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ABSTRACT In recent years, video compression has emerged as a focal point of considerable interest.
Nevertheless, the predominant focus of existing methods lies in the meticulous reconstruction of videos
with high fidelity, often at the expense of prioritizing the perceptual visual comfort experienced by human
viewers. This paper presents an innovative learnable perceptual video compression method that extends
the capabilities of current codecs. It enhances their perceptual coding proficiency by delving into the
significance of local semantics and foreground objects in the context of human vision. Incorporating local
semantics into the coding system involves the utilization of a region-wise contrastive learning objective,
compelling the encoder to extract information pertinent to semantics. To safeguard foreground objects from
corruption during compression, we prioritize minimal distortion in the foreground regions. This is achieved
by employing an off-the-shelf visual saliency model for the precise detection of these regions. In an effort to
augment the representation capacity of the convolution operator employed in our compression network,
we introduce a recurrent information-based adaptive convolution block, thereby enhancing compression
efficiency. Comprehensive experimental results validate the efficacy of our approach in achieving superior

perceptual coding performance.

INDEX TERMS Video compression, perceptual quality, deep learning.

I. INTRODUCTION

The surge in video-sharing platforms and the rise of
high-resolution videos have led to a remarkable increase in
video data. In the present day, video content constitutes over
80% of internet traffic [1], and this percentage is anticipated
to rise even more in the future. This calls for the advancement
of video compression technique, which will substantially
reduce the cost of video data storage and transportation. The
objective of video compression is to maximize the decoded
video quality, while minimizing the required bitcost, i.e., the
so-called rate-distortion trade-off [2].

There are many efforts on developing video compression
standards and traditional codecs, such as H.264 [3], H.265 [4]
and H.266 [5]. Traditional video coding methods based
on block-wise transformations have undergone extensive
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examination, incorporating hand-crafted transformations
such as Discrete Cosine Transform (DCT), as well as heuristic
intra/inter predictions like angular-intra prediction and sparse
motion vector-based motion compensation. The traditional
codecs, equipped with progressively advancing hand-crafted
modules, have achieved significant success over the past
decades and have been widely deployed in the industry.
Although satisfactory performances have been achieved,
when measured by low-level image signal fidelity metrics
such as Peak signal-to-noise ratio (PSNR) and Structural
Similarity Index Metric (SSIM) [6], these traditional codecs
are not superior enough when being evaluated by subjective
quality metrics [7]. More seriously, the intra/inter-frame
transformations within these codecs are performed in a block-
wise manner, which tends to introduce block artifacts that
severely degrade the subjective visual comfort.

Recently, learnable codecs [8], [9] emerge, making full use
of learnable neural networks (NNs), such as convolutional
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neural network (CNN) to perform the transformation. Com-
pared to hand-crated transformations in traditional codecs,
the neural network-based transformations here are learn-
able, data-driven, and supervised under the rate-distortion
(RD) trade-off objective. This may break the performance
bottleneck of traditional codes by fitting the intrinsic
statistics of natural videos with flexible NNs and large-scale
parameters. Further, the block artifacts are less in learnable
codecs, leading to better subjective quality than traditional
ones. But, the information transmitted by these trainable
codecs is still not specifically chosen to highlight regions
aligned with human vision. Consequently, they remain
insufficiently potent in delivering images of high subjective
quality.

There are few methods [7], [10], [11], [12] that are
designed for perceptual coding, partially solving the above
problems. JPD-SE [10] tries to tackle this problem by
directly fusing the segmentation map with the images
compressed by a traditional codec. Zhu et al. [11] solves
this problem by using a pre-trained semantic segmentation
network to extract the semantic regions and cluster their
labels for enforcing more human priors. However, the
hand-crafted semantic extraction scheme within the methods
above is not flexible enough, and can not well handle
the video contents out of the defined semantic categories.
The previous methods also attempt to introduce another
generative adversarial network (GAN) [13] loss, facilitating
the compression procedure to produce sharp textures. For
example, Yang et al. [7] introduces a recurrent conditional
discriminator to judge the raw and compressed video
conditioned on both spatial and temporal information, aiming
to facilitate the learnable produces photo-realistic and sharp
textures. Mentzer et al. [12] also follows a similar scheme,
but also carefully designs the propagation of high-frequency
details across different frames, leading to better results.
Although the methods above improve the frame sharpness,
they still do not explicitly preserve the semantic component
within the videos. The loss of semantics causes the artifacts,
such as the distorted object structure, still substantially reduce
the human visual comfort.

In this paper, we propose a conditional perceptual video
compression framework CPVC. CPVC extracts and com-
presses the perceptual information within the input videos,
conditioning on an off-the-shelf PSNR-oriented video codec
and reusing their highly efficient motion-estimation-and-
motion-compensation (MEMC) scheme. Considering the
human perceptual quality-related information, can be mainly
decomposed into two parts, i.e., (1) the semantic information
such as the object structure and (2) the human vision
salience regions, we also propose two learning objectives
to guide the training of CVPC. Specifically, we leverage a
patch-wise constrastive learning objective [14] to guide the
coding procedure emphasizing the preservation of patch-wise
fine-grained semantic information. To align the compression
procedure better with human visual saliency, we also produce
a saliency-weighted perceptual loss objective, to guide the
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coding procedure allocating more bits to the video regions
of human interest.

Furthermore, the convolution operators in the current
learnable video codecs are with fixed parameters. This may
be not enough to cope with the highly flexible content
within videos. Different frames of different videos exhibit
various objects of different properties, requiring various
convolutions of different parameters. To cope with this,
we also propose a recurrent information-adaptive dynamic
convolution to handle the diverse video content, which is
inspired by dynamic convolution networks [15]. The dynamic
convolutions are adopted in the encoder network of CPVC.

We evaluate the proposed conditional perceptual video
compression method CPVC on four video compression
datasets, i.e., HEVC class B, HEVC class C, HEVC class D,
HEVC class E datasets, proving its superiority to previous
video compression methods.

The contribution of this article can be summarized as
follows,

1. We propose a conditional perceptual video compression
framework CPVC that is built upon off-the-shelf fidelity-
based video codecs.

2. A patch-wise contrastive learning and a saliency-
weighted perceptual objectives are comprehensively adopted
to guide CPVC coding perceptual-related information within
videos.

3. A recurrently adaptive dynamic convolution is proposed
to enhance the transformation capability of the encoder
network of CPVC.

4. Our approach performs favorably against the previous
traditional and learnable codecs.

The remainder of the article is structured as follows:
In the second section, we conduct a comprehensive and
methodical examination of the pertinent scholarly works.
The third section delves into the fundamental principles
and intricacies of the proposed conditional perceptual video
coding framework (CPVC). The fourth section presents the
outcomes of our experiments and their meticulous analysis.
Finally, in the fifth section, we offer some closing thoughts
and conclusions.

Il. RELATED WORK

In this section, a brief introduction of the related work
in the field of video compression is presented, including
both traditional and learnable methods. Finally, we also
introduce the recently emerging methods for perceptual video
compression.

A. TRADITIONAL VIDEO CODECS

Since the image codecs are the fundamental component of the
video codecs, we first give a brief introduction to traditional
image codecs. Within the array of coding frameworks, the
fundamental techniques in both image and video compression
revolve around transform and prediction methodologies. One
prominent example is the JPEG [16] standard, renowned
as the most widely adopted image compression standard.
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The core structure of JPEG encompasses fundamental
transform/prediction modules. In the JPEG compression
process, the input image undergoes partitioning into non-
overlapping 8 x 8 blocks. Each of these blocks undergoes
transformation into the frequency domain through block-
DCT (BDCT). Subsequently, the DCT coefficients for each
transformed block are compressed into a binary stream,
achieved through processes such as quantization and entropy
coding. This orchestrated sequence of operations facilitates
efficient image compression within the JPEG framework.

Over the course of several decades, traditional video com-
pression has undergone significant development, leading to
the proposal of various video coding standards. One notable
standard is H.264/AVC [3], which emerged between 1999 and
2003 under the auspices of ITUT and ISO/IEC standards.
This standard has witnessed remarkable success, finding
widespread applications in broadcasting high-definition TV
signals, internet streaming, and mobile network videos.

As video resolutions increased and parallel processing
architectures became more prevalent, H.265/HEVC [4] was
finalized in 2013, offering approximately 50% bitrate savings
compared to H.264/AVC. The heightened compression effi-
ciency of H.265/HEVC played a pivotal role in popularizing
4K videos with enhanced fidelity. To outcome the limited
search range of H.264 and H.265 codec, there are some
methods [17], [18], [19] focus on first downsampling
the original video, then compressing the downsampled
video with the H.264/H.265 codec, finally upsampling the
compressed videos to the original resolution.

The evolution continues with H.266/VVC [5], representing
the latest generation of international video coding standards.
This standard aims not only to achieve substantial bitrate
reduction compared to H.265/HEVC but also to address the
diverse needs of current and emerging media applications.
These video coding standards adhere to a cohesive hybrid
framework, encompassing prediction, transform, quantiza-
tion, entropy coding, and loop filtering.

B. LEARNABLE VIDEO CODECS
Since the learned video coding technique is derived from
learned image coding technique, we first give a introduction
to image-based learnable coding methods.

The early approaches [20], [21], [22] commonly embrace
a compressive auto-encoder framework. In this setup,
a nonlinear transformation is employed to generate a
concise latent representation, and an entropy model is
devised to estimate its probability distribution. This entropy
model-constrained encoder-decoder scheme established the
principled framework for later methods. To enhance the non-
linear transformation, Chen et al. [23] introduced non-local
attention into the process, resulting in a more compact
latent representation. Ma et al. [24] proposed a reversible
wavelet-like transformation to mitigate information loss
within the nonlinear transformation, which benefits the
reconstruction quality of the images. Xie et al. [25] follows
the similar spirit, proposing to leverage an enhanced
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invertible neural networks (INNs) to largely mitigate the
information loss problem for better image compression.
To cope with the challenge of non-differentiable operations
in vector quantization, Agustsson et al. [26] presented a
soft-to-hard end-to-end quantization approach. Zhang and
Wu. et al. [27] presents a novel a novel Lattice Vector
Quantization scheme. There are also some methods to
estimate a more accurate and flexible entropy model for
latent space. For example, Minnen and Singh [28] mitigate
the low efficiency of spatial auto-aggressive model by using
a channel-wise auto-aggressive model. Considering that
the channel group number (10) is far smaller than spatial
resolution of latent feature map, the encoding efficiency is
substantially improved. Cheng et al. [29] and Zhu et al. [30]
put forth a unified approach using a multivariate Gaussian
mixture for learned image compression.

Learnable video codecs extend the learnable video codecs
by introducing the inter-frame (P-frame) coding scheme.
The prevailing methods typically adopt a learned hybrid
video coding framework, leveraging motion-compensated
prediction to anticipate the current frame. This involves
compressing both the motion vector and residue. Lu et al. [8]
introduced the deep video compression (DVC) framework,
a notable approach within this paradigm. In DVC, opti-
cal flow is employed to represent the motion vector in
the motion-compensated prediction. Subsequently, both the
motion vector and residue are encoded using image com-
pression methods. Subsequent advancements have focused
on refining motion-compensated prediction in learnable
video codecs. Notably, Lin et al. [31] introduced Multiple
Frames Prediction for Learned Video Compression (M-LVC),
which leverages multiple frames as references for improved
prediction. Hu et al. [32] addressed pixel-space prediction
errors by conducting motion compensation in feature-space.
In their work, Liu et al. [33] proposed multiscale motion
compensation to capture coarse-to-fine motion vectors. They
further suggested a hybrid motion compensation approach,
combining pixel-space with feature-space compensation.
Agustsson et al. [34] put forth a scale-space flow represen-
tation, an intuitive extension of optical flow that introduces
a scale parameter. This addition allows the network to better
model uncertainty. In summary, the trend has been towards
exploring more reference frames as an effective strategy to
enhance compensation efficiency.

Beyond the above fully learnable codecs, there are some
works [35], [36], [37] that focus on a mixed architecture, i.e.,
enhancing the traditional codes with neural networks.

In addition to the residual coding scheme, recent
approaches have delved into conditional schemes to enhance
coding efficiency further. For instance, DCVC [9] introduced
a novel approach leveraging conditional coding, utilizing
feature domain context as a conditioning factor. Building
upon this idea, recent methods such as [38] and [39] have
aimed to extract more diverse temporal or spatial contexts
to achieve more accurate latent distribution estimation.
Our approach aligns with this contextual coding paradigm.
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FIGURE 1. Overview of the proposed Conditional Perceptual Video Compression (CPVC) framework. CPVC is conditioned on PSNR-oriented codecs.
The primary emphasis of CPVC lies in encoding perceptual experience-related information, guided by the patch-wise contrastive learning objective
Lpatch — contrast and the human saliency-weighted perceptual objective Lsaliency — percep. To enhance the modeling of video data, the
convolution kernel of the frame encoder is dynamic, aiming to capture past spatial-temporal information effectively. The videos compressed by the
PSNR-oriented codec and neural codec are fused by a UNet to the final frame. Here, “AE” and “AD" refer to the arithmetic encoder and decoder,

respectively.

We specifically model the conditional dependency between
the base pixel compression codec and the extended perceptual
information compressor, as opposed to focusing on the
dependency between motion coding and frame coding.

C. PERCEPTUAL VIDEO CODECS

The perceptual image compression landscape is marked
by notable contributions, with HiFiC [40] emerging as
a pioneering work. It distinguishes itself by integrating
Generative Adversarial Networks and learned compression
techniques, resulting in a state-of-the-art generative lossy
compression system. In the realm of conveying perceptual
features in human face images, Galteri et al. [41] present
an innovative approach utilizing segmentation maps as a
compact and latent representation. However, a drawback
of their method lies in the inherent limitation of the
hand-crafted nature of the segmentation map, rendering it
less flexible. Extending the paradigm beyond face images,
Change et al. [42] push the boundaries by performing per-
ceptual coding for natural images. Their approach involves
encoding visual data into compact structure and texture repre-
sentations, followed by decoding in a deep synthesis fashion,
with the goal of achieving superior visual reconstruction
quality. Advancements in perceptual compression, namely,
training learnable decoders with perceptual and GAN loss
function, have further expanded to the video works [7],
[43], [44], [45]. For example, Yang et al. [7] introduced a
recurrent network designed to reduce inter-frame redundancy.
Konuko et al. [43] proposed transporting the compact key-
point representation to drive the prediction of the next frame,
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with a focus on human face videos. In a departure from
previous methods, our approach simultaneously emphasizes
the incorporation of learnable semantic information and
human visual saliency priors, leading to superior results. This
distinction enables our approach to be applied effectively
to videos in diverse real-world scenarios, demonstrating
superior performance.

lIl. METHOD

The primary objective of this paper is to construct a
perceptual coding framework, denoted as CPVC, which
builds upon a pre-existing off-the-shelf PSNR-oriented video
codec. This construction involves the integration of two
perceptual visual experience-required supervision objectives
and advanced video transformation modules.

A. OVERVIEW
We begin by presenting an overview of the proposed CPVC
framework, as illustrated in Figure 1. Given an input video
sequence X = Xiy,...,X;—1, X, our approach initiates by
employing a current lossy codec, such as HEVC, to encode
the current frame x; as xr in P frame mode. This encoding
involves prediction from the previously encoded frame
X;—1. Due to the compression under the PSNR target, the
perceptual quality of x; is intentionally lowered. To mitigate
this, we propose extracting and transporting the perceptual
information f; from x;. The bitcost of f; is subsequently
reduced by leveraging X; as a condition to estimate the
parameters of the entropy model.

The perceptual feature f; is then decoded into the
perceptual frame y;, which undergoes regularization through

VOLUME 12, 2024



B. Li:

Semantics-Guided and Saliency-Focused Learning of Perceptual Video Compression

IEEE Access

Resblock(N,K)

3Resblocks(N,K)

| Resblock(N.K) |
| Resblock(N.K) |

| Resblock(N.K) |

ab. Y
A\ 4 4

FIGURE 2. The detailed network structures of the Resblock and
3Resblock blocks. “Conv(N,K,S)” denotes the convolution operation with
the output channel N, the kernel size K x K and the stride S.

the application of patch-wise contrastive learning objective
Lpatch — contrast and human saliency-weighted perceptual
objective Lsaliency — percep. These two objectives guide
the perceptual coding pathway to prioritize the extraction
and transportation of crucial perceptual information over
trivial textures. Finally, the perceptual frame y; and the frame
X; decoded from the PSNR codec are fused using a Unet
architecture, yielding the final reconstructed frame ;.

To enhance the accuracy of the information extraction
process, we introduce a spatial-temporal (ST)-guided kernel
estimator. This estimator assimilates past spatial-temporal
information to determine the optimal kernel that best fits the
current frame.

In the subsequent sections, we delve into the intricate
details of each component within our CPVC framework.

B. FRAME ENCODER

This network downsample the spatial resolution of the
input frame by four times, which mainly consists of two
convolution of kernel size 5 and stride size 2. To enhance
its non-linear capability, we append each convolution with
the 3Resblocks proposed in FVC [32], as shown in Figure 2.
3Resblocks is built by stacking three residual blocks (Res-
block), but also adding a long residue connection for retaining
the information. Each Resblock with the input variable In and
input variable Out can be formulated as follows:

Res = In,

Iny = Conv(In),

Iny = ReLU (Iny),

Iny = Conv(In,),

Out = Res + In3, (1)

where ReLLU denotes the Rectified Linear Unit [46] that sup-
presses the negative values, i.e., ReLU (In1) = max(0, Iny).

C. ST-GUIDED KERNEL ESTIMATOR

Since the frame encoder from the previous FVC framework is
designed for modeling the low-level texture patterns, instead
of high-level perceptual information. To address this problem,
we introduce a ST-guided kernel estimator to estimate two
perceptual kernels K, € R!Z8*3x3 and K2 e RIZx33
for extracting the perceptual information in a flexible and

VOLUME 12, 2024

adaptive manner, as shown in Figure 3. Kt1 and I(t2 are group
convolutions with the kernel 3 and group size 128.

Let the previous buffered perceptual feature f;_; and the
hidden state 4,1, which contains rich perceptual dynamics
of video and the current content feature f; extracted from
the PSNR codec stream. First, we employ a ConvLSTM to
aggregate the temporal dynamic information 75:

ir = o (Wi *fi—1 + Whi % hy—1 + bij + bp;)

Jo = oWig s fr—1 + Wyp x i1 + bir + byy)

gr = tanh(Wig s fi_1 + Wi % hy—1 + big + bpg)

Ty = o(Wip * fi—1 + Who * hy—1 + bip + bpo)

G =j1Oc-1+i;Og

h; = T; © tanh(c;), 2)

where * denotes the convolution operation. Wj;, Wp;, bii,
bri, Wir, Wi, bir, byg, Wig, Wig, big, brg, Wio, Who, bio, bpo
are the weights and biases of the convolutions. Hidden state
h; is further used by the next time step of the ConvLSTM
operation.

Then, we use a three layer network, consisting of three
convolutions with kernel size 3, output channel number
64 and stride size 2, followed by a average pooling
operation to extract the spatial content information from f;,
producing S;.

Further, the temporal dynamic information 7; and the
spatial content information S; are concatenated, processed by
a five-layer multiple layer perceptron (MLP), producing the
kernel parameters of size 2304 = 2 x 128 x 3 x 3. These
parameters will be split into two parts, and reshaped as the
content-adaptive kernel K, and K.

Given the preliminary visual feature z; extracted from x; by
the frame encoder, we adopt the above kernels K,' and K? to
produce more high-level perceptual information f;, which can
be formulated as:

fi = Oz + K7 % (ReLU(K, % 2,))), A3)

where * denotes the convolution operation, Q denotes the
quantization operation.

D. BITRATE ESTIMATION

We use a parameter network (Param-Net), which consists of
five stacked Resblocks, followed by a convolution layer with
kernel size 1 and output channel number 256, to produce the
parameter of the entropy model, y; € R!2$*W and o, €
R128xhxw Then the entropy model is modeled as a Guaussian
distribution p(f;) ~ N'(is, o). The entropy is calculated as

R(f;) = —log2[CDF(f; +0.5) — CDF(f; — 0.5)],

1 X —
CDF(x)=§|:1+erf(Oﬁ)]

)= [ e Par= 2 / e (4)
erf(x) = — e = — e ,

ﬁ —x ﬁ 0
where CDF denotes the cumulative density function of the
Gaussian distribution and erf is the related error function.
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E. LEARNING OBJECTIVES

We regularize the frame y, decoded from the perceptual
stream to be visually comfort from two aspects, (1) the mutual
information between the decoded frame and the original
frame should be maximized, and (2) the local texture patterns
of the human attentive regions between the decoded frame
and the original frame should be similar.

For the first objective, we employ the patch-wise con-
trastive loss function. As shown in Figure 4, given the positive
patch y;(01) located in 01 position of the compressed video y;,
we force its feature to be similar to the positive patch x;(o1)
located in the same position of the raw frame, but dissimilar
to the negative patches such as x;(07) in other location 0,. The
features of the above patches are extracted by a small CNN
JF. F isimplemented as five convolutions of kernel size three,
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followed by ReLU non-linearity.

v = F(y:i(o1)),

= F(x/(01)),

v, = F(xi(on)),
(%)

Then, the contrastive learning for learning patch semantics
can be given by:

[/patch—contra
exp(v-vt/t
= - log plr»1/e) . ©
exp (v-vt/T) + 3N sexp (v-va /1)
where N is the number of negative examples, T = 0.07 is the
temperature hyperparmater.

For the second objective, we improve the perceptual
loss [47] by re-weighting it with the saliency map M, which is
output from the saliency detection network [48] and binarized
by the threshold 0.5.

Csaliency—percep =MSEM © VGG16()?I)7 M © VGG16(xy)),
N

where MSE denotes the mean square loss, ® denotes the
broadcasting multiplication, and VGG16 denotes the pre-
trained VGG16 network [49] on ImageNet [50]. We adopt
the features output from relu4_3 layer for balancing the local
details and the global structure.

The final learning objective is given by,

L /\R(ft) + Esaliency—percep + Lpatch—contra + Eadw (8)

where L4, denotes the non-saturating adversarial loss [51],
A is the balancing hyper-parameter.

F. OTHER DETAILS

Regarding quantization, to comprehensively optimize the
entire model end-to-end, it is essential to employ a differen-
tiable quantization operation. In our framework, we adhere to
the approach outlined in [21], approximating the quantization
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operation by introducing uniform noise during the training
phase. When it comes to evaluation, we employ the rounding
operation directly.

IV. EXPERIMENTS

A. DATASETS

Several training datasets have been created for learned video
compression [52], [53]. Following established methodolo-
gies [8], [9], we utilize the popular Vimeo-90k [53] training
split in our investigation, where videos are randomly cropped
into 256 x 256 patches. To evaluate the efficacy and
application range of our proposed video compression method,
we utilize HEVC dataset [4]. The HEVC dataset consists of
16 sequences classified into Class B, C, D, and E. Visual
quality metrics are computed in the RGB color space.

B. IMPLEMENTATION DETAILS

We use the H.266 implementation VVenC [54] as the
PSNR-oriented codec in our framework. We adopt VVenC
instead of VIM due to the fast coding speed of VVenC,
and this is more practical for the real-world applications.
We train four models with varying A values (specifically,
A =1, 2,4, and 8) to cover a spectrum of coding rates. The
corresponding quality parameter (QP) of the H.266 codec is
set to 29, 32, 35, and 38, respectively. Our model undergoes
a two-stage training process. In the initial stage, we train
the model using only two consecutive video frames with the
MSE loss for 100,000 steps. This stage serves to establish
a robust initial state for the network. In the second stage,
we further train the model utilizing the training videos with
proposed semantic loss functions for an additional 900,000
steps. For optimization, we employ the Adam optimizer [55]
with a batch size of 6 and set the learning rate to le-4.
The implementation of our model is carried out using
PyTorch, and the training process is executed on 2 NVIDIA
4090 GPUs. The entire training duration for our model spans
six days.

C. EVALUATION METRICS

We utilize bpp (bits per pixel) as a metric to measure the bits
cost for each pixel in every frame. Specifically, the bpp value
is calculated with the following formulation,

_ bitsyyc + bitspeural
TxHxW

bpp ; €))
where bitsyyc and bits,e . denote the bits consumed by
the VVC codec and our neural frame, respectively. 7, H,
and W indicates the video length, video frame height, and
video frame width, respectively. To quantitatively assess
video subjective quality, we incorporate two feature-based
metrics, namely LPIPS [56] and DISTS [57], along with two
distribution-based metrics, namely FID [58] and KID [59].
We abstain from employing traditional PSNR and SSIM [60]
metrics due to their inconsistency with the human visual
experience.
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D. EXPERIMENTAL RESULTS

1) THE SETTINGS OF THE BASELINE METHODS

All baseline methods are assessed using the GOP size 32 and
clip length 96 configuration, a setting widely adopted in
recent methodologies [9], [39]. To create compressed videos
from H.264 and H.265, we utilize the FFmpeg software [61].
To create compressed videos from H.266, we utilize the
VVenC software [54].

a: H264

The command line for generating H.264 compressed video is
provided as follows, “ffmpeg -y -pix_fmt yuv420p -s WxH
-r FR -i Video.yuv -vframes N -c:v libx264 -tune zerolatency
-crf Q -g GOP -bf 2 -b strategy O -sc threshold 0 output.mkv™.
In the command, W, H, FR, N, Q, and GOP represent the
width, height, frame rate, number of encoded frames, quality,
and GOP size, respectively. For our HEVC datasets, N is
set to 96. Quality (Q) is configured as 29, 32, 35, 38 in
our settings. The GOP size is set to 32, aligning with recent
methodologies [39].

b: H.265

The command line for generating H.264 compressed video
is provided as follows, “ffmpeg -pix_fmt yuv420p -s
WxH -r FR -i Video.yuv -vframes N -c:v libx265 -tune
zerolatency -x265-params “‘crf=Q:keyint=GOP:verbose=1"
output.mkv”’.

c: H266

We adopt the open-source VVenC software [54] for perform-
ing the compression. The evaluation is performed with the
“cfg /experimental/lowdelay_faster.cfg” configuration file.

d: PLVC

We conduct a re-evaluation of the official code under the GOP
size 32 and clip length 96 settings to ensure a fair comparison.
The compressed frames produced by DCVCDC are saved
and subsequently assessed using the four subjective quality
metrics adopted in this paper.

e: DCVCDC

To ensure a fair comparison, we re-evaluate the official
code under the GOP size 32 and clip length 96 settings.
The compressed frames generated by DCVCDC are saved
and subsequently assessed using the four subjective quality
metrics adopted in this paper.

2) RESULTS

In Table 1, we present the BDBR [62] results of various video
compression methods in comparison to H.264 across HEVC
Class B, Class C, Class D, and Class E datasets. Notably, our
approach demonstrates a bit rate reduction exceeding 60% in
the overall results across all benchmark datasets. It is evident
that our method surpasses the performance of the advanced
traditional codec H.266, the state-of-the-art learnable neural
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FIGURE 5. Rate-Distortion Curves of different coding methods, when being evaluated with the LPIPS and DISTS metricss.
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TABLE 1. BDBR(%) of four baseline methods (H.265, H.266, PLVC and
DCVC) as well as our method, when compared with H.264 on the HEVC
Class B, Class C, Class D and Class E datasets. Negative values in BDBR
denote bit-rate savings. The smaller BDBR, the more bitrate saved.

ClassB  ClassC ClassD ClassE

H.265 5290 -34.02  -17.14  -40.99

H.266 -57.40 <4352 -39.04 5371

LPIPS PLVC 5725  -48.00  -35.11  -46.51
DCVCDC 4232  -4892  -5444  -38.30

Ours 6580  -68.55 7795  -57.68

H.265 49.11  -35.09 2626  -42.64

H.266 4620  -41.60  -46.59  -45.69

DISTS PLVC 5359 25615 4795  -51.07
DCVCDC  -1020  -33.24  -5328  -35.19

Ours 7412 -62.52 9072 -63.68

H.265 5424 4238 2603 -46.92

H.266 5132 2634 2538 -46.18

FID PLVC 5337 -5026  -47.15  -48.34
DCVCDC  -12.90  -1.29 1829 -36.02

Ours 6382  -66.82  -5896  -62.63

H.265 -59.81 5122 3257 -52.58

H.266 -50.88  -23.93 2829  -45.00

KID PLVC 6878  -68.77  -51.78  -63.65
DCVCDC  -7.58 2095  -1975  -38.00

Ours 6192  -9324  -60.24  -75.35

video codec DCVCDC, and the previous perceptual coding
method PLVC. For instance, compared to H.264, our
proposed method achieves a bit-rate saving of 77.95% on

68620

the HEVC Class D dataset, while the corresponding bit-rate
savings for recent H.266, DCVCDC, and PLVC are 39.04%,
54.44%, and 35.11%, respectively, when being evaluated
with LPIPS. Traditional PSNR codecs, including those the
traditional codecs, exhibit poor performance in subjective
quality metrics such as LPIPS, as also discussed in [7]. This
deficiency motivated our work to enhance traditional codecs
by augmenting semantic information and post-enhancing
frame quality.

The superior BDBR results of our approach in Table 1 stem
from several factors. Firstly, the anchor codec is an older
H.264 codec, while our method builds upon the advanced
VVC (H.266) codec, which already surpasses H.264 signifi-
cantly. Secondly, H.264’s block-wise compression technique
often leads to compression artifacts like blocking and ring
artifacts, degrading subjective image quality. In contrast,
our approach, employing neural networks with perceptual
and adversarial losses, enhances subjective image quality.
To quantitatively decompose the performance gain origi-
nality, we conduct the following step-by-step experiments.
Initially, upgrading the codec from H.264 to VVC reduces
the BDBR from -17.14 to -39.04 using LPIPS as the quality
metric on the HEVC Class D dataset. Then, integrating
the Unet enhancement network with an L1 loss function
further reduces the BDBR to 46.23. Subsequently, replacing
the L1 loss function with perceptual and adversarial losses
substantially reduces the BDBR to 61.11. Finally, introducing
contrastive learning-based semantic streams achieves the
ultimate reduction of the BDBR to 77.95.

Despite our substantial performance gain with perceptual
metrics, our framework indeed demonstrates poor perfor-
mance on traditional low-level signal distortion metrics like
PSNR/SSIM, as illustrated in Figure 7. This observation
aligns with the perceptual-distortion trade-off theory [63].

We provide the RD curves of different compression
methods in Figure 5 and Figure 6, it is noted that our method
outperforms the all other methods by a large margin on all
datasets, when being evaluated with four perceptual quality
metrics. We observe that DCVCDC significantly outperforms
the advanced H.266 codec by a considerable margin in terms
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FIGURE 8. Qualitative comparison of different video compression methods.

of the PSNR metric, as reported in their paper. However,
it exhibits poor performance when evaluated using perceptual
metrics. We hypothesize that the reason for this could be that
the DCVCDC codec has reached the optimal PSNR point
on the PSNR-Perceptual trade-off plane, which corresponds
to the least favorable perceptual performance [64].

Finally, we showcase the video frames compressed by
various methods in Figure 8. Notably, our model produces
noticeably higher-quality reconstructed frames at the same
bpp level compared to H.265/H.266. When contrasted with
the state-of-the-art neural codec DCVCDC, our approach

VOLUME 12, 2024

exhibits sharper object edges and an improved visual
experience. Additionally, in comparison to the perceptual
codec PLVC, our method preserves more meaningful video
contents, including finer details in human facial features.

3) ABLATION STUDY
In this section, we train several variant models to investigate
the effectiveness of all proposed modules.

As detailed in Table 2, when simultaneously removing the
patch-wise contrastive loss Lpatch — contrast, replacing the
visual saliency weighted perceptual loss Lsaliency — percep
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TABLE 2. Ablation Studies. Smaller BDBR is better, where the average
bitcost is lower. The dataset is Class D. The anchor codec for calculating
the BDBR is H.265.

Lpatch—contrast X X X v
Lsaliency—percep X X v v
Perceptual loss v v X X
Adaptive Kernel X v v 4
BDBR(LPIPS)  -39.04% -49.64% -62.45% -77.95%

with the plain perceptual loss, and also removing the adaptive
kernel design, the resulting model yields the least favorable
outcome, with a —39.04% BDBR. Upon reintroducing the
adaptive kernel design, the BDBR of the model is restored
to —46.64%. Further incorporating the saliency weighted
perceptual loss Lsaliency — percep, the model achieves a
—62.45% BDBR. Ultimately, the inclusion of the patch-wise
contrastive 10ss Lparch—contrast results in a —77.95% BDBR.

In summary, all designs presented in this paper are
necessary and effective. Notably, the patch-wise contrastive
loss emerges as the most significant contributor to the
observed improvements.

E. ENCODING SPEED AND MODEL COMPLEXITY

The encoding speed of our approach for a single 1080p
frame is 911ms, showcasing a faster performance compared
to the recent neural codec DCVCDC (1005ms). Although our
approach is slightly slower than the VVenC codec (634ms),
it’s important to note that we incorporate a neural coding
procedure, contributing to this difference in processing time.
However, given the substantial bitrate saving achieved by
our approach over VVenC, the increase in running time is
considered a worthwhile trade-off. The parameter count of
the networks within our approach is 9.62M.

V. CONCLUSION

In this paper, we introduce a novel video compression
approach tailored for achieving high subjective video quality
to enhance the overall human visual experience. Our method
is designed within a conditional framework, representing a
departure from conventional PSNR-oriented codecs, with a
focus on improving perceptual quality. Furthermore, three
innovative designs are introduced: a patch-wise contrastive
learning objective, a saliency map-weighted perceptual loss,
and adaptive kernel convolution. These designs collec-
tively contribute to superior perceptual coding capabilities.
Through extensive evaluations on four datasets, our approach
demonstrates clear advantages over previous methods.
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