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ABSTRACT The rapid advancements in deep learning have revolutionized the field of computer vision.
However, despite the significant progress in computer vision, there remains a scarcity of research focused
on utilizing this technology for distance estimation. Exploring such studies can bring immense convenience
to people, especially in applications like anomaly object detection. On that account, this research proposes
an improved detection model based on You Only Look Once version 8 (YOLOVS) namely YOLOv8-CAW,
which is capable of both detecting target objects and accurately calculating their distances. The proposed
method involves incorporating the Coordinate Attention and Wise-IoU into the YOLOvS8 network, enhancing
the detection accuracy. Combined with the distance estimation algorithm, results in a comprehensive output
that includes both detection results and calculated distances. At the end of the experiment, a substantial
improvement in performance metrics was observed, the model achieved increases in recall (0.4%), pre-
cision (2.2%), and Mean Average Precision (mAP) (1.5%) within the 0.5 to 0.95 threshold range, while
maintaining inference speeds similar to the baseline model in PASCAL VOC dataset. Besides that, distance
estimation achieved an approximate average accuracy of 90% which shows the results are highly encouraging
and promising. The successful integration of computer vision and distance estimation opens new possibilities
for practical applications, showcasing the potential of this approach in real-world scenarios.

INDEX TERMS You only look once (YOLO), deep learning, object detection, distance estimation, attention
module, loss function.

I. INTRODUCTION

Computer vision has undergone a revolutionary transforma-
tion with the rapid advancements in deep learning. The appli-
cation of deep learning techniques has significantly enhanced
the capabilities of computer vision systems, enabling them to
perform tasks with unprecedented accuracy and efficiency.
With creative and reasonable use, computer vision tech-
niques can even complete tasks that humans cannot. To date,
computer vision has been developed with many interesting
applications, authors in [1] has completed research that uses
computer vision techniques to calculate an object’s width
and height, [2] has integrated the processing of images from
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visual and infrared cameras for forest fire detection, [3] has
used computer vision techniques for violence detection in
video, and yet, all of these are just a tiny fraction of the
potential that computer vision has.

Given the potential power of computer vision techniques,
this research proposes a distance estimation technique that
adopts YOLOVS, developed by Jocher et al. [4] as its founda-
tion. In real life, people need to estimate distances in various
situations, For both industrial and daily needs. For example,
in a pipeline cleaning company, if the dirt inside can be
discovered knowing the exact location, it could help speed up
the cleaning process and thus maximize productivity. Besides
that, if the distance between the cars can be detected, and
an early signal could be sent to the drivers, it may help
reduce the risk of exposure to accidents. These examples have
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inspired us to carry out research to better estimate the distance
between objects by using the computer vision principle.

In this paper, we report a modified improved YOLOVS
architecture namely YOLOv8-CAW for object detection that
achieves better results on a variety of devices is proposed,
by modifying the original YOLOvVS architecture. Firstly,
the YOLOVS-CAW model is integrated with the Coordinate
Attention (CA) module proposed by Hou et al. [5] which
aimed to improve the model accuracy without significantly
increasing the model size. Secondly, the original YOLOv8
Complete Intersection over Union (C-IoU) loss function
developed by Zheng et al. [6] is replaced by the Wise-IoU
(WIoU) loss function developed by Tong et al. [7] which
led to a better training convergence. For distance estimation
detection, the ratio calculation method is used to compare the
average size of the object in the real world with the size of
the object when it is captured in computer vision to estimate
the distance between the object and the camera, details will
be explained in Section III. The rest of the paper is organized
as follows, Section II reviews the state-of-the-art research on
object detection and distance estimation. Section III describes
the proposed method in detail, while Section IV presents
the experiment setup, Section V will discuss the experiment
result, lastly, Section VI will give a short summary of our
findings.

Il. RELATED WORK

The discussion is structured into two distinct sections:
(A) Concentrating on object detection techniques and their
real-world applications. (B) Expanding on the implementa-
tion of the distance estimation component.

A. OBJECT DETECTION

In the current object detection research direction, the YOLO
object detection model or other object detection models, as an
emerging topic, has been subject to repeated experimentation
and enhancement by researchers. Each researcher has their
own set of methods for improving the overall performance
and capabilities of the model. Researchers in [8] proposed
that, rather than solely focusing on the depth of the model,
enhancing the model’s performance can be better achieved
by enabling it to understand the contextual relationship
between shallow and deep layers. In the relative experiment,
researchers combined YOLOv4 with PANet [9] where the
shallow network passes the information to the deeper net-
work for the feature fusion and Squeeze and Excitation (SE)
block [10] that enhance model performance by automatically
learning and emphasizing important features while reduc-
ing redundancy and increasing network expressiveness. This
experiment yielded a Mean Average Precision (mAP) of
89.63%, surpassing the original YOLOv4 model by 2.86%.
In the same study of YOLOV4, authors in [11] leveraged an
adaptive context module to balance foreground and back-
ground features to obtain global contextual information.
They also introduced a balanced prediction layer method
to mitigate feature-level imbalances and an anti-congestion
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network for finer-grained detection. Additionally, authors
utilized a tailored heterogeneous cross-entropy loss during
training to improve target discrimination across categories.
Separate study of the YOLOv4 model. Researchers in [12]
successfully addressed the multi-scale detection issue by
employing Spatial Pyramid Pooling (SPP) [13] in conjunc-
tion with YOLOv4. SPP effectively divides the input feature
map into multiple grids of varying sizes and applies pool-
ing operations to each grid. This approach enables the
model to extract features at different scales, enhancing its
ability to identify smaller objects with greater accuracy.
The resulting performance is highly satisfactory. In addition
to SPP, researchers explored alternative methods to tackle
the small-scale detection challenge. For instance, in the
research [14] the authors employed YOLOvVS8 and a combina-
tion of 1 x 1 convolutions for dimensionality reduction and
3 x 3 convolutions for down sampling. This strategy effec-
tively preserves contextual information during the feature
extraction process, facilitating a more comprehensive fusion
of features between shallow and deeper layers. Additionally,
a technique that allows each layer to receive crucial infor-
mation from all preceding layers is implemented, enabling
the network to capture a more complete representation of the
contextual information. Experimental results demonstrated
that this approach outperforms the baseline model on all
datasets.

Research [15] leveraged YOLOVS as the basis for the
experiments and integrated various techniques to tackle
the challenge of detecting small-scale objects. Authors
utilized GSConv [16] to reduce computational complex-
ity and implemented Content-Aware Reassembly of Fea-
tures (CARAFE) [17] to extract and utilize contextual
information more efficiently. Additionally, they enhanced
the model’s performance by replacing the original Spa-
tial Pyramid Pooling Fusion (SPPF) module with their
implementation and introduced an object detection layer to
enhance the fusion of shallow and deep feature maps. These
modifications led to a model that demonstrated superior
performance in small-scale object detection while main-
taining competitive computational efficiency. On the other
hand, authors in [18] addressed the issue by incorporat-
ing their network with a channel attention (CA) module
and designing a new backbone for YOLOX, integrating
CSPDarknet with the inverted residual block. This combina-
tion enables the model to be more sensitive to small-scale
objects while preserving lower computational complexity.
And unexpectedly, YOLOX was mentioned, which is also
noteworthy. Researchers in [19] tried different methods to
enhance YOLOX performance, the researchers introduced a
novel neck design and a double residual branch structure in
the detection head, to enhance the detection accuracy and
efficiency. Back to the small-scale detection issue, authors
in [20] also tackled the small-scale object detection challenge
by integrating YOLOVS with the WIoU loss function and
the BIFORMER [21] attention mechanism. This approach
achieves more flexible computation resources allocation and
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content-aware attention by initially filtering out irrelevant
key-value pairs at the coarse-grained regional level. Addition-
ally, the authors added two new detection heads to YOLOVS.
Researchers in [22] explored a different method to detect the
small objects. They introduced the Context Attention Block
for multi-scale feature localization. Additionally, it enhances
feature extraction and accelerates detection performance
without increasing model complexity by modifying the C2f
block. Spatial Attention was also modified to augment model
performance. The experiment resulted in 0.9% higher than
the original model in mAP compared to original model.
Meanwhile, researchers in [23] addressed small object issues
without using the YOLO models. They experimented with
SSD (Single Shot MultiBox Detector) [24] by improving
the backbone network with multi-scale feature fusion and
an attention mechanism. Subsequently, they boosted shallow
network feature extraction for better small object recognition.
Afterward, they utilized RFB (Receptive Field block) [25] to
widen object receptive fields and gather richer semantic infor-
mation. Lastly, an attention mechanism was incorporated to
emphasize important object features and suppress irrelevant
information.

Similar to [23], the study in [26] also focused on seman-
tic information retrieval but with YOLOvV5 model. Authors
addressed semantic information issue by introduced a novel
object detection network based on a large kernel convolu-
tional neck network to enhance semantic feature capture.
Additionally, a Vast Receptive Field Attention mechanism
was constructed to increase receptive field. Meanwhile,
authors in [27] addressed the semantic gap issue using
YOLOvVS5 by merging two adjacent low-level features from
the Feature Pyramid Network (FPN) and gradually integrat-
ing higher-level features to avoid a larger semantic gap.
Besides that, authors in [28] introduced a module that
reinjects high-resolution details from shallow features and
prioritizes informative channels. Another module expands
the context for each pixel and incorporates global image
information to avoid semantic information loss.

The researchers in [29] proposed a method that can
reduce YOLOvV5 model parameters and make the model
leverage global contextual information to increase model
performance. The authors used the Transformer block [30]
to empower the model to effectively utilize global contextual
information. Additionally, they integrated rep modules [31]
and Stem modules [32] to reduce computational complexity.
These techniques yielded promising results, demonstrating
significant improvements in model performance. Research
in [33] conducted a similar study; however, their approach
differed in using the Vision Transformer [34] to capture
global contextual information and integrating the Convolu-
tional Block Attention Module (CBAM) [35] to enhance
feature expression capabilities for foreign object detection.
In a separate study reported in [36], a distinct research
question on YOLOVS was pursued. The authors suggested
that addressing dataset characteristics involves considering

63756

a variety of factors, including non-linear characteristics.
Their proposed method aimed to investigate the relation-
ships involving these non-linear characteristics. As part of
their approach, the authors replaced the SILU activation
function [37], with the MISH activation function [38]. This
transition allowed for the use of a more adaptable activation
function suitable for handling complex images. Addition-
ally, the researchers integrated a DCF module to aggregate
low-level features from the dataset. The outcomes of this
study were indeed promising. Authors yielded promise of
addressing non-linear dataset characteristics and yielding sig-
nificant improvements in their research outcomes. Research
in [39] identified various issues with the YOLOvVS model.
In response to the lack of available snow datasets, authors
endeavored to address this gap by creating a novel real-world
snowy object detection dataset. Subsequently, they employed
an unsupervised learning approach to categorize the snowy
dataset into four levels of difficulty. Furthermore, they
enhanced the YOLOv5 model by introducing a lightweight
modification, incorporating a novel Cross Fusion module.

Authors in [40] focus on reducing the parameters of the
YOLOVS model to enhance computation speed. In their
experimental work, the authors employed a decoupled head
approach to separate the classification and localization
branches within YOLOVS, thereby accelerating the training
process. This enhancement became particularly significant
as the original C3 model in YOLOvV5 necessitates five
convolutional operations. The authors introduced their self-
proposed C3-faster block, which restructures the original C3
by reducing the number of convolutions from 5 to 3, effec-
tively conserving computational resources. Furthermore, the
authors incorporated the WIoU loss function to enhance
detection accuracy, resulting in an impressive accuracy
rate of 97.1%, compared to the original model’s 93.4%.
Same goes for reducing YOLOvS model parameters, authors
in [41] incorporated a CA module and adjusted the orig-
inal YOLOvVS’s C3 module to reduce model parameters.
In contrast, researchers in [42] aimed to reduce the model
size with YOLOvS. They replaced the original YOLOvVS8
Darknet-53 backbone with FasterNet-TO [43], significantly
reducing the model’s parameters. Additionally, they added
a new detection head to enhance the sensitivity to small
objects. Furthermore, researchers incorporated a CA module
to improve model performance while minimizing changes to
the parameter structure. Following experiments, researchers
achieved a 0.5% higher mAP compared to the original model
on the PASCAL VOC [44] dataset, while also significantly
reducing the parameter size.

In a similar pursuit of a lightweight model, researchers
in [45] proposed a different method to reduce the YOLOvS8
model parameters while enhancing performance. They
merged YOLOv8 with Context GuidedNet [46] to capture
contextual features and Res2Net [47] to improve the model’s
ability to learn deep features while minimizing the impact on
model parameters. The researchers also enhanced the model’s
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ability to handle the feature pyramid by restructuring the
model and incorporating the WIoU loss function to manage
problematic samples.

Furthermore, studies have focused on reducing parameters
in models like YOLOv4-Tiny. In [48], authors redesigned
the network structure and proposed a Trident-FPN that com-
bines three scales of detection head from YOLOv4-Tiny and
incorporates pooling feature augmentation to generate deeper
semantic features. This approach effectively obtains semantic
information while keeping computational costs low, similar
study happened to [49] also. Other than YOLO model aug-
mentation, authors in [50] introduced a dual-path network for
real-time object detection. This network uses a lightweight
attention mechanism to extract both high-level semantic fea-
tures and low-level object details efficiently. It also incorpo-
rates self-proposed ‘Lightweight Self-Correlation (LSCM)’
and ‘Cross-Correlation (LCCM)’ modules to capture global
interactions and dependencies among scale features. Authors
in [51] also experimented enhance model performance with-
out using YOLO series model. They proposed a module that
combines features from low to high level scales, along with
an LNblock to improve spatial information extraction ability
with lower computational costs. It is noteworthy that not all
researchers aim to reduce model parameters by changing the
model structure. In [52], researchers introduced the Effective
Receptive Field (ERF) module to expand the network’s recep-
tive field and optimize path aggregation network structure
in detectors for improved accuracy while reducing model
parameters for Unmanned aerial vehicle (UAV) deployment.

Researchers in [53] tried to address a unique issue.
In recent years, the fisheye camera has become more popular,
but the images captured by fisheye camera are often distorted
which brings a significant challenge to the field of object
detection since it typically works better with regular images.
To tackle this issue, they proposed a novel ‘“Max Pooling and
Ghost’s Downsampling” module for extracting the feature
from distorted images and an “Average Pooling and Ghost’s
Downsampling” module for acquiring rich global informa-
tion. Meanwhile, they also modified the original C2f module
with SE block to acquire richer gradient flow information
about the features. The same technique is also applied to the
SPPF module in YOLOVS8 to improve the model’s ability to
detect distorted images. In addition to addressing the issue
of distorted images, researchers also experimented model
efficiency on the regular image with MS-COCO [54] dataset
and resulting in 1.7% higher average precision compared to
the original model.

It is worth mentioning that recent work on Neural Architec-
ture Search (NAS) for object detection has also been rapidly
evolving. In studies [55], [56], researchers have highlighted
the over-reliance of current object detection methodologies
on researchers’ expertise and knowledge in constructing neu-
ral networks. Hence, both researchers had conducted research
on NAS with different approaches. Researchers in [55]
endeavored to reduce NAS computational cost by proposing
a new Early Exit Population Initialisation (EE-PI) algorithm.
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This algorithm filters out networks and replaces those that
surpass a certain threshold with models having fewer param-
eters. Researchers in [56] argued that recent research on NAS
techniques only focused on the backbone or FPN, lacking
study on YOLO network which has a more efficient detector
head. By referencing the YOLOVS5 network, these researchers
proposed a framework that can jointly search for the architec-
tures of the backbone and FPN.

Several studies have also explored different strategies
to enhance object detection models. For example, authors
in [57] addressed complex background issues using ensemble
learning, while authors in [58] employed a line encoding
method that encodes bounding boxes into the top-left corner
and the bottom-right corner, then utilized neural network to
produce high-resolution bounding boxes. Researchers in [59]
split the cross attention into branches with some focusing
on classification and other on bounding box regression, aim-
ing to increase object detection performance. Additionally,
Authors in [60] innovatively employed unsupervised learning
for object detection.

B. DISTANCE ESTIMATION

Distance estimation techniques in computer vision are
versatile methods that can be applied across various sec-
tors, including automotive and crime analysis. Numerous
researchers proposed their unique methods for distance esti-
mation, contributing to a rich body of research in this field.
The research [61] proposed a method for integrating distance
estimation within the YOLOv3 model. The authors updated
YOLOV3 by incorporating a distance prediction vector and
introduced a dedicated distance estimation loss function. This
enabled the model to effectively learn and utilize distance
information during training. In a similar vein, authors in [62]
also undertook a comparable approach, but with a focus on
depth estimation. In their experiments, they augmented the
YOLOv4 network by introducing an additional depth estima-
tion output channel branch. This branch was trained using 3D
box labels enriched with depth information, and a dedicated
depth loss function was employed to associate the model’s
output channel with this depth information. As a result, their
model achieved impressive results, boasting an Average Pre-
cision (AP) of 71.68% for cars and an AP of 62.12% for
pedestrians when evaluated on the KITTI dataset [63].

In the controversy, a few researchers have put forward
innovative ideas that do not necessarily rely on datasets
enriched with distance information. Authors in [64] took a
distinctive approach by utilizing a system with two hori-
zontally separated cameras. Their method was rooted in the
principles of stereoscopy, and it allowed for distance cal-
culation based on parameters such as the distance between
the two cameras and the disparities between horizontal pixel
values. As their proposed method primarily leveraged stereo-
scopic principles, it reduced the need for datasets specifically
enhanced with distance information.

Authors in [65] introduced a different approach that har-
nessed the synergy between radar information and image
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data to ensure precise and reliable distance estimation.
Their proposed method employed a middle-fusion technique,
which combined radar point clouds and RGB images to
enhance object detection and distance estimation accuracy
in autonomous driving scenarios. In this innovative process,
both radar and image data were independently responsible
for estimating the distance to objects. The key aspect of
their approach was the fusion of the results generated by
these two methods. Importantly, during their experiments, the
authors observed that radar outperformed image data in terms
of distance estimation. Consequently, they implemented a
mechanism to override redundant results, giving preference
to more accurate radar-based estimates when necessary.

Currently, various studies on object detection have demon-
strated the robustness of models in terms of lightweight
design. However, distance estimation methods often rely on
radar data, which require a lot of information. In this research,
we propose a model that can reduce the information needed
by using 2D images and achieve better object detection per-
formance compared to existing models.

lll. METHODOLOGY

In this research, we present a YOLOvVS8-CAW model that
incorporates both the Coordinate Attention (CA) module and
the Wise Intersection over Union (WIoU) loss function. Addi-
tionally, this research introduces a novel distance estimation
algorithm to extend the capabilities of the YOLOvS-CAW
model. The structure of Section III is organized as follows:
Section (A) provides an in-depth discussion of the original
YOLOVS model, Section (B) explores the integration of the
CA module with the YOLOvS8-CAW model, Section (C)
elaborates on the WIoU loss function, and Section (D) delves
into the details of the distance estimation algorithm.

A. YOLOv8 MODEL

Yolov8 is the latest release of the YOLO family series. The
first YOLO model was developed by Redmon et al. [66]. The
YOLO model series has always been famous because of its
superiority in terms of object detection; after a few iterations,
the YOLOv8 model was introduced by Jocher et al. [4].
YOLOVS builds upon the success of the previous YOLO
series by introducing several key improvements. One sig-
nificant change is the adoption of an anchor-free detection
head. Unlike previous versions that relied on anchor boxes,
YOLOVS directly predicts the object’s center, eliminating
the need of IOU matching or assigning scales on one side
and chooses a task-aligned method to match positive and
negative samples. This simplifies the model and enhances
its ability to handle small or overlapping objects. Besides
that, YOLOVS replaces the C3 module (CSPDarknet53 with
3 convolutions) from YOLOvVS with a novel C2f module.
The C2f module reduces the network by one convolutional
layer based on the original C3 module. This module enhances
computational speed without compromising performance.
It achieves this by effectively combining the strengths of past
YOLO models. The C2f module facilitates a richer flow of
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gradient information while maintaining a lightweight struc-
ture, as illustrated in Figure 1.

FIGURE 1. Architecture of C2F module.
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FIGURE 2. Original YOLOv8 Architecture *Referred and modified based
on Rangeking’s illustration on GitHub [67].

Figure 2 illustrates the overall YOLOVS architecture.
Inspired by the Path Aggregation Network (PAN) [68],
YOLOVS merges features extracted from various resolution
feature maps to generate multi-scale features. The back-
bone takes the input image and down samples it five times,
resulting in five scale feature maps denoted as {PI, P2, P3,
P4, P5}. The primary function of the backbone is to extract
these informative features from the input image. Following
the backbone is the neck, which acts as a bridge between the
extracted features and the detection head. The neck refines
these features and facilitates their fusion, ensuring the detec-
tion head can leverage the most informative representation
for object detection. Finally, the detection head will take
responsibility for object detection tasks. It is noteworthy to
mention that, in YOLOVS, the scale set {P3, P4, P5} plays
a crucial role, with each scale specifically responsible for
detecting objects of a particular size range — small objects
for P3, medium objects for P4, and large objects for P5. This
division of labor across scales strengthens the model’s overall
detection accuracy.

B. COORDINATE ATTENTION MODULE

The effectiveness of attention mechanisms had been demon-
strated in the era of rapid computer science development,
for example, research focused on the utilization of channel
attention, as explored in [69], or the mixed attention proposed
by Jiang et al. [70], has demonstrated the remarkable efficacy
of attention mechanisms. Among the various attention mech-
anisms, there are also some standout mechanisms like the
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Convolutional Block Attention Module developed (CBAM)
by Woo et al. [35] or Squeeze-and-Excitation Networks (SE)
developed by Hu et al. [10] that have been repeatedly
experimented with and demonstrated their superiority. After
reviewing the existing attention mechanisms, the CA module
has been chosen in this research because CA is a novel
attention mechanism that embeds positional information into
channel attention, where the network can focus on large
important regions at little computational cost. CA has also
been shown to achieve state-of-the-art results on a variety of
computer vision tasks, including image classification, object
detection, and semantic segmentation. The recent research
in [18] and [71], also demonstrated CA has the potential to
surpass SE and CBAM in the overall performance.

As demonstrated in [ 10], the SE block could be divided into
squeeze and excitation steps. Given the input X, the squeeze
step for the c-th channel can be formulated as the equation (1).

H

w
s D ()

i=1 j=I

where X = [x1, x2, . . ., x.] is the intermedia tensor and the z.
is the output associated with the c-th channel. SE uses global
pooling to encode global spatial information, compressing
the global information into a scalar, which makes it diffi-
cult to retain important spatial information. Because of this,
CA converted global pooling into two 1-dimensional encod-
ing operations by modifying equation (1), the new equation
can be formulated as shown in equations (2) and (3).

z’}(h)=% Z xc(h, i) )
o<i<w

z;v(w>=$ Z xe(j, w) 3)
0<i<H

The modified formula integrates features from different
directions to output a pair of direction-aware feature maps.
Compared with the compression method of global pool-
ing, this allows the attention block to capture long-distance
relationships in a single direction while preserving spatial
information in another direction, helping the network to
locate targets more accurately.

After obtaining the 2-direction pooling output, the map
of attention is generated by concatenating the outputs from
equations (2) and (3) into a shared 1 x 1 convolutional
transformation function F'1, the process can be formulated
in equation (4).

f=3(F1(1", ") “
where [7", 2%] means that the spatial dimension has been
concatenated, and § is a non-linear activation function. After
obtaining non-linear data through the activation function,

the output is then divided into two groups of feature maps
according to the horizontal and vertical directions.

fh GRC/VXH (5)
v ERC/rXW (6)
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Where r denotes the reduction ratio for controlling the block
size. The two 1 x 1 convolution transforms are represented
by Fp, F,, and o function is employed to transform the output
from equations (5) and (6) to tensors with the same channel
number as the input X, the formulation is shown in equa-
tions (7) and (8).

g" = o (Fu(f") %)
g" =o(F,({")) ()

CA reduces the channel number of f with an appropriate r
to reduce the overhead model complexity. In the end, output
from equations (7) and (8) are employed as the attention
weights, and the equation of the generation of attention block
is formulated in equation (9).

Ve Gy j) = xe (i, )) x &1 () xg¥ () ©)

C. YOLOv8-CAW MODEL WITH COORDINATE

ATTENTION MODULE

The CA module helps the model learn the regions in the
feature map that are related to the target locations, thus
improving the localization accuracy of the model. This
research chose to place the CA module after the C2f mod-
ule in YOLOvVS8 because the C2f module first decomposes
the input feature map into channels and then compresses
the features of each channel through convolutional layers
and activation functions. Attention modules also help the
model learn more important features from the compressed
feature maps with minimized computational complexity, thus
improving the detection performance of the model. The com-
plete architecture is shown in Figure 3.

FIGURE 3. YOLOv8-CAW architecture with CA module.

D. WISE-IoU LOSS FUNCTION

The bounding box regression loss function is an essen-
tial component of object detection. The Intersection over
Union (IoU) loss function for bounding box prediction is first
introduced by Yu et al. [72]. During the training process, the
model generates predicted boxes and ground truth boxes. The
difference between these boxes, measured by IoU, indicates
the model’s accuracy, and the equation of IoU in [7] can be
expressed as equation (10).

W;H;
IoU=1——"

(10)

u
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The bounding box regression loss function is also used
to measure the difference in position between the pre-
dicted box and the ground truth box and to optimize the
model to adjust the position of the predicted box, thereby
improving the model’s accuracy. Many loss functions have
already been developed and experimented with repeatedly by
researchers, such as Distance-IoU (DIoU) and Complete-IoU
(CIoU) by Zheng et al. [6] and Generalized-IoU (GloU) by
Rezatofighi et al. [73].

Among all these algorithms, this research chooses WIoU
based on the one that requires a lightly accurate bounding box
to support the distance estimation task. Apart from that, other
researchers also shown that WIOU outperforms CIOU in their
experiments [20], [40]. Compared with the traditional IoU
method, WIoU has a 2 layers attention mechanism to react
according to different quality of training data which can be
expressed as:

Ly =1—1IoU (11)
(¢ = Xg1)? + (v — Ygr)*
(W2 +HY)*

Lwrouvt = RwiouLiou (13)

) 12)

Rwiou = exp(

An anchor box is defined by its center coordinates and size
B =[xywh]. The ground truth box is defined by B, =
[xgrygrwerhgr]. In equations (11) to (13), WIoU reduces
the impact of the geometry factor, while the term ampli-
fies the penalty from low-quality anchor boxes and decreases
the penalty from high-quality anchor boxes. WIoU also
focuses on the distance between the center points of the
anchor box and the target when the two boxes overlap.
According to the inventor of WIoU [7], a dynamic
non-monotonic focusing mechanism is used in WloU. If com-
pared to traditional IoU loss function algorithms, WIoU can
dynamically adjust the loss coefficient for each training sam-
ple. For easy samples, the loss coefficient is reduced, which
reduces the focus on these samples. For difficult samples, the
loss coefficient is increased, which increases the focus on
these samples. This helps the model to better learn difficult
samples, which improves the final detection performance.
WIoU adopts an outlier 8 as the vector to determine a low or
high-quality anchor box, g is higher, then the smaller gradient
gain will be assigned, to avoid low-quality data ruining the
overall training performance. The 8 can be defined as:

L*
B ==Y ¢0,+o0] (14)
loU

To associate with the outlier calculation strategy, WIoU con-
structs a non-monotonic focusing coefficient » using g to
build WIoUv3 which will be used in this research and can
be expressed in equations (15) and (16).

B
Lwiouvs = rLwioun (16)
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E. DISTANCE ESTIMATION

Distance estimation is the process of determining the distance
between two points or objects. It is a fundamental task in
many fields, including navigation, robotics, and computer
vision. To measure distance using computer vision tech-
niques, this research proposes a formula to calculate the ratio
between the object size in real life and the object size in the
computer vision view, which can be written as follows:

ObjectSize X FocalLength

a7

Distance =
Bbounding BoxSize

Distance X Bbounding BoxSize

(18)
ObjectSize

Focai Length =

Fundamentally, the proposed distance estimation algorithm
utilizes the principle in calculating the ratio between real-life
object size and the size indicated by bounding boxes in object
detection. Equation (17) outlines the process, starting with
informing the computer of a specific object’s size. Once the
object is detected, the computer outlines it with a bounding
box and computes the distance by comparing the given object
size with the detected bounding box size, ensuring precise
distance measurements. The focal length plays a crucial role
in acquainting the computer with the camera lens’s focus
distance, minimizing the risk of miscalculations.

For Equation (18) concerning focal length calculation, both
the object size and bounding box dimensions can be obtained
through human comprehension and object detection, respec-
tively. We demonstrate how backpropagation can be utilized
to compute the focal length, enabling distance estimation
even when the focal length is not initially provided. Pseudo
code for manipulating the distance estimation program is also
provided for better understanding.

Algorithm 1 Distance Estimation Algorithm
INPUT:
FL <« Camera Focal Length
Pred_Class < Predicted Classes in Image
OS <« Object Size in Real World
BS <« Size of Object Bounding Box in Computer Vision
View
OUTPUT:
D « Estimated Distance
START:
Load source from Image
IF Pred_Class is predicted:
Convert bounding box coordinates to BS
D <« (FLx OS)/BS
ELSE
Return Error
ENDIF

It’s important to acknowledge that, in the current stage of
development, if an object is too small to be discerned by the
human eye at a certain distance, the proposed model may
encounter challenges in handling such objects. This limitation
arises from the focal length setting of our proposed model,
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which currently only accommodates original-sized images
rather than enlarged ones. Consequently, the model may
struggle to detect small objects.

IV. EXPERIMENT IMPLEMENTATION

A. YOLOv8-CAW TRAINING DATASET

The datasets used in this YOLOv8-CAW are both PASCAL
VOC 2007 and PASCAL VOC 2012 datasets. The PAS-
CAL VOC dataset consists of 20 different categories which
include: person, bird, cat, cow, horse, sheep, airplane, bike,
bicycle, boat, bus, car, motorbike, train, bottle, chair, din-
ing table, potted plant, sofa, and TV monitor. Some of the
examples of PASCAL VOC dataset images can be found in
Figure 4.

FIGURE 4. Example Image of PASCAL VOC Dataset. The image codes for
the photos from top left to bottom right are as follows: 00012, 000193,
001759 00050, 000131, 000109.

B. MODEL TRAINING

The experiments in this research were conducted on a system
running the Windows 11 operating system, equipped with an
Intel®)Core™i9-12900H Processor and an NVIDIA GeForce
RTX 3080 Ti Laptop Graphics Processing Unit (GPU) featur-
ing 16 GB of graphics memory. The programming language
employed for this research is Python, facilitating seamless
implementation of various deep learning algorithms. Fur-
thermore, the CUDA ®)parallel computing platform has been
installed to harness the computational power of the GPU,
thereby accelerating model training and experimentation
processes.

TABLE 1. Initial parameters for model training.

Parameter Setting
Input Size 640
Batch Size 32
Epochs 200
Initial Learning Rate 0.01
IoU Threshold 0.5
Optimizer Auto

Input size refers to the dimensions of the images fed
into the deep learning model, while batch size denotes the
number of samples processed simultaneously during training.
A larger batch size can expedite convergence and training
speed but also necessitates more hardware memory. Epochs
represent the total number of iterations required for com-
pleting model training, while the initial learning rate dictates
the magnitude of weight updates during training. A higher
learning rate may cause the model to overshoot optimal
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convergence, whereas a lower rate can lead to slower conver-
gence. The IoU (Intersection over Union) threshold defines
the degree of overlap between ground truth boxes and pre-
dicted boxes.

It’s noteworthy that in the ‘auto’ optimizer strategy of
YOLOVS, the model initially utilizes the AdamW optimizer
for the first 10,000 iterations before transitioning to Stochas-
tic Gradient Descent (SGD). This approach capitalizes on
AdamW’s ability to facilitate rapid convergence, particularly
in the early training stages. However, as iterations progress,
AdamW’s efficacy may diminish, prompting a switch to the
more sustainable and stable SGD optimizer after 10,000 iter-
ations.

C. DISTANCE ESTIMATION TEST SAMPLES COLLECTION
To validate the proposed distance estimation algorithm,
a benchmark experiment. In this experiment, the YOLOVS-
CAW model is integrated with selected three distinct classes
from the PASCAL VOC dataset to represent a range of object
scales, which included small, medium, and large objects.

Later, the images of objects are captured by ranging the
distance of 1, 2, and 3 meters in the laboratory, Multiple
images are acquired for each object at different angles and
with different objects. Figure 5 shows some examples of the
test samples.

(@) Chair

FIGURE 5. Sample Test Instances for the Distance Estimation Benchmark
Experiment, (a) Chair, (b) Person, (C) Car.

V. EXPERIMENT RESULTS
A. YOLOv8 BENCHMARK EXPERIMENT
To verify the proposed YOLOv8-CAW model, the recall,
precision, mAP 0.5, 0.75, 0.5:0.95, and inference time are
chosen as comparative metrics. The formula for calculating
recall, precision, and mAP can be found in equation (19)
to (22).

True Positive

Recall(R) = — - (19)
True Positive + False Negative

Recall refers to the percentage of samples that are correctly
predicted out of all total positive samples.
True Positive

Precision(P) = — ” (20
True Positive + False Positive

Precision refers to the percentage of samples that are correctly
predicted out of all samples that are predicted as positive.
To calculate mAP, AP needs to be found first, and then mAP is
calculated by taking the average of AP values for all classes,
where the equation for both can be found in equations (21)
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and (22).
1
AP = / Precision (Recall) d(Recall) 21
0

AP is equal to the area under the precision-receall curve,
it gets higher when both precision and recall are high.

1 N
mAP = — . _AP; (22)

N i=1
The metric mAP measures the AP across N classes. mAP at
an IoU (Intersection over Union) threshold of 0.5, referred
to as mAP@0.5, evaluates precision when the IoU threshold
is set to 0.5. The same principle applies to mAP@0.75.
mAP@0.5:0.95, on the other hand, calculates the mAP across
a range of IoU thresholds, from 0.5 to 0.95. In the realm of
object detection, the mAP is consistently recognized as a piv-
otal evaluation metric, indicative of the model’s performance
and accuracy. Additionally, this paper will also adopt model
parameters, GFLOPs (Giga Floating Point Operations Per
Second), and inference time (IT) as the model computational
complexity metric.

This research introduces a novel YOLOvV8-CAW model
that incorporates the CA module and employs the Wise-IoU
(WIoU) loss function. The study includes a comprehensive
comparison involving various model configurations, such
as the YOLOVS8 baseline model with and without WIoU,
an improved YOLOv8 model that combines the CA module
with and without WloU, and the YOLOv8 model with the CA
module but without the WIoU loss function. The outcomes of
these comparisons are presented in Table 2. To make Table 2
more understandable, a few abbreviations have been made,
and ‘W’ indicates WIoU Loss Function. ‘CB’ Indicates the
CBAM module, and ‘CA’ Indicates the Coordinate Attention
Module.

TABLE 2. Model comparison.

Method Params GFLOPs R P mAP@ mAP@ mAP@

(Million) 05 075 05:0.95 IT (ms)

YOIOv8 2585 787 776 820 842 716 65.6 128
YOLOVS+W 2585 78.7 774 837 84.8 72.0 66.8 123
YOLOV§+CB 26.86 79.1 77.0 835 84.6 718 65.7 149
YOLOVS+CB+W 26.86 79.1 783 822 853 72.7 66.4 146
YOLOV8+CA 26.05 79.6 782 826 85.5 732 67.0 134
YOLOVS-CAW 26.06 79.6 78.1 84.2 85.6 73.5 67.1 12.6

Table 2 demonstrates that our proposed model delivers
the highest performance in terms of mAP. It is notewor-
thy that our proposed model exhibits a slightly lower recall
percentage when compared to the combination of CBAM
with WIoU. However, the CBAM combination results in
lower precision, leading to a reduced mAP. Additionally,
the proposed model has effectively maintained a low infer-
ence time speed compared to the baseline model. While the
baseline model employing WIoU loss function achieved the
lowest inference time speed, YOLOv8-CAW demonstrated
even lower inference time speed compared to the plain base-
line model. However, the integration of CBAM led to the
slowest inference time speed. This observation suggests that
the YOLOv8-CAW model could substantially enhance model
performance while still ensuring a low inference time speed.
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To have a better observation of the model, a heatmap is
presented using Eigen-Cam [74]. The heatmaps can highlight
specific regions of feature maps on which different models
concentrate as shown in Figure 6.

(&) CBAM+WIoU (HCA

(a) Experiment Image (b) Original () WioU (@ CBAM

FIGURE 6. Visualized heatmap, (a) Experiment Image, (b) Original YOLOv8
model, (c) YOLOv8 with WioU, (d) YOLOv8 with CBAM, (e) YOLOv8 with
CBAM & WIloU, (f) YOLOv8 with CA, (g) Our proposed model. The image
codes that come from the PASCAL VOC dataset in (a) from top to bottom
are as follows: 2009_003175, 005205, 001275.

By analyzing Figure 6, the following can be observed.
Firstly, the original YOLOv8 model appears to have poor
attention to the objects in question. In contrast, when the
YOLOvVS model is integrated with the Attention Mod-
ule, it demonstrates a substantial improvement in feature
map attention. Additionally, by comparing Figure 6(f) and
Figure 6(d), we can observe that the CA module appears to
offer more effective feature map attention than CBAM.

To establish the superiority of our proposed model over
existing researchers, we adopted a dual validation approach.
Initially, comparisons were conducted with recent researchers
to ensure objectivity. Subsequently, different researchers on
YOLOvS8 model were selected for further validation, employ-
ing identical hyperparameters as provided by the respective
authors. Additionally, experiments were conducted on both
the PASCAL VOC dataset and the larger MS-COCO dataset
to demonstrate the model’s performance across varying scales
of datasets. Dataset sizes are provided in Table 3, while
the results of unidentical hyperparameter model compar-
isons are shown in Table 4 and Table 5. While the identical
hyperparameter results will be provided in Tables 7 and 8.
The hyperparameter settings as provided by the authors are
detailed in Table 6.

TABLE 3. Dataset attributes.

No. of Training Validation
Class Images Set
voc 20 16551 4952
COCO 80 118287 5000

Dataset

Table 3 provides details on the dataset size and distribution
for both training and validation sets. To ensure an objective
comparison of results.

Table 4 compares the performance of various object
detection methods on the PASCAL VOC dataset. Proposed
YOLOV8-CAW demonstrates superior performance with a
mAP of 85.6%, surpassing other recent models. This under-
scores its efficacy in object detection. However, it is important
to note that while our proposed model achieves the highest
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TABLE 4. Models comparison on pascal Voc test 20007 dataset.

Params mAP@

Method Input Size (Million) GFLOPs 05
YOLO-Anti [11] 416x416 - B 855
MFFAMM [23] 300 x 300 - - 80.7
LKC-Net [26] 640 x 640 7.28 - 84.0

Faster R-CNN w/ CEFPN [28] 1000 x 600 - - 81.3
YOLO-Former [33] 640 x 640 26.13 138 83.0
Mini-YOLOv4-tiny [49] 288 x 288 379 - 7207
DPNet [50] 320x320 25 1.0 815
Improved YOLOVS [51] 640 x 640 33 7.7 79.3
YOLOV4-EEEA-Net-C2 [55] - 3115 5.54 81.8
Bagging R-CNN [57] 1000 x 600 - - 814
YOLOVS-CAW (Ours) 640 X640 26.06 79.6 85.6

TABLE 5. Models comparison on MS-COCO Val2007 dataset.

Params AP@

Method Input Size AP@O.5 AP@0.75

(Million) 0.5:0.95
EYOLOX [19] 640 x 640 13.54 22 616 454
Faster R-CNN+AFPN [27] 800 x 1000 522 419 613 454
CF-YOLO [39] - 220 36.1 558 -
Trident-YOLO [48] 416 x 416 - 18.8 37.0 173
LNFCOS [51] 800 x 1333 271 372 56.0 399
YOLO-ERF-S [52] 640 x 640 59 413 60.7 -
FastDARTSDet [56] 640 x 640 69 - 594 417
LEOD-Net [58] 560 x 560 - 4811 5321 4433
DESTR-DCS-R101 [59] - 88.0 464 67.1 50.1
DETReg [60] - - 455 64.1 499
YOLOVS-CAW (Ours) 640 x 640 26.1 472 642 514

mAP among all models, several models exhibit comparable
performance. For instance, YOLO-Anti achieves a mAP of
85.5%, trailing our proposed model by only 0.1%. Similarly,
LKC-Net achieves a mAP of 84.0%, ranking as the third best
among all models. Despite the narrow margins, our models
consistently demonstrate the best overall performance, show-
casing significant potential in the field of object detection.

Table 5 presents a comparison of object detection methods
on the MS-COCO dataset. It is noteworthy that our pro-
posed model achieved the second-best result, with a 47.2%
AP across IoU thresholds from 0.5 to 0.95, the LEOD-Net
model outperformed with a 48.11% AP, claiming the top
position. However, our proposed model demonstrated supe-
riority in AP at IoU thresholds of 0.5 and 0.75, achieving
64.2% and 51.4%, respectively, compared to LEOD-Net’s
53.21% and 44.33%. Similarly, in AP at an IoU threshold
of 0.5, our proposed model attained the second-best result at
64.2%, while the DESTR-DC5-R101 model achieved 67.1%
as the best result. Despite this, our proposed model show-
cased better performance across IoU thresholds from 0.5 to
0.95 and an IoU threshold of 0.75, with respective APs
of 47.2% and 51.4%, whereas DESTR-DC5-R101 achieved
46.4% and 50.1%, respectively. In conclusion, by observing
the overall performance of different models, the proposed
model significantly demonstrates superior performance com-
pared to other models on the MS-COCO dataset.

TABLE 6. Hyperparameter setting provided by original authors.

Method Input Size Batch Size Epochs LLr ToU Threshold Optimizer Dataset
YOLOVS-CAB [22] 640 32 300 0.001 0.2 AUTO €OCO
Enhanced YOLOVS [42] 640 32 300 0.01 0.7 SGD voc
YOLOVS-CGRNet [45] 640 16 200 0.01 0.5 AUTO voc
PGDS-YOLOVSs [53] 640 32 100 0.01 0.5 AUTO COCO

Table 6 presents the hyperparameter settings provided by
the original authors L.Lr indicates the initial learning rate
in short form. It is worth noting that the YOLOvV8 model
was configured to halt training once the model’s perfor-
mance remained unchanged for the last 50 epochs. Hence,
for references in [29] and [37]. Initially, both comparative
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experiments were intended to run for 300 epochs each. How-
ever, due to our model’s performance stop evolving from
the last 50 epochs, training automatically ceased at epochs
259 and 157, respectively. The comparative results of the
PASCAL VOC dataset are presented in Table 7 and the
MS-COCO dataset is presented in Table 8.

TABLE 7. Identical hyperparameter comparison on pascal Voc dataset.

Params

Method (Million) mAP@0.5
Enhanced YOLOVS [42] 8.5 844
YOLOvV8-CAW (Ours) 26.06 85.8
YOLOVS-CGRNet [43] B 319
YOLOvV8-CAW (Ours) 26.06 85.7

TABLE 8. Identical hyperparameter comparison on MS-COCO dataset.

Params AP@ - _ mAP@ WAP@
Method (Million) 05:095 AP@0S AP@NTS 05 05:0.95
YOLOv8-CAB [22] - - 47.1 282
YOLOvVS-CAW (Ours) 26.1 - - - 61.8 454
PGDS-YOLOVEs [53] 1051 B 01 o E E
YOLOVS-CAW (Ours) 261 412 642 514

Table 7 displays a comparison of recent research using
identical hyperparameters. Upon careful examination of
Table 7, it’s evident that the proposed model consistently
achieves higher performance compared to other models.
Therefore, based on the results obtained from the PASCAL
VOC dataset, we confidently conclude that the proposed
model demonstrates superior performance compared to other
models.

Table 8 presents a comparison of other models using iden-
tical hyperparameters with the MS-COCO dataset. In the
first model’s comparison, the proposed model demonstrates
comprehensive superiority in performance. Similarly, the
second model’s comparison also exhibits a comprehensive
improvement. Therefore, we can conclude that even when
utilizing a larger dataset, the proposed model maintains
competitive performance and shows great potential. Despite
multiple comparisons having been made and verified, to have
a clearer understanding of the proposed model, the Precision-
Recall (PR) graph and confusion matrix for both the PASCAL
VOC dataset and MS-COCO dataset are also provided in
Figure 7 for better understanding.

A PR recall curve graph illustrates the relationship between
precision and recall for the model. Precision measures the
accuracy of positive predictions, while recall describes the
ability of the model to capture all positive samples. The
curve demonstrates how changing the threshold affects these
metrics. Ideally, the curve that is closer to the upper-right
corner indicates high precision and recall, which means
the model performs better. As for the confusion matrix,
we need to consider the numerous categories used in this
research, which can make the information presented in the
images unclear. Therefore, we should approach it from a
different perspective. In a confusion matrix, the x-axis rep-
resents the real samples, while the y-axis corresponds to
the predicted samples. Ideally, higher values on both axes
indicate better model performance. Subsequently, in the pro-
vided confusion matrix, darker colors indicate higher values.

63763



IEEE Access

Z. ). Khow et al.: Improved YOLOv8 Model for a Comprehensive Approach

MS-COCO

PASCAL VOC

Precision-Recall Curve

jrjeiegg

FIGURE 7. Precision-Recall (PR) Curve and Confusion Matrix for both
PASCAL VOC dataset and MS-COCO dataset.

Consequently, we will describe the confusion matrix by
examining the distribution of colors. In Figure 7, the PR
curve on the MS-COCO dataset doesn’t exhibit perfect per-
formance. The presence of a mid-positioned line suggests the
model’s performance is mediocre. However, considering the
dataset’s large number of samples and categories, the results
remain acceptable. In the confusion matrix, a relatively clear
diagonal line is visible in the middle, indicating that the pro-
posed model makes relatively accurate predictions across all
categories. On the other hand, the PR curve on the PASCAL
VOC dataset demonstrates superior performance compared
to the MS-COCO dataset. The curve on the PASCAL VOC
dataset appears closer to the right-upper corner and begins
to form a distinct shape, indicating the model’s excellent per-
formance. Performance in confusion matrix for both datasets,
a clear diagonal line is observed in the middle, signifying
that the proposed model makes relatively accurate predictions
across all categories.

B. DISTANCE ESTIMATION RESULT VALIDATION
Following the categorization of objects by class and distance,
each category will include 10 images captured at distances
of 1, 2, and 3 meters in the laboratory. A distance estimation
experiment is conducted at the laboratory on all the captured
images and computes the average value for each category to
establish a global reference. Sample images showcasing the
distance estimation process are depicted in Figure 8, and all
detected distances are recorded in the list from Table 9 to 11,
which represents 1, 2, and 3 meters accordingly.

Based on the records in Table 9, the overall algorithm
performance is deemed acceptable. However, there are
still noticeable deviations, such as the minimum value for
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(a) Chair (b) Person () Car

FIGURE 8. Detected sample test instances for the distance estimation
benchmark experiment, (a) Chair, (b) Person, (C) Car.

TABLE 9. Detected distance list in 1 meter.

Category M Average Min Max
Chair [0.94,1.07,0.85,1.10,1.03,1.09,0.85,1.05,0.97,1.11] 1.01 0.85 111
Person [0.98,1.18,1.07,1.04,1.09,1.02,0.96,1.00,1.12,1.16] 1.06 0.96 1.18

Car [0.74,1.03,0.86,0.94,0.84,1.09,0.89,1.07,1.03,1.07] 0.96 0.74 1.09

TABLE 10. Detected distance list in 2 meter.

Category 2M Average Min Max
Chair [1.94,2.05,2.11,1.88,2.00,2.09,1.82,2.14,1.97,2.03] 1.98 1.82 2.14
Person [1.92,1.95,2.01,1.89,1.86,2.03,2.00,1.88,1.98,1.87] 1.93 1.86 2.03
Car [1.84.1.92,1.73,1.91,1.79,1.88,1.75,1.70,1.93,1.76] 1.83 1.70 1.93

TABLE 11. Detected distance list in 3 meter.

Category 3M Average Min Max
Chair [2.57,2.63,2.51,2.74,2.85,2.79,2.57,2.60,2.91,2.78] 2.70 2.51 291
Person [2.99,2.75,2.84,2.95,2.89,2.90,2.79,2.81,2.77,2.91] 2.86 2.75 2.99

Car [2.75,2.63,2.79,2.58,2.67,2.52,2.82,2.61,2.70,2.76] 2.68 2.52 2.82

13

car” and the maximum value for “person.” Nevertheless,
the overall average deviation remains within 0.1 meters.
Regarding Table 10, while the performance of ‘Car’ has
significantly declined, the rest of the categories still main-
tain high performance. In the controversy concerning long
distances, the overall model performance has significantly
deteriorated. Even though the prediction accuracy is high,
it can be observed that the maximum value for ‘Person’ is
only 0.01m away from the ground truth value, and the aver-
age performance has also experienced a substantial decline.
Hence, it can be concluded that the algorithm’s performance
decreases as the distance increases. Nonetheless, the pro-
posed algorithm still demonstrates its potential capability
to handle distance estimation tasks, as the overall average
detection accuracy remains approximately 90% close to the
ground truth distance, except for the ‘Car’ class in long-
distance detection.

VI. CONCLUSION

In this research, a YOLOv8-CAW model, and a distance
estimation algorithm based on pure computer vision methods
are introduced. Model complexity is always an issue in deep
learning development, and the CloU loss function that binds
with the original YOLOv8 model has a significant limitation.
Therefore, the YOLOv8-CAW model is proposed, augmented
with a lightweight attention mechanism that significantly
boosts performance while adding minimal parameters to the
model. Additionally, the new WIouU loss function performs
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better than the original loss function. While certain eval-
uation metrics may indicate superiority for other models,
our proposed model maintains low inference times while
significantly improving the model’s mAP. Simultaneously,
we compared our proposed model with others using vari-
ous approaches and datasets. This comprehensive analysis
highlights the superiority of our model, demonstrating its
significant potential.

Furthermore, a distance estimation technique integrated
with the YOLOvV8-CAW model which eliminates the need for
additional information and only requires a single 2D image
is also proposed. In experiments for distance estimation,
although algorithm performance decreases with increasing
distance, the proposed algorithm still exhibits significant
potential for handling distance estimation tasks. This is
attributed to the fact that, despite some deviations, most
average detections remain approximately above 90% close
to the ground truth distance. Meanwhile, one of the appli-
cations of computer vision-based distance estimation is in
the autonomous driving industry, where it can provide better
accuracy in detecting and assessing distances between vehi-
cles or objects.

The current proposed model is encountering limitations in
terms of generalization. The performance of our approach
exhibits a correlation with object size, even within the same
category. For example, variations in vehicle models can lead
to different results. Therefore, a finer-grained classification
dataset is essential to address these challenges. As a suggested
future endeavor, expanding the dataset would be consid-
ered. Additionally, the optimization of the distance estimation
algorithm to ensure consistent performance at various dis-
tances should also be interesting.
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