.72 0.9078
SwinIR X4 37.10 0.9232
T-transformer X4 42.89 0.96431
net(ours)

It is evident that our model has achieved remarkable results
in the task of super-resolution reconstruction of wheat grains.
The trained model demonstrates the capability to efficiently
learn and reconstruct the textural features of wheat grains
from a global perspective. As depicted in Fig. 7, the outcomes
of various models applied to the same image are showcased.
These models exhibit variations in their ability to restore
the texture of wheat grains. EDSR models typically divide
the image into fixed-size blocks and operate on each block,
leading to blocking artifacts after reconstruction. Although
RCAN does not directly operate on pixel blocks, the model
selectively focuses on different parts of the image based on
the attention mechanism. However, it struggles to capture
global information effectively, resulting in suboptimal recon-
struction quality. SwinIR succeeds in producing relatively
sharp images, but it may alter the original texture, potentially
causing adverse effects in subsequent processing stages.
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SwinIR

FIGURE 7. Super-resolution reconstruction results of wheat grain.

Thanks to the channel attention mechanism, our network
model excels in restoring the intrinsic texture structure of
wheat grains.

Subsequently, we performed an 8 x 8 segmentation on
the original image, followed by super-resolution processing
while maintaining a consistent 4-fold magnification factor.
The segmented and processed images were then reassembled
to reconstruct the complete image, now possessing a resolu-
tion four times higher than that of the original. This enhanced
image was employed as the input for the subsequent stages of
our three-dimensional reconstruction process.

D. THREE-DIMENSIONAL RECONSTRUCTION
First, we assess the current mainstream 3D reconstruction
methods on the intermediate set of the Tanks and Temples
dataset [60]. They are trained according to the standard train-
ing methods provided by each model, and then images with a
resolution of 1920x 1080 are used as input for reconstruction
on the Tanks and Temples dataset. In the benchmark test,
we employ the F-score [61] as the evaluation index. As shown
in Table 8, Vis-MVSNet [30] ranks first among all methods,
outperforming both classic MVS methods [62] and other deep
learning-based methods. Therefore, in the three-dimensional
reconstruction task, this study adopts Vis-MVSNet as the
reconstruction network.

The reconstruction process framework is shown in Fig. 8.
Structure from Motion (SfM) [25] techniques take a set
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TABLE 8. Quantitative result of the point cloud on the intermediate set of
Tanks and Temples.

Method F-Score
COLMAP [63] 42.14
MVSNet [29] 43.48
Point-MVSNet [64] 48.27
CVP-MVENet [65] 54.03
UCSNet [66] 54.83
CasMVSNet [67] 56.84
ACMM [68] 57.27
Vis-MVSNet [30] 60.03

of images as input and produce two pieces of informa-
tion: the camera parameters of each image and a set of
three-dimensional points visible in the image, which are
usually encoded as trajectories. A trajectory is defined as a list
of the 3D coordinates of the reconstructed 3D points and the
corresponding 2D coordinates in a subset of the input image.
First, the camera pose and parameters are estimated using
SfM techniques. This is followed by a dense reconstruction
phase to generate dense point clouds. Finally, post-processing
steps such as filtering, mesh generation, and smoothing are
executed.

For model training, we utilized the publicly available DTU
dataset [69]. This dataset comprises 128 scenes captured
within controlled laboratory environments using a structured
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FIGURE 8. Frame diagram of Vis-MVSnet reconstruction process.

light scanner. Given the dataset’s diversity encompassing
various objects and materials, it serves as a suitable
benchmark for training and evaluating deep learning-based
Multi-View Stereo methods under real-world conditions.
Although pre-trained models are made available by open-
source methods, their applicability to our research dataset is
limited due to differing task requirements. To address this,
we employed transfer learning based on a pre-trained model.
This approach facilitated fine-tuning of the model’s weights
specifically for our dataset, aiming to achieve enhanced
performance.

After training the three-dimensional reconstruction net-
work, we conducted three-dimensional reconstructions on
both the raw images that had not undergone super-resolution
processing and the images that had undergone super-
resolution reconstruction. Ten wheat grains were randomly
selected from four different varieties, and four distinct
viewpoints were chosen for each grain. Subsequently, the
reconstruction results of these viewpoints are compared
with their corresponding original images, as illustrated in
Fig. 9. The four viewpoints of the front, back, and sides
are used as the reference viewpoints. Due to limitations in
the image acquisition process, this analysis cannot be further
completed. Since the top and bottom views of the wheat
grain were not obtained, the top and bottom views cannot
be used as indicators to measure the reconstruction results.
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The SSIM is used as a quantitative metric to evaluate the
comparison between the reconstruction results, ensuring a
direct comparison between the perspective of the model and
that of the image. The average of these results is listed in
Table 9.

TABLE 9. Effect of super-resolution reconstructed image and original
image on SSIM score of 3D reconstruction.

Image type SSIM
Original image 0.4514
Super-resolution reconstructed image  0.6273

Compared to the outcomes based solely on the original
images, the results achieved with super-resolution reconstruc-
tion demonstrated an improvement in SSIM from 0.4514 to
0.6273, marking a significant enhancement of 38.96%. These
outcomes suggest that employing super-resolution techniques
in the task of three-dimensional reconstruction can notably
increase the SSIM of the results, thus improving the overall
quality of the final three-dimensional model.

As illustrated in Fig. 10, the model obtained after
super-resolution reconstruction presents a more detailed
three-dimensional structure than the model created using
only the original images. This improvement is due to
addressing the focus issues encountered during the image
acquisition of the original dataset, which resulted in blurred
textures. These blurred textures impede accurate feature
matching during the reconstruction process, leading to
structural incompleteness.

Through the utilization of super-resolution networks for
reconstruction, the network learns the process of grain
texture restoration, transitioning from low-resolution to high-
resolution image reconstruction. This acquired capability
allows the post-super-resolution reconstructed images to
effectively mitigate issues such as texture sparsity, repetitive
patterns, and faint textural details within the images. The
outcomes of the super-resolution reconstruction authentically
capture the three-dimensional characteristics of wheat
kernels.

Through the collaborative synergy of the super-resolution
neural network and the three-dimensional reconstruction neu-
ral network, we are convinced that the network demonstrates
proficiency in learning the textural and spatial attributes of
wheat kernels. Subsequently, this acquired knowledge is then
applied to our reconstruction task. Experimental data sub-
stantiate that employing images undergoing super-resolution
reconstruction markedly improves the restoration of textural
information pertaining to wheat kernels, which in turn facili-
tates the matching and reconstruction processes conducted by
the three-dimensional reconstruction network.

In the process of sparse reconstruction and dense recon-
struction, it has been observed that even with preprocessed
images, the generated point clouds still contain a significant
amount of noise related to the background. This complication
renders direct filtering of the dense point cloud challenging,
as the filtering procedure might inadvertently eliminate not
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FIGURE 9. Comparison of original image and 3D reconstructed model from the same perspective.

(a) based on original image

(b) based on super-resolution recon-
structed image

FIGURE 10. Comparison of 3D reconstruction results based on original
images and super-resolution reconstructed images.

only noise and errors but also essential three-dimensional
points within sparse regions, thereby impeding subsequent
mesh generation. Given this scenario, a novel approach of
mesh generation followed by smoothing has been devised.

62894

As depicted in Fig. 11(a), the presence of noisy points
within the point cloud can lead to a considerable impact
on the surface of the mesh model constructed based on
the point cloud. To enhance the model’s coherence, post-
processing is imperative, with a key step involving the
application of a smoothing procedure. By leveraging the mesh
construction information and normal vectors, the model
undergoes a smoothing process, as delineated in Fig. 11(b)
and Fig. 11(c). Through multiple iterative smoothing iter-
ations, remarkable enhancements in model quality are
achieved.

After subjecting the grid models to a smoothing process,
we employed Meshlab to efficiently convert them into point
cloud models in bulk. This transformation facilitated the
acquisition of uniformly distributed and pore-free point cloud
models, rendering them suitable for subsequent research
purposes. As depicted in Fig. 12 and Fig. 13, a representation
of the diverse varieties of wheat grains, processed using the
methodology outlined in this study, is displayed. Despite the
minor differences in surface texture patterns and dimensions
among the various wheat grain varieties, our reconstruction
approach facilitated the successful generation of clear and
structurally sound three-dimensional models for all strains.
These outcomes underscore the robust generalizability of our
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FIGURE 11. Model smoothing comparison.

(b) after single smoothing

(¢) after multiple smoothing

(a) Huaimai 22

(b) Wanke 189

(¢) Zimai 19 (d) Yangmai 15

FIGURE 12. The front results of 3D reconstruction of wheat grains of different varieties.

proposed refinement model, allowing for its broad applica-
bility in the procurement of three-dimensional models across
different wheat varieties. Simultaneously, this establishes a
solid foundation for extending the model’s utility in practical
real-world scenarios.

Through this study, we have demonstrated the successful
implementation of three-dimensional reconstruction using
our method on wheat grains of different varieties. The
obtained 3D point cloud model is more accurate than those
models processed without the T-transformer net, which
verifies the effectiveness and versatility of our method and
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provides important insights for future applications in the
agricultural field.

In summary, this study achieved a more accurate and
high-throughput three-dimensional reconstruction of wheat
grains by combining super-resolution processing with neural
network methods. This lays the foundation for subsequent
wheat phenotypic measurements and the exploration of
the relationship between the three-dimensional structure,
physicochemical properties, and grain quality.

With our methodology, we not only attain high-quality
three-dimensional models of wheat grains but also gain a
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FIGURE 13. The back results of 3D reconstruction of wheat grains of different varieties.

deeper understanding of their characteristics in terms of
texture, structure, and more. This offers a novel perspective
and toolset for further studying aspects like wheat growth,
development, and quality. Furthermore, the high-throughput
nature of our approach enables swift processing of numerous
wheat grain samples, providing robust technical support for
large-scale experiments.

IV. CONCLUSION

This study introduces a wheat grain reconstruction method
based on the T-transformer net. The method utilizes SwinIR
as the backbone network, combined with a channel attention
mechanism, thereby achieving a significant improvement in
accuracy. Through evaluation using standard datasets, both
the PSNR and the SSIM of the images have improved by
over one percentage point. When evaluated on a custom-
built dataset, the PSNR and SSIM of the reconstructed
images reached 42.89 and 0.96431, respectively. This rep-
resents an improvement of 15.60% and 4.45%, respectively,
compared to the original network, achieving the highest
scores compared to existing networks. Thanks to the channel
attention mechanism, our network model effectively restores
the original texture structure of wheat grains, outperforming
previous approaches.

Subsequently, we trained the Vis-MVSnet network and
conducted three-dimensional reconstruction on the super-
resolved images, achieving satisfactory reconstruction accu-
racy. This method successfully addresses the challenges
encountered when capturing two-dimensional images of
wheat grains, such as the difficulty in obtaining high-
resolution, clear, and accurately textured RGB images.
Additionally, due to the symmetrical geometric character-
istics of wheat grains, multiple groups of pixel blocks are
highly similar, making it difficult to differentiate them and
leading to stereo matching errors. Ultimately, we successfully
reconstructed a batch of high-quality three-dimensional
models of wheat grains, laying a solid foundation for
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subsequent work in phenomics, plant breeding, and research
on the relationship between the three-dimensional structure
and the physicochemical properties of grains. This effort
bridges a gap in the field of real three-dimensional models
of wheat grains.

Howeyver, this research method still has some limitations.
Three-dimensional models obtained through passive methods
lack real-scale information, which may limit the model’s
accuracy in certain applications. Additionally, highly accu-
rate models often come with a large number of parameters,
leading to slower reconstruction speeds. Therefore, further
research is needed in the future to address these limitations
and continuously optimize and develop this method. This
could include exploring more efficient methods to obtain
scale information, as well as using techniques such as model
pruning and acceleration to improve reconstruction speed.
The selection of wheat grain varieties did not consider the
specific differences between different varieties. We only
used the 2023 Chinese varieties of wheat grains available
for this experiment as samples to create a dataset and a
test set. Whether specific varieties of wheat grains exhibit
the same high quality effects still requires further experi-
mentation. These efforts will further drive the development
of wheat grain three-dimensional reconstruction methods,
bringing greater impact to the fields of agriculture and plant
science.
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