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ABSTRACT Although significant efforts have been made to enhance industrial air conditioning systems,
there are still efficiency and transient response issues in vehicle air conditioning systems using IPMSM
compressors. This paper focuses on the neural network compensator-based control in an interior
permanent-magnet synchronous motor (IPMSM) to address the occurrence of reduced power copper loss
efficiency and degraded velocity response in the motor system when confronted with periodic dynamic
disturbances of step signals. This paper encompasses two main objectives: the first objective is to introduce
a neural network (NN) compensator to improve the power copper loss efficiency. The NN compensator is
developed using the velocity loop and current loop control model equation of an IPMSM, and trained to
implement optimal compensation control based on the back propagation algorithm. The second objective is
to optimize the dynamic performance of velocity response compared to the traditional maximum torque
per ampere (MTPA) current control method under step disturbance and dynamic control conditions by
building an experimental system for validation, incorporating both hardware and simulation. Another
significant advantage is the low computational load introduced by the neural network compensator, rendering
it well-suited for implementation within low-order DSP systems. The results indicate that the neural
network compensator surpasses conventional MTPA control method in both simulation and hardware-based
implementations concerning power copper loss and velocity response in an IPMSM control system.

INDEX TERMS Interior permanent-magnet synchronous motor (IPMSM), neural network (NN), back
propagation (BP), dq axis synthesis current control.

I. INTRODUCTION
In recent years, global warming and the depletion of energy
resources have become increasingly serious. Moreover, the
protection of the global environment and the stable supply
of energy are recognized as global challenges. In the
context of improving industrial air conditioning systems,
dynamic response is equally important. Especially when
dealing with situations that require periodic signal control,
fast response and reduced errors are crucial aspects when
studying transient characteristics. The interior permanent
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magnet synchronous motor (IPMSM) has gained popularity
due to its advantageous features, including high power factor,
high power density, and fast dynamic response. Numerous
active research efforts have been dedicated to maximizing
both efficiency and velocity performance [1], [2]. Many
researchers have conducted simulations and experiments
studies focused on PMSMs [3], [4], aiming to design velocity
control systems and current control systems.

Enhancing the performance of IPMSMs can be achieved
not only through hardware design but also by implementing
control methods. The MTPA algorithms have their origins
in techniques aimed at minimizing motor power losses,
which were developed to enhance the efficiency of the
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motor or the power converter-motor system. This can help
improve the efficiency of the motor system and reduce
energy waste. However, in the presence of certain specific
dynamic disturbances, the power dissipation in the motor
could experience an increase, and the velocity response may
not be outstanding.

Some online MTPA improvement algorithms have been
subject to certain classifications [5] in the latest publications,
such as parameters estimation, signal injection, and perturb
and observation, have their own limitations. Parameter
estimation methods [6], [7] require knowledge of certain
parameter relationships and may not be accurate in highly
saturated motors. Signal injection methods [8], [9] are
effective only in low-noise environments and may introduce
additional small losses to the system. Perturb and observation
methods [10] are sensitive to changes in the load and are
limited to steady-state conditions. All these online MTPA
technique methods also require processors with relatively
high performance to handle real-time processing. The
other major category of offline MTPA algorithms, includes
analytical, parameter calculation, simplified formula, and
scalar control methods. Analytical methods [11] are generally
applied when motor parameters remain constant. Parameter
calculation methods [12], [13] require some previous exper-
iments to identify dependencies of motor parameters and
involve significant computational effort. Simplified formula
methods [14] also require previous knowledge to create
approximate functions. Scalar control methods [15] are only
suitable for simple applications and are not taken into account
for parameter variations.

The characteristics of the compressor determine that each
cycle consists of three stages: aspiration, compression, and
exhaustion. During operation, different pressure intensities
result in varying load torques in the aspiration and exhaustion
stages. When the speed regulator fails to counteract these
changes, it causes periodic speed fluctuations [16]. Therefore,
artificially introducing periodic signals is used to replace
the speed fluctuations. In summary, after applying periodic
step disturbances, the existing MTPA algorithms result
in increased power copper loss and deteriorated dynamic
performance [17], [18], [19]. The neural network algorithm,
when confronted with periodic step disturbances, adapts
to these disturbances through back propagation, thereby
achieving higher efficiency and better velocity response
compared to the conventional MTPA algorithm. American
physicist Hopfield proposed a fully connected neural net-
work, the Hopfield network model [20], and he introduced
the concept of network function for the first time. In 1986,
Rumelhart and McClelland proposed the back propagation
neural network (BPNN) algorithm for multilayer feedforward
networks [21], later referred to as the BPNN algorithm, which
solved the problems that perceptual machines could not and
instilled a strong catalyst for the widespread use of neural
networks, and to date, the BPNN remains the most successful
neural network learning algorithm. Neural networks have

experienced significant advancements and demonstrated
remarkable outcomes from theoretical perspectives, partic-
ularly regarding their computational power, capability to
approximate arbitrary continuous mappings, learning theory,
and stability analysis of dynamic networks [22].

This paper develops a novel control strategy: NN
compensator-based current control for a PMSM trained
using back propagation [23], [24], [25] method. It is worth
emphasizing that the NN compensator is trained entirely
offline under various simulated environments, enabling it
to adapt and respond in real-time to continuously changing
motor parameters [26]. This yields some additional key
advantages of the NN compensator control method. The
first one is the compensator exhibits significant adaptability,
eliminating the need for frequent retuning whenever there
are minor changes in the motor parameters. Secondly,
computational cost at runtime is not so high, making it
easy to implement in low-cost hardware. The final one is
because of completed offline training, the weights of the NN
compensator remain stable during runtime and do not lead to
instability. The stability of the well-trained NN compensator
for IPMSM control at runtime is validated through a test set
and hardware experiment. This paper demonstrates the NN
compensator’s improved performance, under both simulation
and hardware conditions as compared to the conventional
control methods.

The rest of this paper is structured as follows. Section II
covers the basic equations of the IPMSM and conventional
vector control. Section III elaborates on the NN Compensator
control proposed method. Section IV shows the simulation
and experiment results of the proposed method. Section V
gives the conclusion. Finally, this paper concludes with a
summary of the main points.

II. CONVENTIONAL VECTOR CONTROL
A. PMSM MODEL
In general, the mathematical model of a PMSM is based
on the Park transformation and can be expressed in the dq
synchronous rotating coordinate as follows(

vd
vq

)
=

(
Rs + Ld ·

d
dt −ωeLq

ωeLd Rs + Lq ·
d
dt

)(
id
iq

)
+

(
0

ωeψf

)
(1)

where Rs is the resistance of the stator winding; ωe is the
motor electrical rotational velocity; vd , vq, id , and iq, are the
d and q components of instant stator voltage and current; Ld
and Lq are the stator and rotor d and q axis inductances; and
ψf is the flux linkage produced by the permanent magnet.

The torque balance equation of a PMSM is

Te = J
dωm
dt

+ TL + Baωm (2)

where J is the inertia of the motor; ωe is the motor rotational
velocity; Ba is the friction coefficient; TL is the load torque;
and Te is the electromagnetic drive torque. Depending on the
type of the PMSM, an interior PMSM, Te can be expressed
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FIGURE 1. System configuration of NN Compensator-based vector control of PMSM.

as follows:

Te = Pn
[
ψf iq + (Ld − Lq)id iq

]
(3)

in whichPn represents the number of motor pole pairs. Lastly,
the relation between ωm and ωe is given by

ωe = ωm · Pn (4)

B. CONVENTIONAL MTPA CONTROL
From (3), it can be observed that when id = 0, there
is a partial waste of torque, leading to inefficient current
utilization and a decrease in system efficiency. Therefore,
a reevaluation of the control strategy is necessary for IPMSM.
In order to find the optimal match between current and torque,
minimizing current while maximizing torque is essential.

In this situation, id can be deduced from the stator current
is. is can be represented as follows

is =

√
i2d + i2q (5)

After that, id should be derived

id =

−ψf +

√
ψ2
f + 4

(
Ld − Lq

)2i2q
2

(
Ld − Lq

) (6)

From the above equations one can notice that the MTPA is
a fixed locus as long as themotor parameters remain constant.
However, in practical applications, motor parameters often
experience uncertain variations due to increases in system
operating fluctuations in rotational velocities. This will
subsequently lead to a deterioration in the performance of
the conventional MTPA algorithm, resulting in lower system
efficiency and degraded transient velocity characteristics.

III. NN COMPENSATOR-BASED CONTROL
To address the issues of motor power copper loss and
deteriorated dynamic performance in conventional MTPA

control under periodic step disturbances, a novel neural
network compensator, utilized prior to the generation of d
axis and q axis current command values, has been proposed.
The reason why neural networks have attracted great interest
as a new technology and are increasingly used in the field of
control [27], [28], [29], [30], [31], [32], [33] is that, compared
to conventional MTPA control techniques, they have the
following advantages

(1) It has a nonlinear mapping capability. Neural networks
are capable of adequately approximating arbitrarily complex
nonlinear relationships, which is of great interest to control
researchers.

(2) It possesses adaptive capabilities. Neural networks
exhibit strong adaptive capabilities, allowing them to contin-
uously and adaptively adjust network weights to learn and
adapt to the dynamic properties of highly uncertain systems.

(3) It possesses a generalization function. Neural networks
can process untrained data and derive appropriate solutions
corresponding to them. Moreover, they can handle noisy or
incomplete data, demonstrating excellent fault tolerance. The
generalization capability is highly valuable for many real-
world problems, as data collected in real-world scenarios is
often tainted by noise or incompleteness.

(4) It is suitable for multivariate systems. The inherent
structure of neural networks, which supports multiple inputs
and multiple outputs, makes them well-suited for addressing
multivariate problems.

A. NN COMPENSATOR WORKFLOW
Neural networks can serve effectively as compensators to
optimize the motor control system based on the aforemen-
tioned characteristics. The NN compensator is implemented
as shown in Fig. 1. The outer velocity loop and the inner
current loop remain unchanged. The process of designing a
neural network compensator consists of two steps. First, the
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FIGURE 2. Generation steps (data acquisition, training, verification, and application) of the NN compensator.

structure of the neural network should be specified. Second,
the NN Compensator needs to be trained, which is similar to
the tuning process of a conventional controller.

Fig. 2 shows the overall generation steps of the NN
compensator in the motor system, covering the entire
process from data acquisition to experimental application.
Initially, the motor’s parameter data and operational data
are obtained from the DSP and PMSM of the experimental
platform, constituting the training dataset. Subsequently,
various structures of the NN compensator are generated
and trained using the training dataset. During the training
process, i∗p, ip, ω

∗, and ω are utilized as inputs and outputs
of the compensator. In the verification phase, the structural
parameters of the best-performing NN compensator are
applied to the experimental setup. Once the training is
complete, this NN compensator can be continuously used
in experimental operations without the need for additional
training, and the computationally intensive backpropagation
is only performed in simulation.

B. NN COMPENSATOR STRUCTURE
Fig. 3 shows the whole neural network structure, including
the diagrammatic representation of back propagation (BP).
The BP structure consists of four different layers, namely
an input layer, two hidden layers, and an output layer. The
input layer uT contains four input vectors while yT contains
two output vectors. Two of these inputs comprise the dq
current vector synthesis amplitude ip and its command value
ip∗, and the other two comprise the motor velocity ω and
its command value ω∗ in (7). One of the output vectors is
the angle of dq axis vector decomposition θI ∗ and another
is the compensation quantity of the dq axis synthetic vector
current iN . A two-hidden-layer NN was selected because it
generally yields a stronger approximation ability [34] than
a one-hidden-layer NN. The number of nodes 10 in each
hidden layer vT and zT given in (7) was selected via the

FIGURE 3. Neural networks compensator structure.

trial-and-error method. The NNs were also investigated
with more hidden layers and more nodes in each hidden
layer–but no major improvement was found. The computa-
tional burden was considered with fewer layers and fewer
nodes in each hidden layer, but compensation performance
deteriorated. 

uT 1
= [i∗p, ip, ω

∗, ω]

yT 1
= [θ∗

I , iN ]

vT 1
= [v1, v2, . . . , v10]

zT 1
= [z1, z2, . . . , z10]

(7)
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W(k) and b(k) represent the weight matric and bias matric
for each layer in Fig. 3 respectively. v̄, v, ȳ, y are the
intermediate vector matrices for the computation of the two
middle layers in the neural network. z̄, z are the output vector
matrices of the output layer. Their relationship is as shown
in (8). γ is the activation function, chosen as the leaky Relu
function in (8). For the portion of the Leaky ReLU activation
function where the input is less than zero, gradients can still
be computed (unlike ReLU, where it is zero). This helps to
avoid the gradient direction zig-zagging issue.

γ (v̄i) = vi
γ (ȳk) = yk
γ (z̄l) = zl

γ (x) =

{
x, x > 0
αx, x ≤ 0

(8)

where v̄i, z̄k , ȳl are the elements of v̄, z̄, ȳ, respectively.
Generally, α is typically around 0.01, here it is set to 0.017.

In Fig. 3, there is also a section that explains the process of
back propagation. Two teacher signals have been chosen as
references for back propagation, serving as supervision for
neural network learning. On the one hand, the error of the dq
axis vector synthesized current is utilized for compensating
the control angle of the dq axis current. On the other hand,
the output of the velocity loop is selected as the reference for
compensating the dq axis vector synthesized current. These
two terms are defined by (9). The performance criterion
J is then defined as (10) where the summation is carried
out over all patterns in a given set S. The gradient of the
performance function with respect to W is computed as ∇W
and W is adjusted along the negative gradient as (11). The
bias gradient updates are also the same as (11). From a strictly
theoretical perspective, the adjustment of parameters should
involve the computation of the gradient of J in parameter
space. However, in common practice, parameter adjustments
are made at each time step, considering the error at that
specific moment and a small step size η.{

eT 1
= [Teq ,Tω]

Teq = i∗p − ip,Tω = i∗pf
(9)

J =

∑
s

∥e∥2 (10)

W(k)
= W(k)

− η∇W(k)J

b(k) = b(k) − η∇b(k)J (11)

where ∇ called nabla, is an operator used in mathematics
(particularly in vector calculus) as a vector differential
operator.

Next, it is evident that u, v, z, γ ′(v̄), γ ′(z̄) and γ ′(ȳ), as well
as the error vector matric e, are used in the computation of the
back propagation gradient, where γ ′(x) is the derivatives of

the γ (x) with respect of x. δ, δ̄ and δ are the intermediate
variables at each layer in back propagation calculations
respectively. {2×10}, {10×10} and {10×4} multiplications

FIGURE 4. Space vector decomposer.

TABLE 1. PMSM data used in experiment.

are used to compute the partial derivatives with respect to
the elements of each layer in W. The weight matrices in the
derivative computation network exhibit an identical structure
to those in the original network, although the signal flow is
reversed. This rationale supports the adoption of the term
‘‘back propagation.’’

Finally, the space vector decomposer was shown in Fig. 4,
they are used for re-computing the dq axis current by (12).

i∗d = −i∗p sin θ
∗
I

i∗q = i∗p cos θ
∗
I (12)

C. NN OFFLINE TRAINING MECHANISM
The NN Compensator is trained to approximate optimal
control by using gradient descent to adjust the weights
of the NN until the most suitable output is obtained.
As shown in Fig. 1, the NN compensator receives the dq
synthesized current and angular velocity feedback signal
from the IPMSM. Thus, the output control action of the NN
at time step k changes the output current and angular velocity
of the IPMSM at time step k+1, the output motor current and
angular velocity then change NN inputs at time step k+1 and
then, the NN output control action at time step k + 1 is
modified. This recursive process continues, incorporating the
IPMSM using the compensation values and NN similar to
a recurrent NN. This neural network compensator is shown
in Fig. 5, unrolled in time, illustrating the neural network
corrects and compensates for the state of the motor and how
the IPMSM and the NN compensator interact with each other.

IV. SIMULATION AND EXPERIMENTAL RESULTS
ANALYSIS
To demonstrate the effectiveness of the proposed IPMSM
system control compensator, the NN Compensator of the
IPMSM control system has been considered in two IPMSM
cases: one for simulation and one for hardware experiment.
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FIGURE 5. Neural networks compensator feedback loop.

TABLE 2. PMSM partial parameters changed data used in simulation.

The simulation case uses the parameters of an IPMSM that
are typically abstracted from the laboratory IPMSM. The
hardware experiment is based on a laboratory IPMSM, which
is used for an air compressor and also mainly for the purpose
of experimental validation.

A. SIMULATION ENVIRONMENT
To align more closely with the experimental conditions,
the simulation emulated variations in motor parameters that
were expected to arise during the experiments. Table 1
provides all the nominal motor parameters from experiments,
while Table 2 presents partial data after changes to motor
parameters. Fig. 6 shows the step disturbance introduced in
the simulation. Fig. 7 demonstrates the variations of certain
parameters of the neural network compensator during the
learning process. For instance, Fig. 7(a) illustrates the teacher
signal, while Fig. 7(b) presents a randomly selected layer
weight. After applying periodic step disturbance signals, both
the teacher signal and layer weight gradually adapt to the
disturbances and eventually stabilize. These findings indicate
that the neural network compensator is capable of learning
and adapting to disturbances and motor parameters changes,
resulting in performance optimization in the IPMSM control
system.

B. SIMULATION ANALYSIS
Initially, by introducing a single step disturbance to stabilize
the NN compensator’s training, testing was carried out.
The outcomes for the d axis current id and the dq vector-
synthesized results ip as depicted in Fig. 8, were acquired.
In comparison to the traditional MTPA method, there is a
certain level of optimization.

FIGURE 6. Step disturbance introduced in simulation.

Fig. 9 shows the velocity response and power copper loss
efficiency of the IPMSM control system after incorporating
the neural network compensator. The d axis current is an
important variable for current control, as shown in Fig. 9(a).
The dq axis vector-synthesized current significantly affects
the IPMSM control system’s power copper loss efficiency,
as demonstrated in Fig. 9(b) and Fig. 9(c). After adapting
for the initial few periods, Fig. 9(b) illustrates the NN
compensator has a clear learning ability in response to
disturbances, with the power copper loss efficiency gradually
increasing as the dq axis vector-synthesized current ip
decreases. In contrast, the traditional MTPA algorithm lacks
any ability to adapt to error signals, fluctuating with the
disturbances in the error signal. Additionally, in order to
enhance the dynamic performance of the system, the neural
network compensator adapts to the disturbances, resulting
in remarkable improvements in the velocity response ω∗,
as shown in Fig. 9(d). Both the overshoot and settling time
experience substantial enhancements.

After undergoing disturbances many times and motor
parameters changing, these findings indicate that the neural
network compensator effectively mitigates disturbances and
optimizes the IPMSM control system’s performance.

C. EXPERIMENTAL ENVIRONMENT
After evaluating the system performance by simulation, the
motor control algorithm was compiled and deployed to the
experimental IPMSM drive control system, as presented in
Fig. 10. Moreover, to analyze the system, the system data
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FIGURE 7. The learning parameters of the neural network compensator. (a) teaching signal. (b) a sample of
weight.

FIGURE 8. Simualtion results for comparison of currents after applying step disturbance signal
one-time. (a) d axis current. (b) dq axis synthesized current.

were transmitted to MATLAB Simulink by the SCI function,
integrated into the DSP with a sampling frequency of
2 kHz. The experimental system involves an IPMSM coupled
to a generator, an inverter, a control circuit, and a DSP
RH850/C1M-A2. The DSP RH850/C1M-A2 is equipped
with peripheral functions ideal for motor control of traction
inverter applications for HEV/EV, such as an R/D converter
(RDC3A) that converts the output signal of the position
sensor into digital angle data, and a motor control unit
(EMU3) that can operate in parallel. Moreover, it has a
320 MHz CPU, 2 MB Flash, 16-bit/12-bit ADCs, 12-bit
DACs, SubCPU, etc. The parameters of PI controller are set
asKp = 0.07,Ki = 0.0001. Themembership function’s values
are set the same as the simulation configuration except for
the velocity. Furthermore, due to certain voltage limitations
imposed by the experimental platform, the amplitude of the
step disturbance signal introduced in the experiment has been
reduced by a factor of 10, while other characteristics remain
unchanged.

D. EXPERIMENTAL ANALYSIS
After the motor goes through the startup mode, a step
disturbance is introduced during steady-state operation using
the NN compensator. MTPA control is an optimization based
on the id = 0 control method. However it lacks good dynamic

TABLE 3. Power copper loss calculations from the experiment platform.

performance in motor parameters change and is challenging
to perform precise complex calculations in engineering, thus
unable to fully exploit the motor’s optimal performance.
Firstly, Fig. 11 represents the motor’s current performance
with a single-step disturbance applied. It is clearly shown that
the neural network compensator compensates for the d axis
current based on the step disturbance in Fig. 11(a), and also
optimizes the recovery of the dq axis synthesized current to a
steady-state trend in Fig. 11(b).

Second, in the experiment, periodic step disturbances
were applied similarly to the simulation, but with a longer
disturbance period of 10 seconds. However, consistent
results were obtained, similar to those observed in the
simulation. The NN compensator underwent learning during
each application of the disturbance. The trends in the changes
of the d axis current and the synthesized dq axis current
are essentially the same. Fig. 12(a) illustrates the specific
changes in the learning adaptation step response error of
the d axis current. The d axis current gradually stabilizes
from the initial maximum value of −0.549 A to −0.231 A.
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FIGURE 9. Simulation results for comparison of efficiency and dynamics after applying step
disturbance signal. (a) d axis current. (b) copper loss. (c) dq axis synthesized current. (d) velocity
response.

FIGURE 10. Experiment test bench. (a) block diagram. (b) experiment hardware platform.

Additionally, within each cycle, the d-axis current also
adapts to changes in the step disturbance applied during
one cycle, transitioning from −0.216 A to −0.143 A. From
Fig. 12(c), the first kinds of learning occurred during
the entire process from the 0 s to the 20 s, resulting
in a significant decreasing trend in the overall dq axis
synthesized current. The maximum value of the current
gradually decreases from 7.69 A to around 5.67 A over
each period and stabilizes. One of the second kinds of
learning occurred around the 30 s, within one period of
applied disturbance, exhibiting a detailed gradual recovery
trend from 5.58 A to 4.69 A of the dq axis synthesized
current to steady-state. Similarly, the power copper loss and
dq synthesized currents exhibit the same changing trend
in Fig. 12(b).

In Fig. 12(d), after going through the startup state, the
overall overshoot at each period in the velocity response is
smaller compared to the conventional MTPA control, and the
velocity response fluctuations are reduced, resulting in amore
stable overall performance. It can be observed that the NN
compensator optimizes the current performance of the motor
and dynamically improves the velocity response, enabling the
motor control system to better cope with step disturbances.
Although not as pronounced as in the simulation, it still
exhibits significant optimization.

The detailed data presented in Table 3 reveals an average
improvement of approximately 7% in the motor’s power
copper loss efficiency after adapting to disturbances and
motor parameters changed. This indicates that the neural net-
work compensator effectively compensates for disturbances
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FIGURE 11. Experiment results for comparison of currents after applying step disturbance signal one-time.
(a) d axis current. (b) dq axis synthesized current.

FIGURE 12. Experiment results for comparison of efficiency and dynamics after applying step disturbance
signal. (a) d axis current. (b) copper loss (c) dq axis synthesized current. (d) velocity response.

in the dq axis current of the motor under step disturbance
conditions, resulting in enhancing the power copper loss
efficiency.

V. CONCLUSION
IPMSMs find wide application in the field of electric drives,
particularly in electric vehicles and air compressors. This
paper proposes a neural network compensator control method
to overcome the limitations of MTPA control approaches.
It describes how to utilize the neural network compensator
to achieve dynamic improvements and enhance power
efficiency under step disturbance, with the neural network

trained offline for experimental use. The proposed control
algorithm was designed in MATLAB Simulink and deployed
to the real-time platform, based on a RH850/C1M-A2.

Compared to MTPA control, the neural network compen-
sator exhibits the fastest response speed, lowest overshoot,
and overall superior performance. Furthermore, since the
neural network is trained under step disturbance, it demon-
strates remarkable performance when sampling time changes
and system parameters become difficult to identify, especially
in hardware experiment conditions.

Under hardware experimental conditions, the conventional
MTPA control method usually requires readjustment when
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disturbance signals are applied and motor parameters real-
time change. In contrast, the neural network compensator
after adapting to disturbances retains great dynamics perfor-
mance and higher copper loss efficiency under step distur-
bance conditions, making it feasible to implement the neural
network compensator in practical IPMSM environments.
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