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ABSTRACT Due to the time variability and bursty of data, accurate and lag-free time series prediction is
difficult and challenging. To address these problems, we propose an online attention enhanced differential
and decomposed LSTM (Long Short Term Memory) model called OADDL, which can better capture the
comprehensive core features and important structures of time series. In this model, the core features of the
time series are first generated through differential and decomposition methods to reduce data complexity and
remove noisy data. Then, the self-attention module and LSTM capture the full time core features and important
structures of time series. Finally, FCN (Fully Connected Network) fuses the omnidirectional features of
time series. Meanwhile, we design an online two-stage training mode for this model, in which attention
enhanced LSTM and FCN models are sequentially trained, and the training set and model hyper-parameters
are continuously updated over time, thus further capturing the time-varying and burst characteristics of time
series. We conduct tests on three typical datasets, and the experimental results show that compared with latest
typical deep learning models, OADDL can more accurately predict time series data and effectively alleviate
the problem of prediction lag.

INDEX TERMS Online prediction, time series, LSTM, self-attention mechanism, difference and
decomposition.

I. INTRODUCTION attention. However, time series continues to grow over time,

With the advent of big data era, time series data widely exists
in the fields of traffic monitoring [1], [2], electrical system [3],
[4], meteorological and environmental measurement [5], [6],
[7], financial services [8], [9], bioinformatics [10], [11], [12],
image processing [13], [14], [15], [16], etc., and has gradually
become an important part of big data. In some applications,
such as proactive resource scheduling in the stream processing
platforms [17], [18] and exchange management in finance,
time series prediction is the premise and key to correct
decision-making [19], [20], thus getting more and more
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exhibiting characteristics such as time-varying and sudden
changes [21], making it difficult to make accurate predictions,
and the prediction lags severely (i.e. the predicted data trend
lags behind the actual trend). Currently, the accurate and lag-
free prediction of time series has become an important and
challenging issue in data analysis [22], [23].

Currently, time series prediction has become a research
hotspot. In many existing works, time series prediction is
mainly based on statistical [24], [25], machine learning [26],
[27] and deep learning models [28], [29]. Statistical and
machine learning models are not suitable for learning complex
nonlinear time series features, especially bursts and their
trends, resulting in lower predictive performance. In view
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of the advantages of memory, hyper-parameter sharing and
context awareness, variations of recursive neural network
(RNN), long and short term memory (LSTM) and Transformer
have been applied to time series data prediction [30], [31], [32],
and the prediction performance is improved to a certain extent.
Moreover, online learning mode and data decomposition
method [33] have been introduced in some deep learning [23],
[31], to adapt to the changes of time series patterns over
time, resulting in improved training time and prediction
performance of the models. Therefore, the deep learning model
has gradually become the mainstream model of time series
data prediction.

Although deep learning has gradually become the main-
stream technology for time series prediction, there are still
challenges and shortcomings. These shortcomings are mainly
reflected in three aspects: data feature extraction, model
construction, and training mode. In time series prediction,
high-quality feature extraction methods will improve the
performance of temporal data prediction. However, for
complex temporal data, existing feature extraction methods are
not comprehensive, resulting in inaccurate feature extraction.
Meanwhile, model construction is the core of time series pre-
diction, and there has been relatively little work that balances
high predictive performance with low model complexity, with
a focus on long-term prediction. In addition, the training mode
of time series models is mainly offline, while online training
mode is more complex and has a higher spatial cost. Therefore,
it is necessary to design an efficient and high-quality time
series prediction method based on deep learning, which
supports all-round feature extraction, efficient and accurate
time series models, and low-cost model training modes.

In order to address the aforementioned problems and
challenges, inspired by the existing work, this paper compre-
hensively considers the data feature extraction method, model
selection and training mode, and explores an online time series
data prediction solution. In this solution, we use LSTM and
FCN as the basic model structure, combined with self attention
modules, differential methods, decomposition methods, and
online two-stage training modes, to continuously capture the
comprehensive core features and important structures of time
series, supporting efficient, high-quality, and low-cost time
series prediction. Our contributions are as follows.

(1) We propose an attention enhanced differential and
decomposed LSTM and FCN model for time series prediction,
in which differentiation and decomposition methods generate
the core features of time series, self-attention module captures
important structures of time series, LSTM learns the full-
time core features and important structures of time series,
while FCN fuses the full features of time series to improve the
accuracy of time series prediction and reduce prediction lag.

(2) We design an online two-stage training mode to further
improve the performance of the model. In this mode, the time
series is divided into pieces by sliding window, and several
pieces form one group for single training. We sequentially
train attention enhanced LSTM to predict trends and residuals,
and train FCN to predict time series data, and continuously
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update the hyper-parameters of the prediction model with new
data, thereby improving the model’s generalization ability.

(3) We conduct extensive experiments over three typical
datasets across disease, meteorology and environment fields.
Our empirical results show that compared with classic and
latest prediction models, our proposed model has higher
predictive performance and effectively alleviates prediction
lag. Meanwhile, we further discuss the roles of various
components of the model, the impact of different hyper-
parameter settings, and the complexity of the model.

This paper is organized as follows. Section II reviews
existing works on time series prediction. The proposed model
is presented, involving the framework of the model, multi-
dimensional time series generation, the attention enhanced
differential and decomposed LSTM, and the two-stage online
training mode in Section III. Section IV shows the experiment
results and evaluation. In Section V, the model is discussed.
Section VI concludes this work and prospects for future work.

Il. RELATED WORKS

The prediction models of time series mainly include traditional
models and deep learning models. The former includes the
statistical model and the machine learning model. The latter
can be further divided into offline learning and online learning
according to the timing of model updating. Since our work
belongs to online learning, we especially review some major
online learning-based approaches related to ours. This section
introduces the related research from three aspects and analyzes
the existing problems.

A. TRADITIONAL MODELS

For the time series, the statistical models, mainly including AR
(Autoregressive), ARMA (Autoregressive Moving Average)
and ARIMA (Autoregressive Integrated Moving Average), are
used in early prediction work [34]. Typically, Bai et al. [25]
present a neuron-based Kalman filter to represent the state-
space model, and use the nonlinear autoregressive model to
excavate the functions of the neuro units. Wang et al. [24]
conduct the ARIMA (Autoregressive Integrated Moving
Average) model to predict short-term cloud coverage, in which
a difference processing process is added to ARMA [35].
Ding et al. [36] develop an online convex optimization method
to predict time series by approximating the evolution of
ARIMA processes and using a discounted online Newton
method. Although statistical models can fit stationary time
series well, they perform poorly in dealing with nonlinear
data. Sue et al. [26] use the extreme learning machine model
to predict the financial time series, which is based on the
2,1-norm and Random Fourier Mapping. Yang et al. [27] and
Liu et al. [37] propose the dynamical regularized echo state
network model and the quantum echo state network model
to determine the structure size and predict the financial time
series, respectively. Combined with ensemble empirical mode
decomposition (EEMD) technique, Xu et al. [38] establish
a dual-scale deep belief network for predicting the daily
demand water volume of the urban. These machine learning
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models have achieved good performance in nonlinear time
series predicting. However, they are still unable to fully learn
the characteristics of time series, resulting in not fitting the
volatility and bursty of complex time series well.

B. DEEP LEARNING MODELS

Deep neural networks have powerful learning ability of
characteristics and have also been applied for time series
prediction [39]. Especially, the recurrent neural network
(RNN) [28] mines the time and semantic information of data,
thus attracting the most attention. Huang et al. [30] propose
a bidirectional recurrent neural network (BRNN) model to
accurately and real-time predict the traffic flow data. Further,
the long short term memory (LSTM) [29], [40], called as
gated RNN, introduces input, forgetting and output gates
and activation functions to solve short-term and long-term
dependence problems, and is promising in modeling irregular
time series data [41], [42], [43], [44]. Wang et al. [31] propose
an incremental ensemble LSTM model-IncLSTM, which
combines ensemble learning with transfer learning to build
the hierarchical network structure. Shi et al. [22] combine
data decomposition and parallel deep networks to predict data,
in which each deep network is separately trained by using each
data group. In [45], an LSTM+ESN architecture is presented to
combine characteristics of both networks to accurately predict
wind generation. Tian et al. [46] integrate the hidden feature
of the CNN and LSTM models to improve the forecasting
accuracy. Yu et al. [47] propose a bespoke LSTM combining
dynamic time warping (DTW) for accurate daily peak load
forecasting. Zhou et al. [48], propose a frequency enhanced
decomposed Transformer to capture the detailed structure and
global profile of time series for long-term series forecasting.
In [49], a general multi-scale framework is proposed for
transformer-based time series forecasting models, which
iteratively refines a forecasted time series at multiple scales
with shared weights. Shen et al. [32] propose a novel two-stage
Transformer framework to fit different statistical properties
between input and prediction sequences. Although these
deep learning models have achieved good prediction results
by integrating decomposition methods, statistical models or
neural networks, they still have not solved the problem of
prediction lag of time series, and the accuracy of short-term
time series predicting needs to be further enhanced.

C. ONLINE LEARNING METHODS

In order to overcome the time-consuming and static
characteristics of offline learning method and better adapt
to sudden nonlinear data, some research work focuses on
online learning method. The online learning method keeps
the memory of the original data and learns new data features
through constantly updating model hyper-parameters with
new datasets, so as to better adapt to data changes with lower
training costs [50], [51], [52]. Liu et al. [5] initiate model
updates for online prediction after detecting data distribution
changes through concept drift detection and specified rules.
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Zhang [23] adopts meta-learning to adaptively adjust the
learning rate of the stochastic gradient descent (SGD) in
recurrent neural networks to continuously fit time series data.
These two schemes either introduce additional processing
steps or are only applicable to the network structure with
SGD, and the serious prediction lag still exists in some cases.
In IncLSTM [31], multiple LSTM weak learners are trained
in parallel by the sliced time series data to learn the time-
varying characteristics of data and obtain better prediction
performance, which increases the cost of storage and selecting
learners. The above online learning models improve the
accuracy of sudden data prediction to a certain extent, but
it still does not solve the problem of prediction lag better, and
has additional storage and processing costs, and the solution
is not universal.

Ill. ONLINE ATTENTION ENHANCED DIFFERENTIAL AND
DECOMPOSED LSTM MODEL
A. FRAMEWORK OF THE PREDICTION MODEL
In this paper, we propose an online attention enhanced
differential and decomposed LSTM model (OADDL) for time
series prediction. The framework of OADDL is composed
of three parts, including the continuous sample generation,
the attention enhanced differential and decomposed LSTM
and FCN [53], and the online two-stage training mode. The
structure and overall flow chart of the framework is shown in
Figure 1.

As shown in Figure 1, the time series is first divided into
G groups to simulate the data samples of online learning, and
the length of each data group is M. Each data group carries
out online learning once. After each data group training, use
the next data group to train the model online. Each data group
is divided into slices every N data in the sample generation
phase to support online characteristics learning (the details
are in Section III-B). Each slice is taken as a sub-dataset
to ensure the integrity and continuity of training data and
provide diversified data samples for the model. Then, each
sub-dataset is differentiated and decomposed to generate first-
order difference, second-order difference, period, trend and
remainder series. These derived time series represent the multi-
dimensional characteristics of the original time series, which
reduces the complexity of data and the difficulty of prediction.
Further, these data are fed into the prediction model based
on LSTM and FCN, which is composed of three cascaded
networks (the details are in Section III-C). For irregular data,
the self-attention module (SAM) located in front of LSTM
captures the important structure of all time series, then LSTM
predicts the trend and remainder of time series, while FCN
fits the features of all time series. Finally, the online two-
stage training mode is conducted to constantly train and
update the prediction model. In the process of model training,
two data groups are used to train two cascaded networks in
turn, respectively, then different data are predicted after each
training, and the prediction result of the first network is used
as the training data of the second network, finally, the trained
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FIGURE 1. The framework of online attention enhanced differential and decomposed LSTM model.
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FIGURE 2. The time series with abnormal data and filled data.

network is used to predict the original time series data (the
details are in Section III-D).

B. SAMPLE GENERATION OF CONTINUOUS DATASETS

In the time series, there may be abnormal data with a value
of 0, as shown by the green dot in Figure 2. To ensure the
validity of time series data, we first handle these abnormal
data. Due to the continuity of missing values, we use periodic
interpolation methods to calculate the data where the 0 value
is located. Specifically, the classic decomposition method [54]
is first used to decompose the time series data to obtain
trend, residuals and periods terms. Then, considering the
characteristic that the trend will not change significantly, the
entire trend component is used as the trend component of the
missing value, and a random number between -10 and 10 is
used as the remainder. Finally, the trend, period, and remainder
are added as the fill value. The partial interpolation results
of time series abnormal data are shown in the subgraph of
Figure 2.

For the valid time series &, we divide it into continuous
groups, and use each group D with a length of M to train the
online model. Specifically, D is divided into a series of time
slices with overlapping time series data. Each time slice is
generated through a sliding window with a size of N, which
moves backward one position at a time. One slice is generated
in chronological order, called one sub-dataset. The continous
n sub-datasets form a dataset O and each sub-dataset O; is
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represented as follows.

O;=1{Di,Diy1,--- . Dizn—1}, 1 <i<n (D

D; is the first data in O;, and i is the number of the sub-
dataset, and is also the number of the data D; in group D.
0 € R™V is a two-dimensional matrix with n rows and N
columns, representing n sub-datasets and N data in each sub-
dataset. Oj; represents the j-th data of the i-th sub-dataset.

C. ATTENTION ENHANCED DIFFERENTIAL AND
DECOMPOSED LSTM

For the purpose of reducing the fluctuation and complexity
of the time series, the difference method and decomposition
method are used to transform time series of each dataset O
to generate its multi-dimensional time series, so as to extract
data features more accurately. The first-order are second-order
difference can be represented as

F, S = Differentiated(O) 2

F,S € R™N are the new series obtained by first-order
difference and second-order difference, respectively. The first
data in the first-order difference and the first two data in the
second-order difference are both null values filled with zeros.

The first three subgraphs of Figure 3 show an example of the
difference results of 500 COVID-19 related tweets on twitter
in August 2021. As shown in Figure 3, the two new time series
are generated by differencing the original data. Obviously, the
data volatility of these two new time series is smaller and
smoother than the original time series, and the effect of the
second-order difference time series is more prominent. It can
be seen that the difference method can indeed slow down the
volatility of data and remove noise data to certain extent.

Further, the decomposition method is also applied to the data
for precision feature extraction. There are many time series
decomposition methods, such as Classical decomposition [54],
X11 decomposition, SEATS decomposition [55], STL
decomposition [56] and so on. In this paper, the addition model
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of classical decomposition method is adopted, which is widely
used in the decomposition of time series [57], [58]. The trend
item represents a trend or state of continuous change in a long
period of time, and the seasonal or periodic items represent
the regular changes of time series, that is, the frequency of
periodic changes. The residual item represents the impact of
many accidental factors on the time series, which is the result
of the original time series after removing seasons or periods
and trends. For the dataset O, the decomposition of O can be
described by

P, T,R,p = Decompose(O) 3)

P,T,R e R™V represent the periodic component,
trend component, and remainder of O after decomposition,
respectively. p € R”" is an array of length, which represents
the last periodic component of each sub-dataset, and p; is P;y .

The last three subgraphs of Figure 3 show an example of
the decomposition results of the same time series. It can be
seen that the trend item shows a stable trend with a small
fluctuation over time. The period of the seasonal item is 60.
While, the residual term fluctuates frequently, and in most
cases, it is consistent with the fluctuation amplitude and the
trend of the original time series.
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By combining differentiation and decomposition pro-
cessing, we construct a prediction model based on SAM,
LSTM and FCN, as shown in Figure 4. SAM considers the
relationship between each element in time series and all
other elements to better understand the contextual structure
information. LSTM 1is adopted to predict the trend and
residuals components of time series, with the input of the
original time series and 5 new time series after difference
and decomposition. FCN is used for fitting the predicted
components, and outputs the predicted result of the time series.
The input is the trend and residual components output by
LSTM, as well as the original periodic components. The inputs
and outputs of three models can be expressed as

X = foan (X V)
TR = frsrmn(x™)

0 = fren(T, R, p) “4)

X € R™N*6 i5 a set of original time series and its derived
5 time series, which is a three-dimensional array with n rows,
N columns, and 6 depth (channels). X is further divided
into two training sets, X1 and X®, and their corresponding
ground-truth sets are Y1) and Y®, respectively. X @) is the
result of X1 being transformed through the SAM network,
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namely XV is multiplied by the normalized attention weight.
XD and YD are used for training the SAM and LSTM
networks (abbreviated as SAM_LSTM), and X @ and Y®
are used for training FCN, which can be expressed as

XV = (Xl <i<n1<j<N-1)

YWD =Ty, Riy|1 < i <n} 5)
X = (T, Ri,pill <i<n)
Y® = (0|l <i<n) (©6)

T and R are the outputs of the LSTM network, representing
the predicted values of T;y and R;y, respectively. Since the
periodic component appears repeatedly in each cycle, p is
known, and does not need to be predicted. X;; represents 6 data
values corresponding to the j-th data in the i-th sub-dataset,
namely,

D. ONLINE TWO-STAGE TRAINING MODE
We further design an online two-stage training mode for
the OADDL model, which includes two aspects: online
transfer learning and two-stage training. Online transfer
learning improves the efficiency and accuracy of model
training by continuously loading the training model of the old
dataset as the initial value of the current model to retain the
characteristics of all previous time series data. In two-stage
training, the SAM_LSTM and FCN are trained separately,
enabling the model to learn the features of the dataset from
different dimensions to improve the performance of the
prediction. Algorithm 1 describes the above training mode.
In Algorithm 1, for the time series &, obtain one group D
each time (lines 1-2). If the group D is successfully obtained,
continue to judge whether it is the first group. If it is, initialize
the prediction model of OADDL. Otherwise, load the last
trained model, that is, execute transfer learning (lines 3-7);
Otherwise, return the prediction model of OADDL (lines 8-9).
Next, calculate the number of sliding windows and generate
samples for the dataset O using formula (1). Then, according
to formulas (2) and (3), generate 5 new datasets from O and
normalize all datasets (lines 10-13). Furthermore, construct
the training set X and generate the training sets X! and
YD for SAM_LSTM through formula (5), i.e. prepare the
training data for the first stage (lines 14-15). Then, perform
the first stage of training using formula (4) (lines 16-18),
and generate the training sets X® and Y® for FCN through
formulas (4) and (6), i.e. prepare the training data for the
second stage (line 19). Finally, perform the second stage
of training using formula (4) (lines 21-23), and save the
prediction model of OADDL trained with the current group
of data (line 24).

IV. EXPERIMENT RESULTS AND EVALUATION

A. EXPERIMENTAL SETUP

The experiments are conducted on a PC with windows
10 system, and the hardware configuration is AMD ryzen 5
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Algorithm 1 The Online Two-Stage Training Algorithm
Input: Original dataset &, Length of each group M, Size of
sliding window N, Epochs of training E.
Output: the prediction model of OADDL
1: while & is not null do
2: Get one group D of &

3 if D.Length ==M then

4 if D is the firest group then

5: Initialize the OAODL model

6 else

7 Load the prediction model of OADDL >

Transfer learning

8: else
9: Return the prediction model of OADDL
10: Calculate the number of sliding windows, n =
M—-N +1
11: Generate samples of dataset O using formula (1)
12: Generate five new datasets F', S, T, R, P from O using

formulas (2) and (3)

13: Normalize O, F,S,T,R, P

14: Construct the training dataset X and generate
the training sets of SAM_LSTM X and YV using
formula (5)

15: > Preparing training data

16: fore=1:Edo

17: Train SAM_LSTM with XV = fgup,(XD) and
T,R= Jrstm (X (1)/) using formula (4)

18: > Training SAM_LSTM

19: Generate the training datasets of FCN X® and Y (2
using formulas (4) and (6)

20: > Preparing training data

21: fore=1:F do

22: Train FCN with O = fren(X@) using
formula (4)

23: > Training FCN

24: Save the prediction model of OADDL

4600h (3.0GHz) with radeon graphics (12CPUs) processor,
16GB RAM memory, 300GB HDD Disk, and NVIDIA
geforce GTX 1650 graphics card. The experimental programs
are written by Python 3.7, and the deep learning framework is
tensorflow 1.14.

We set the hyper-parameter setting of OADDL, as shown
in Table 1. The optimizer, learning rate, batch size and epochs
of SAM_LSTM and FCN in OADDL are the same, which are
Adam (RMSProp with classical momentum), 0.001, 64 and
20, respectively. SAM_LSTM has two outputs, and we set
the same loss function for them, that is MSLE (mean squared
logarithmic error), but their weights are different for each
output to modulate their contributions to the total training
loss. The loss_weights of SAM_LSTM is [1.0,0.6]. The loss
function of FCN is MAE (mean absolute error). The whole
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dataset is divided into five groups to simulate online learning.
The ratio of training set to test set in each group is 3:1.

Six deep learning models are selected to compare with our
model. A-LSTM is a significant deep learning model, with
a self attention module added before LSTM. PDCI (parallel
depth prediction with covariance cross fusion) [22], incLSTM
(incremental integration LSTM) [31], FEDformer [48],
scaleformer [49] and GBT [32] are the latest deep learning
models, and have achieved good performance on data series
prediction.

The hyper-parameters of comparative models are shown
in Table 2, the epochs of six models are 200, and the Epochs
of the strong and weak learners of incLSTM are 200. The
batch sizes of these four models are 24, 64, 64, 32, 8 and 16,
respectively. The loss of incLSTM is MAE, while the other
five are MSE (mean square error). The optimizers of these six
models are all Adams. The learning rate of scaleformer, GBT
and FEDformer is 0.0001, and the other three ones are 0.001.

TABLE 1. The hyper-parameter setting of OADDL.

Network hyper-parameter Value

SAM_LSTM optimizer Adam
loss MSLE
learning_rate 0.001
batch_size 64
epochs 20
loss_weights [1.0,0.6]

FCN optimizer Adam
loss MAE
learning_rate 0.001
batch_size 64
epochs 20

TABLE 2. The hyper-parameter settings of other models.

hyper-parameter

Model epochs  batch_size loss  optimizer learning_rate
PDCI 200 24 MSE Adam 0.001
incLSTM 200,200 64 MAE Adam 0.001
A-LSTM 200 64 MSE Adam 0.001
scaleformer 200 32 MSE Adam 0.0001

GBT 200 8 MSE Adam 0.0001
FEDformer 200 16 MSE Adam 0.0001

B. DATASETS AND EVALUATION CRITERIA

For the validation of the proposed model, the experiments are
conducted with three practical datasets. In time series data
prediction model training, the ratio of training set to test set
is 3:1, and the length of each time slice is set to 61. The first
60 data are used as training sub data sets, and the 61st data is
the predicted true value.

(1) COVID-19_twitter dataset. The dataset is related to
COVID-19 on Twitter, starting from August 1, 2021, with
a time range of 31 days and daily data of about 150000-
20000 tweets. We sort the original data according to time,
and calculate the number of tweets per minute to obtain the
original time series data.

(2) Beijing air quality dataset (http://www.stateair.net/web/
historical/1/1.html). The dataset consists of air quality data
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FIGURE 5. The PM2.5 data filled by the nearest interpolation method.

from Beijing in 2016. These data include the location, time,
and value of PM2.5. We are interested in the value of PM2.5,
with a data interval of one hour and a total of over 8000 pieces
of data. As shown in Figure 5, some PM2.5 data is missing, and
we use the nearest interpolation method to fill in the missing
values.

(3) Sunspot dataset (https://www.sidc.be/silso/INFO/
snmtotcsv.php). The dataset is the monthly average total
sunspot count from January 1749 to November 2021, with a
total of over 3000 pieces of data.

Without losing generality, we use four common evaluation
indices to evaluate the performance of time series prediction
models: RMSE (Root Mean Square Error), MAE (Mean
Absolute Error), MAPE (Mean Absolute Percentage Error)and
RZ (R Squared) [38], [59]. Specifically, RMSE measures the
deviation between the predicted value and the true value,
which is the square root of the square mean of the error
between the predicted value and the true value. MAE is the
absolute mean value of the error between the real value and
the predicted value. MAPE is a measure of relative error. R? is
the determination coefficient, which determines the closeness
between the real value and the predicted value, expressed as
the proportion of the sum of squares caused by the error of the
real value and the predicted value in the total sum of squares of
the mean value of the real value and the error of the predicted
value. For the OADDL being an online learning model, the
whole dataset is divided into five groups to simulate online
learning. We choose the indicators of the last group as the
performance indicators of the OADDL.

C. ONLINE PREDICTION PERFORMANCE

The prediction accuracy of the proposed OADDL was
compared with six comparison models on three datasets,
with evaluation metrics including RMSE, MAE, MAPE,
and Rz, as shown in Table 3. On the COVID-19_twitter
dataset, OADDL performs best on R2. Compared with the
optimal PDCI among the six models, R? increases from
0.794 to 0.828, an increase of approximately 4.3%, while
MAE is the smallest, a decrease of 1.3%, and RMSE and
MAPE are slightly higher, with a difference of approximately
0.4% and 2.8%, respectively. Compared with the suboptimal
model incLSTM, R? increased by approximately 8.7%, while
RMSE, MAE, and MAPE decreased by nearly 11%, 9%,
and 9%, respectively. The results indicate that OADDL
can predict data more accurately. The prediction results of
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TABLE 3. The performance comparison of different models.

COVID-19_twitte dataset

Beijing air quality dataset

Sunspot dataset

Model

RMSE MAE MAPE RZ RMSE MAE MAPE R? RMSE MAE MAPE RZ
OADDL 12.57 9.68 0.106  0.828  24.60 1470 0303 0943 2271 16.64 0259  0.886
PDCI 12.52 9.81 0.103  0.794  28.29 17.75 0477 0904  22.44 16.17  0.308  0.864
incLSTM 13.95 10.58  0.117  0.762  33.21 20.71 0322 0.898  28.80  20.01 0277  0.823
GBT 18.37 1234 0.125 0.636 5445  33.71 0376 0709 2795 21.09 0333 0.853
FEDformer 18.65 13.01 0.129 0631 53.18 3175 0326 0.723 3039 2199 0263 0.841
scaleformer  14.74 10.89  0.117  0.750 3944 2515 0895 0863 2568 2032 0432 0.864
A-LSTM 16.28 1245  0.124  0.713  30.34 1930 0298 0913 2587 19.85  0.267  0.865
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FIGURE 6. Comparison of the predicted results for COVID-19_twitter.
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FIGURE 7. Absolute errors of the prediction on COVID-19_twitter by different models.

the fifth dataset of COVID-19_twitter dataset are shown
in Figure 6. For an intuitive comparison, the absolute
errors of the prediction results are calculated, as shown
in Figure 7. In Figures 6 and 7, the curves in different
colors correspond to the predicted results of different models,
with blue representing the true values. From the partially
enlarged drawing in Figure 6, it can be seen that the curve
of OADDL fits the true curve best, especially the peak of
abrupt changes. Correspondingly, as shown in Figure 7, the
absolute error of OADDL is smaller than that of other models.
Therefore, the proposed method performs better than other
models.

Table 3 also shows the performance comparison on the
predicted the air quality dataset. All models performed
better on this dataset, while OADDL had the best overall
performance. R? is the highest, reaching 0.943, while RMSE
and MAE are both the lowest, and MAPE is the second
smallest. Compared with the optimal performance among the
six models, it has improved by about 3.3% (Rz, A-LSTM),
decreased by 13% (RMSE, PDCI), decreased by 17.2% (MAE,
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PDCI), and increased by 1.7% (MAPE, A-LSTM). The results
indicate that OADDL has better prediction accuracy on the
air quality dataset and still outperforms other models. The
predicted results for this dataset are shown in Figure 8. The
predicted curve of OADDL is closest to the curve of the
real values, which means that OADDL can more accurately
predict the trend of data changes and values, thus having good
prediction performance.

Similarly, the evaluation metrics for the Sunspot dataset
are shown in Table 3. It can be observed that compared with
the other six models, OADDL has the largest R2 (0.866), the
smallest MAPE (0.379), the second smallest RMSE (22.71)
with a difference of 1.2% (PDCI), and the second smallest
MAE (16.64), increased by 2.8% (PDCI). Compared with
other models, the OADDL model has the smallest overall
error and the predicted values are more in line with the real
values. In addition, the predicted results of the Sunspot dataset
are shown in Figure 9. The OADDL model still shows the
best fit, especially with high matching of predicted trends,
effectively reducing errors caused by prediction lag.
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FIGURE 8. Comparison of the predicted results for PM2.5.

In summary, OADDL shows consistent optimal prediction
accuracy on three typical datasets with different time-varying
and burst characteristics, with the overall smallest prediction
error and the most matching prediction trend. Therefore,
OADDL has good prediction performance, to some extent
alleviates prediction lag, and applicability to different time
series datasets. This indicates that through self attention
mechanism, differential and decomposition methods, and
online two-stage training mode, OADDL can effectively learn
the characteristics of data itself and the correlations between
data from time series, thus having stronger prediction and
generalization abilities.

V. DISCUSSION
A. ABLATION STUDIES
Our proposed OADDL mainly consists of four parts, namely a
deep learning module LSTM, a differential and decomposition
module, a self-attention module, and a two-stage training
mode. In this subsection, the contribution of each module to the
entire model is evaluated on the COVID-19_Twitter dataset by
removing other modules from the model. (1) LSTM. We refer
to the network model with deep learning module LSTM as
LSTM. (2) LSTM_DD. We refer to the model as LSTM_DD,
which performs the differential and decomposition processing
on the original time series data and uses the results as input
to LSTM. (3) LSTM_A. Similarly, the model that combines
self-attention module in front of LSTM is called LSTM_A. (4)
Two-stage. We refer to the network model with the differential
module removed as Two-stage.

The results of the ablation experiment are shown in Table 4.
It can be clearly seen that LSTM has the worst prediction
performance, and LSTM_DD with the addition of differential
and decomposition components, the prediction performance
has improved with an R? increase of approximately 20%.
Similarly, R? of the LSTM_A model is 0.729, which is about
18% higher than the original LSTM model. After adding a two-
stage training mode, the improvement is more significant with
R? directly increasing from 0.619 to 0.813, an improvement
of nearly 31%, close to the performance of OADDL of 0.828.
The other three indicators also have similar performance
variation characteristics. The performance of LSTM_DD
and LSTM_A has been improved but not significantly, with
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an improvement range of 7.3%-17.7% and 5.7%-15.7%,
respectively. While in the two-stage prediction mode, the
performance can be improved by up to 30.0% (RMSE) and
as low as 12.2% (MAPE). In addition, the performance
comparison between Two-stage and OADDL shows that
differential and decomposition have played a certain role,
and the predictive performance has been improved from
about 1.8% to 4.3%. Therefore, the two-stage training mode
combining with self-attention module and decomposition
is crucial and has the greatest impact on improving the
performance of the model. The influence of differential
and decomposition combination and self-attention module
weakens in turn, and the differential is the weakest.

TABLE 4. The ablation study of OADDL.

LSTM LSTM_DD LSTM_A Two-stage OADDL

RMSE 1875 15.43 15.81 13.13 12.57
MAE 12.66 11.12 11.66 9.93 9.68

MAPE 0.123  0.114 0.116 0.108 0.106
R? 0.619 0.742 0.729 0.813 0.828

In addition, we also compare the results of offline and
online training for OADDL. In the experiment, the dataset
is still divided into five groups, each with an independent test
set. Offline training reconstructs a model for each group for
training and testing, while online training uses the same model
for continuous training and testing on five training sets. The
epochs for the first group of data training are 20, while for
the other four groups, the epochs are 5, and other parameter
settings are the same as Table 1. As shown in Table 5, the
performance of online training is slightly better than offline
training, with an average improvement of 2.62% in R?, 4.96%
in RMSE, 3.48% in MAE, and 0.94% in MAPE, respectively.
The reason for the above phenomenon is that online training
can not only remember existing features of data that change or
mutate over time, but also discover and learn new data features,
enabling the model to better adapt to data changes, thereby
improving the predictive performance of unpredictable data.
Therefore, online training can to some extent improve the
model’s adaptability to time-varying burst data. Meanwhile,
the training time cost is also shown in the Table 5. It can be
seen that the training time for each epoch is about 5 seconds,
and online training is significantly better than offline training

VOLUME 12, 2024



L. Li et al.: Online Attention Enhanced Differential and Decomposed LSTM for Time Series Prediction

IEEE Access

300

200

00

The monthly mean total sunspot number

FEDformer
' —— incLSTM

| LJ | Eo.-
M H '1\“ o

real

0 100 200

400 500 600

Time steps

FIGURE 9. Comparison of the predicted results for Sunspot.

in terms of time cost, saving nearly 69% of the time on average.
As time goes on, the advantages of online training become
increasingly apparent.

TABLE 5. The performance and training cost comparison with online and
offline learning.

Groups mode RMSE MAE MAPE R? cost(s)
Group 1 online 1623 11.94 0.102 0.792 81.85
offline 1623 11.94 0.102 0.792 82.96
Group 2 online 15.88 11.85 0.106 0.797 24.60
offline 17.40 12.62 0.106 0.756 91.99
Group 3 online 16.43 12.01 0.112 0.828 24.23
offline 1829 12.78 0.112 0.788 94.76
Group 4 online 16.52 1229 0.101  0.835 24.78
offline 16.75 12.53 0.103 0.830 93.98
Group 5 online 12.57 9.68 0.106 0.828 25.09
offline 13.16 10.02 0.109 0.812 102.23

B. PARAMETER ANALYSIS

In this subsection, we analyze the setting of hyper-parameters
on OADDL, including the loss weight, the optimizer and the
loss function, while keeping other hyper-parameter settings
the same as Table 1. As shown in Table 6, the OADDL
performance under five sets of loss weights is similar,
indicating that the loss weight of SAM-LSTM has little impact
on model performance. In Table 7, we compared the effects
of three optimizers on the model which include RMSProp
(root mean square prop), Adam and Nadam (RMSProp with
Nesterov momentum). As can be seen from Table 7, when
the optimizers of FCN are the same and SAM_LSTM uses
different optimizers, the performance of OADDL is similar.
On the contrary, OADDL shows different performance. For
the FCN, the performance of optimizer RMSProp is the
worst, and Adam outperforms Nadam. The reason for the
above phenomenon is that the characteristics of the three
optimizers are different. RMSProp stabilizes the model’s
representation of common features and allows it to rapidly
catch the representation of rare features. Momentum has the
advantage of accelerating gradient descent learning along
dimensions and slowing it along turbulent dimensions where
the gradient is significantly oscillating. Therefore, Adam and
Nadam have more obvious advantages. In Table 8, the similar
effects are shown in OADDL under different loss function
combinations, including MSE (mean square error), MAE
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(mean absolute error) and MSLE (mean square logarithmic
error). From the above results, the hyper-parameter selection
of FCN has more impact on the performance in OADDL. The
reason is that FCN makes the final output, which has a certain
correction effect on the output of SAM_LSTM, thus affecting
the performance of OADDL.

TABLE 6. The performance comparison with different SAM_LSTM loss
weights.

loss weight RMSE MAE MAPE R?

[1.0,0.4] 1256 9.67 0.106 0.829
[1.0,0.6] 1257 9.68 0.106 0.828
[1.0,0.8] 1288 10.06 0.113 0.820
[1.0,1.0] 1271 985 0.110 0.825
[1.0,1.2] 1254 965 0.106 0.829

TABLE 7. The performance comparison with different optimizers.

SAM_LSTM FCN RMSE MAE MAPE R?

Adam Adam 1257  9.68 0.106 0.828
Adam Nadam 1342 10.60 0.121  0.805
Adam RMSprop 14.70 11.81 0.137  0.766
Nadam Adam 1259 972 0.107 0.828
Nadam Nadam 1370 10.84 0.124  0.796
Nadam RMSprop 1548 1249 0.145 0.740
RMSprop Adam 1258 9.59 0.103 0.828
RMSprop Nadam 13.77 1091 0.125 0.794
RMSprop RMSprop 1529 1291 0.143  0.747

C. SENSITIVITY ANALYSIS

Further, we conduct sensitivity analysis on the hyper-
parameters of OADDL, including the loss function, learning
rate and batch size, and other hyper-parameter settings are the
same as Table 1. We train the OADDL model with 200 epochs,
and the loss function curve of OADDL is shown in Figure 10,
with the left and right vertical axes corresponding to loss
values of SAM_ LSTM and FCN, respectively. Starting from
20 epochs, the loss of SAM_LSTM and FCN show little
or only slight fluctuations, which means that two models
complete convergence at 20 epochs. Thus, we set the epochs
of these two models to 20 in the experiments. There are
two optional values for setting the learning rate, which are
0.01 and 0.001, respectively. As shown in Table 9, when
these two network learning rates are both set to 0.001, the
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FIGURE 10. The training loss function curves of SAM_LSTM and FCN.

effect is the best. While the learning rate is set too large,
the gradient may fluctuate back and forth near the minimum
value, and may even fail to converge. Table 10 shows the
performance of OADDL using different online batch size b,
b € {16, 32, 64, 128, 256}. It can be seen that OADDL has
comparable or better performance than other competitive sizes
at b = 64. The reason is that when the batch size is too small,
it takes too much time, and the gradient oscillation is serious,
which is not conducive to convergence. On the contrary, more
training time is needed to converge.

TABLE 8. The performance comparison with different loss functions.

SAM_LSTM FCN RMSE MAE MAPE R?

MSE MSE 1252 9.68 0.106 0.830
MSE MAE 1250 9.59 0.104  0.830
MES MSLE 1258 9.72  0.107  0.828
MAE MSE 1293 10.11 0.114 0.819
MAE MAE 1258 9.63 0.105 0.828
MAE MSLE 12.64 9.59 0.102  0.827
MSLE MSE 1273 993 0.111 0.824
MSLE MAE 1257 9.68 0.106  0.828
MSLE MSLE 12.69 9.89 0.108 0.825

TABLE 9. The performance comparison with different learning rates.

SAM_LSTM FCN RMSE MAE MAPE RZ?

0.01 0.01 12.88 10.03 0.111  0.820
0.01 0.001 12.58 9.70 0.106  0.828
0.001 0.01 1292 10.04 0.111 0.819
0.001 0.001 12.57 9.68 0.106  0.828

TABLE 10. The performance comparison with different batch sizes.

SAM_LSTM FCN RMSE MAE MAPE R?

16 16 13.08 990 0.103 0.814
32 32 12.68 9.83 0.109 0.825
64 64 12.57 9.68 0.106 0.828
128 128 13779 10.77 0.121  0.794

256 256 1341 10.05 0.106  0.805

D. COMPLEXITY ANALYSIS

The OADDL model structure is shown in Figure 11. In the
OADDL model, only one attention layer is in the SAM module,
which mainly includes four layers, namely Permute, Dense,
Permute, and Multiply in turn. The Permute layers are used
for dimensional transformation. The Dense layer includes
(6,60) neurons. The Multiply layer calculates the product of
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TABLE 11. Parameters and FLOPs of the OADDL.

Layers Output Parameters FLOPs
Attention (60,6) 3660 7200
LSTM 100 42800 84800
Dense_1 50 5050 10000
Dense_2 24 1224 2400
Dense_3 1 25 48
Dense_4 1 51 100
Dense_5 100 400 600
Dense_6 50 5050 10000
Dense_7 24 1224 2400
Dense_8 1 25 48

Differential and Decomposed LSTM

100
LsTM

SAM

@ [ > =

FIGURE 11. The model structure of the OADDL.

the original input and the output of the second Permute layer.
The Differential and Decomposed LSTM is a 5-layer network,
and the first layer is the LSTM layer. LSTM has 100 neurons
and each neuron has forgetting gate, input gate, and output
gate. The second to four layers are all Dense layers, containing
50, (24, 1), and 1 neurons, respectively. In the third layer,
24 neurons predict the trend component and connect to the
fourth layer, while 1 neuron predicts the residual component.
The FCN module is a network composed of four layers of
Dense modules, each layer containing neurons 100, 50, 24,
and 1, respectively. The parameters and FLOPs (floating point
operations) of each layer in the OADDL model are shown in
Table 11. Obviously, the LSTM layer has the highest number
of parameters and FLOPs, with 42800 and 84800, respectively.
The total number of parameters in the model is 59509, and the
total FLOPs of the model are 130644. In summary, due to the
parameter size being less than 10M and FLOPs being less than
10G, the model belongs to small-scale and low computational
models. Therefore, the OADDL model has low spatial and
temporal complexity.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose an online attention enhanced
differential and decomposed LSTM model (OADDL) to
address the problems of low accuracy and prediction lag
in time series. In this model, we combine differentiation,
decomposition, self-attention module, LSTM and FCN
networks to comprehensively capture the core features and
important structures of time series. First, the attention
enhanced SAM_LSTM takes the original time series and new
time series generated after differentiation and decomposition
as inputs in the first training stage, and the trained model
outputs the prediction results of trend and remainder. Then,
FCN is connected with SAM_LSTM in a cascade manner,

VOLUME 12, 2024



L. Li et al.: Online Attention Enhanced Differential and Decomposed LSTM for Time Series Prediction

IEEE Access

taking the predicted result of SAM_LSTM and the original
period as its input in the second training stage, and the
predicted result of FCN is the predicted result of the time series.
The above model adopts online training mode, which can be
dynamically updated in real-time and capture the diversity and
historical features of time series data. The experiment results
show that the proposed model is superior to the latest typical
deep learning models in performance on three typical datasets.
That is, our OADDL can better fit nonlinear time series and
alleviate the lag of prediction. Further, the results of ablation
research also demonstrate that differential, decomposition, and
two-stage training modes improve the performance of OADDL
in different degrees, and none of them are indispensable. In the
future work, we will expand and improve the existing model,
including the introduction of model parallel and ensemble
learning, or deep reinforcement learning technology, and
combined with expert domain knowledge, so as to achieve
accurate and consistent long-term prediction of non-stationary
time series data.
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