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ABSTRACT Detecting passengers within overhead, fisheye images presents a unique set of challenges.
Traditional approaches rely on radially-aligned bounding boxes based on the assumption that people
are consistently oriented along the image radius. This assumption simplifies the detection process but
introduces limitations in terms of flexibility and detection accuracy. Additionally, thesemethods often require
extensive pre and post-processing, significantly increasing the computational complexity. We propose an
innovative, end-to-end, rotation-aware detection framework specifically designed for the accurate detection
of passengers using angle-oriented bounding boxes. This study investigates a fully convolutional neural
network (CNN) that performs direct orientation regression of each bounding box, enhanced by a scale and
angle loss function that effectively accounts for the periodicity of angles, ensuring accurate and robust
bounding box orientation predictions. Moreover, we present a new dataset tailored to in-cabin passenger
detection and counting. Our experimental results show an improvement of 5.3% in average precision,
compared to state-of-the-art methods in overhead people detection. Finally, we demonstrate results from
real vehicle experiments in Copenhagen and Geneva, highlighting the importance of this work for public
transport operators.

INDEX TERMS Artificial intelligence, edge computing, autonomous vehicles, computer vision, in-cabin
monitoring, passenger counting.

I. INTRODUCTION
Automated passenger counting (APC) is a crucial component
for the successful integration of autonomous vehicles (AVs)
in public transportation. APC systems enable public transport
operators (PTOs) to accurately monitor the number of
passengers on board in real time, which is instrumental
in optimizing resource allocation, such as the allocation
of vehicles to routes with higher passenger demand, and
helping to ensure that AVs are efficiently utilized, reducing
unnecessary energy consumption and operational costs.

The associate editor coordinating the review of this manuscript and

approving it for publication was Jie Gao .

Moreover, knowing the exact number of passengers onboard
is crucial for maintaining safety standards, as overcrowding
can lead to safety hazards and discomfort for passengers.
By employing APC, AVs can prevent overloading and ensure
that passengers travel comfortably and securely. Additionally,
the data collected by APC systems provide valuable insights
into passenger behavior and preferences, offering PTOs the
ability to make decisions about route planning, scheduling,
and service adjustments, improving the overall quality
of public transportation services. Finally, AVs equipped
with APC systems can provide real-time information about
passenger occupancy through onboard displays or mobile
apps, also allowing passengers to make informed decisions
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FIGURE 1. YOLO-V5 inference on overhead fisheye camera image.

about their travel plans, reducing wait times and enhancing
their overall experience.

A typical APC system consists of hardware sensors,
typically video cameras, with computer vision algorithms [1],
[2], [3] and a setup that usually involves the lateral positioning
of a wide field of view camera above the area of interest,
with the use of multiple such cameras to cover larger areas.
An intriguing alternative to this conventional setup would be
the utilization of a singular fisheye lens boasting a 360-degree
field of view (FoV). Although, the current problem with such
setups lies in the already existing detection algorithms that
were originally designed for side perspective, standard-lens
images, thereby often struggling when applied to overhead
360-degree images, primarily due to the distinctive circular
geometry and barrel-shaped distortions characteristic of the
latter [4], [5].

In conventional images, where standing individuals are
typically depicted in a vertical orientation, detection algo-
rithms that recognize bounding boxes aligned with the image
axes, such as You Only Look Once (YOLO) [6], Single-
Shot Detector (SSD) [7], and Region-based Convolutional
Neural Network (R-CNN) [8], perform admirably in such
scenarios. However, these same algorithms encounter signifi-
cant challenges when applied to overhead fisheye images [9],
frequently failing to detect individuals not in upright postures,
as illustrated in Fig. 1. In these overhead images, standing
people are often situated along the image radius due to the
camera’s overhead placement, necessitating the use of rotated
bounding boxes.

To address this need for rotation-aware detection, various
YOLO-based people detection algorithms have been recently
proposed [9], [10], [11], [12], [13], [14], each tackling the
radial geometry differently. For instance, a notable approach
involves rotating the image in small 15-degree increments,
followed by applying YOLO to the central upper part of the
image, where people are generally upright, and then perform-
ing post-processing to eliminate redundancies [9]. However,
this approach demands multiple YOLO applications. On that
note, another recent approach [13] employs rotated bounding
boxes to align people with the radial axis of the image, which
can typically be less effective in identifying individuals in
non-upright positions, as depicted in Fig. 1.

In this paper, a novel end-to-end detection algorithm
for passengers inside autonomous vehicles is designed
specifically for overhead fisheye images based on a single-
stage CNN, extending the architecture originally introduced
in YOLO [6], [15], [16]. Apart from predicting the centroid
and size of the bounding boxes, we also incorporate the
use of an angle-aware loss function extending scale-invariant
regression loss for angle prediction, thus enabling the precise
determination of the orientation of each bounding box
without adding computational complexity. Being an end-to-
end solution, the proposed method allows for training or
fine-tuning using annotated fisheye images, with fine-tuning
from models trained on standard images showing significant
performance improvements. In addition, another noteworthy
advantage of this proposed work, driven by its focus
on passenger detection, is the adoption of single-class
object detection, replacing the common regression-based loss
function found in multi-class object detection algorithms [6],
[7], [17], [18]. Remarkably, the inference speed closely
matches that of YOLO, as it processes each image only once
without requiring pre- or post-processing steps.

The remainder of this work is structured as follows.
Section II offers a survey of the most recent bibliography
on already existing overhead fisheye imaging solutions from
the state-of-the-art. In Section III, the overall architecture
of our proposed overhead detection framework is presented,
while in Section IV, a comprehensive analysis of the
oriented bounding box regression method is offered. Finally,
Sections V andVII offer the experimental results of this work,
derived after the implementation of the proposed detection
framework, and summarize our conclusions, respectively.

II. RELATED WORK
The exploration of both people and object detection
techniques across various imaging modalities has led to
significant advancements in three distinct areas by employing
side-view, standard-lens cameras, where traditional and deep
learning methods excel in people detection through feature
analysis and direct bounding box regression; utilizing rotated
bounding boxes by adapting object detection frameworks to
accommodate orientation gradations; and, lately, by employ-
ing overhead, fisheye imaging, thus prompting the develop-
ment of specialized algorithms. This section presents existing
people and object detection approaches from the state-of-
the-art that fit within these three categories, highlighting the
evolution of detection methodologies tailored to the specific
characteristics of each imaging approach.

A. SIDE-VIEW, STANDARD-LENS DETECTION
Detecting individuals with conventional side-view cameras
leveraging standard lenses involves well-known methods
including histograms of oriented gradients (HOG) [19]
and aggregate channel features (ACF) [20]. The advent of
deep learning has considerably enhanced the efficiency of
identifying objects and individuals [6], [7], [8], [17], [18],
[21], leading to a classification of two main types, namely
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two-stage and one-stage methods. More specifically, the two-
stage approach, including R-CNN and its variants [8], [17],
[18], employs a Region Proposal Network (RPN) to predict
a region of interest (ROI), followed by precise bounding box
adjustments. On the other hand, one-stage methods, such as
SSD [7], [21] and YOLO [6], [15], [16] variations, operate as
standalone RPNs that directly deduce bounding boxes from
the input image via CNNs. Recently, the focus has shifted
towards both fast one-stage detectors [22], [23] and anchor-
free detectors [24], [25].

B. ROTATED BOUNDING BOXES DETECTION
Another research field that gained interest is the study of
detecting objects with rotated bounding boxes, especially
for text recognition and aerial imagery analysis [26],
[27], [28], [29]. In this context, the rotated RPN (RRPN)
algorithm [26] introduces a dual-stage detection process
incorporating rotated anchors and a unique rotated ROI layer,
while the RoI-Transformer [27] goes one step further by
initially setting a horizontal ROI and then adapting it into
a rotated form. R3Det [28] is another innovative algorithm
with a single-stage detector that includes a refinement layer
to address alignment discrepancies, a challenge common
in single-stage frameworks. Alternately, Nosaka et al. [30]
employ orientation-sensitive convolutional layers [14] for
orientation adjustment, as well as a smooth L1 loss for
angle correction. All of these aforementioned methodologies
typically represent bounding boxes with a five-element
vector, accounting for symmetry in their orientation to refine
loss calculation and addressing the limitations of traditional
regression losses when estimating closely aligned predictions
with the actual position and orientation. RSDet [29] addresses
this by introducing a modulated rotation loss.

C. OVERHEAD, FISHEYE DETECTION
Detecting individuals in overhead fisheye imagery is a
new yet developing field with limited existing research.
Traditional detection methods, including HOG and local
binary patterns (LBP), have been adapted for the unique
distortions of fisheye lenses with slight adjustments to
account for fisheye geometry [10], [11], [12], [31]. More
specifically, new techniques involve rotating fisheye imagery
in increments to capture and analyze features from specific
image sections using classifiers, such as support vector
machines (SVM) [10]. Additionally, adaptations have been
made to adjust feature extraction methods to the fisheye
perspective for accurate person identification [12].

Additional approaches also include deep learning tech-
niques that propose CNN modifications to accommodate the
fisheye distortion by adjusting CNNs into rotation-invariant
approaches and applying them to specifically processed or
transformed versions of the image data to align with typical
image orientations [6], [9], [32]. Such approaches involve
preprocessing by dewarping or rotating the images, followed
by sophisticated post-processing to refine detection accuracy

and reduce redundancy in detection instances. The work by
Duan et al. [33] features a similar architecture, containing a
backbone, an FPN and a detection head for angle prediction.

D. PURPOSE AND SCOPE
This study introduces a novel approach by integrating an
angle loss function for precise bounding box orientation pre-
diction and revising the rotated bounding box representation
to address inherent symmetry issues. This enhances the accu-
racy and efficiency of passenger detection in fisheye images
from on-board footage.More specifically, we introduce a new
loss function, taking into account the scale and the angles of
the bounding boxes and focusing on the conditions inside the
vehicle’s cabin. Moreover, we present a dataset for passenger
detection, specifically tailored for automated passenger
counting in autonomous vehicles. Finally, we evaluate our
proposed passenger counting method through qualitative and
quantitative analysis of a real-world installation. The results
indicate that our method outperforms traditional regression
loss methods without introducing additional computational
complexity.

III. METHODOLOGY
Similar to one-stage detectors, the proposed overhead imag-
ing model contains a Backbone network, a Feature Pyramid
Network (FPN) and a bounding-box regression network as
a detection head, with each component specifically designed
to process the input image and extract features at multiple
scales, resulting in the prediction of bounding boxes and
class categories for objects within the image, as depicted
in Fig. 2. The choice for a single-stage approach was made
to satisfy the need for real-time processing in our solution,
a resource-constrained embedded device with low power
requirements. Single-stage CNNs offer significantly faster
inference speeds due to their simple design, compared to two-
stage detectors [34].

A. BACKBONE NETWORK
The backbone of the network is responsible for the initial
feature extraction and is typically a pre-trained CNN such as
ResNet, VGG, or a similar architecture. More specifically,
given an input image I , the network produces a set of
multi-dimensional feature maps {Pk}3k=1 at different scales,
denoted as P1, P2, and P3 for high, medium, and low
resolutions, respectively, as follows:

Pk = Backbone(I ), k ∈ {1, 2, 3} (1)

B. FEATURE PYRAMID NETWORK
The FPN enhances the backbone’s feature maps by inte-
grating high-level semantic information from deep layers
with spatial information from earlier layers based on eq. (2).
This choice was made due to the significant variations in
object sizes due to the distortion of the wide-angle fisheye
lenses. FPN’s multi-scale feature representations allow for
effectively detecting both passengers in the center, who
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FIGURE 2. Model architecture. Each arrow represents multiple convolutional layers, and the colored rectangles represent multi-dimensional matrices,
i.e., feature maps, whose dimensions correspond to an input image of size h × w = 1, 024 × 1, 024.

appear larger, and those who appear much smaller due to the
peripheral distortion. This is achieved by upsampling spa-
tially coarser, but semantically stronger, feature maps from
higher pyramid levels and merging them with lower-level
maps through element-wise addition.

{Pfpnk } = FPN({Pk}), k ∈ {1, 2, 3} (2)

C. DETECTION HEAD
Post feature enhancement by the FPN, the detection head
predicts the transformed bounding boxes and class scores
by applying a separate CNN to each FPN feature vector
to generate a transformed bounding box predictions T̃k and
an objectness score, which are relatively parameterized to
anchor pre-defined boxes at different scales and aspect ratios,
as follows:

t̃x,k = sk · (i+ Sigmoid(fx,k )) (3)

t̃y,k = sk · (j+ Sigmoid(fy,k )) (4)

t̃w,k = wanchor
k · exp(fw,k ) (5)

t̃h,k = hanchork · exp(fh,k ) (6)

õk = Sigmoid(fo,k ), (7)

where i and j represent the center of the anchor box, sk is the
stride of the feature map at scale k , and fx,k , fy,k , fw,k , fh,k , fo,k
are the outputs of the CNN applied to the feature vector from
the FPN. The variableswanchor

k and hanchork represent the width
and height of the k-th anchor box, and Sigmoid is the logistic
function applied to constrain the outputs to a range between
0 and 1. The objectness score õk denotes the probability that
an object is present within the predicted bounding box. The
training loss function of the network combines the regression
loss for the bounding box coordinates and a classification loss
for the objectness score.

IV. ROTATION-AWARE BOUNDING BOX REGRESSION
The rotation-aware bounding box regression is a critical
component of the proposed method, enabling the detection
of people in overhead fisheye images with a high degree of

accuracy in both position and orientation by incorporating
a novel angle prediction mechanism that accounts for the
unique properties of angles as cyclic quantities. It involves
the prediction of a bounding box’s orientation, along with its
center and size, which are normalized relative to the feature
map dimensions as follows:

Lreg =

N∑
i

(
λcoordScaleL1(bi, b̂i) + λanglePeriodicL1(θi, θ̂i)

)
(8)

Here, Lreg represents the regression loss, bi the predicted
bounding box, b̂i the ground truth box, θi the predicted
orientation, and θ̂i the ground truth orientation. The terms
ScaleL1 and PeriodicL1 are the scale L1 loss and periodic
L1 loss, respectively, with λcoord and λangle as the balancing
weights. This allows the network to effectively learn the
orientation of objects, taking into consideration the periodic
nature of the angle, thus providing a more robust and accurate
object detection in fisheye images.

A. SCALE-INVARIANT LOSS FUNCTION
To address scale variance in object detection, particu-
larly for fisheye images, we propose the integration of a
scale-invariant term in the loss function that aims to stabilize
the learning across different object sizes, a common challenge
in fisheye image datasets due to perspective distortion.
The scale-invariant loss term Lscale could be formulated as
follows:

Lscale =
1
N

N∑
i=1

1
√
wihi

Lobj(oi, ôi), (9)

where N is the number of objects, wi and hi are the width
and height of the bounding box of the i-th object, Lobj
is the objectness loss for the i-th object, oi is the ground
truth objectness score, and ôi is the predicted objectness
score.
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B. ANGLE LOSS FUNCTION
The angle loss is crucial for the model’s ability to learn the
orientation of objects, a fundamental aspect when dealing
with fisheye images. It ensures accurate angle predictions for
bounding boxes by incorporating binary cross-entropy (BCE)
for foreground-background classification with a specialized
term for angle regression as follows:

Langle =

∑
BCE(σ (tcls), ycls)

+

∑
BCE(σ (tobj), yobj)

+

∑
pos

λθLperiodic(θp, θg) (10)

whereLangle is the composite loss for classification and angle
prediction, σ the sigmoid function, tcls the class logits, tobj the
objectness logits, ycls and yobj the class and objectness labels,
λθ the weight for angle loss, Lperiodic the periodic angle loss,
θp the predicted angle, and θg the ground truth angle. This
harmonized loss function facilitates the network to learn not
only the presence of an object but also its precise rotational
alignment.

C. PERIODIC ANGLE PREDICTION LOSS
The periodic angle prediction loss mitigates angle discon-
tinuity by employing a periodic loss. The network learns
to effectively predict angles in a rotation-invariant manner,
which is critical for maintaining consistency when angles
form a full circle.

Lperiodic(θp, θg) = min
k∈Z

f (θp − θg + 2πk) (11)

Here, θp is the predicted angle, θg is the ground truth
angle, and f is a distance metric, such as the L2 norm.
The loss function ensures smooth transitions across the
angle boundary, effectively treating angles 2π radians apart
as equivalent. The minimization over k accounts for the
multiple equivalent representations of the same angle due to
periodicity, thereby encouraging the network to learn angle
predictions that are robust against rotational variances.

V. EXPERIMENTAL RESULTS
In this section, the outcomes from our proposed research
are presented, in order to highlight key observations, trends,
as well as insights gained throughout the experimentation
process.

A. DATASET
While numerous datasets exist for detecting people from
overhead fisheye images, they either lack annotations
with rotated bounding boxes [35] or have limitations
in terms of the number of frames and individuals [9].
HABBOF and CEPDOF datasets [33] are fully-featured
datasets, suitable for our experiments, containing samples
from an office environment. To adapt better to in-cabin
conditions in the autonomous vehicle, we collected an
additional dataset entitled ‘‘Autonomous Vehicles Overhead

TABLE 1. Statistics of our new AVOF dataset in comparison with existing
overhead fisheye image datasets. The dataset contain challenging
scenarios in the vehicle’s cabin, such as crowded conditions,
occlusion scenarios, light variations and low-light conditions.

Fisheye (AVOF)’’. For the evaluation of our proposed method
and its comparison with previous state-of-the-art techniques,
the HABBOF, CEPDOF and AVOF datasets were utilized,
with Table 1 containing various statistics for each one.
As seen, the AVOF dataset contains a significantly larger
number of frames and human objects, featuring challenging
scenarios in the vehicle’s cabin, such as crowded conditions,
occlusion scenarios, light variations and low-light conditions,
as depicted in Fig. 3, which are absent in the other
datasets. In addition, both AVOF and CEPDOF are spatio-
temporally annotated, ensuring that bounding boxes of the
same individual carry consistent IDs across consecutive
frames, rendering them suitable for vision tasks involving
overhead fisheye perspective, such as passenger tracking
and re-identification. Informed consent was obtained for
every human subject. To increase dataset diversity and
model robustness, a data augmentation pipeline performs
geometric transformations like rotation (up to 15 degrees with
a probability of 0.5) and horizontal flipping with a probability
of 0.5. Additionally, brightness and contrast are randomly
adjusted within a specified range, with a probability ratio
of 0.7 and image normalization is applied to standardize the
input data.

B. PERFORMANCE METRICS
Following the MS COCO challenge [36], average precision
(AP) was commonly utilized as one of the evaluation
criteria, especially the area under the Precision-Recall curve.
However, due to the inherent ambiguity in ground truth
annotations, we focus on AP at IoU = 0.5 (AP50), as even
with a perfect algorithm the IoU might be relatively low.
The reason behind this is the multiple bounding boxes that
can exist at various angles for the same individual and a
single choice of human annotator as the ground truth. Apart
from AP, F-measure was also incorporated at a constant
confidence threshold (b̂conf = 0.3) as another performance
indicator, which, for a specific b̂conf value, corresponds to
a particular point on the Precision-Recall curve. The choice
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FIGURE 3. AVOF samples for three different scenarios: (a) an average number of passengers onboard; (b) a crowded scenario; and (c) with no passengers
inside the cabin.

TABLE 2. Performance comparison of various methods on the HABBOF, CEPDOF and AVOF datasets on RTX 4090. Numbers in parentheses indicate the
input resolution (multiplied by a power of two).

of AP50 was made to favor detections that are acceptable
in a practical APC application, without demanding perfect
alignment. F-measure at 0.3 provides an acceptable trade-off
between precision and recall, avoiding false negatives and
minimizing false positives. Combined, these metrics offer a
robust evaluation of the model’s ability to accurately detect
passengers under the specific challenges presented by the
overhead fisheye perspective.

C. QUANTITATIVE RESULTS
We initiate the training process on MS COCO 2017 training
images [36] for 120,000 iterations, followed by fine-tuning
the network on single or multiple datasets from Table 1
for 10,000 iterations, with each iteration comprised of
112 images. During training on COCO images, the network
weights are updated using Stochastic Gradient Descent
(SGD) with a step size of 0.0005, a momentum of 0.9 and a
0.0003 weight decay. The learning rate is adjusted via a decay
mechanism, reduced by a factor of 10 after every 30,000
iterations without improvement in validation loss for optimal
convergence.

For the datasets listed in Table 1, the standard SGD was
utilized with a step size of 0.0001, while rotation, flipping,
shifting, resizing, and color augmentation techniques were
also applied during both training stages. All results presented
here are based on a single run of training and inference.
The training was conducted on a system with an Intel

Core i9-9900K CPU@ 3.60GHz, 64 GB of system RAM and
a single NVIDIA RTX 4090 GPU with 24GB of VRAM.

Table 2 provides a comparative analysis of our method
with other competing algorithms. To evaluate AA and AB
algorithms fromLi et al. [9], we utilize the authors’ publicly-
available implementation. Furthermore, given the absence of
a predefined train-test split in these three datasets, a cross-
validation of our method was conducted, highlighting the use
of two datasets for training and the remaining one for testing,
repeated so each dataset is included once as the test set.

For instance, our method is trained on HABBOF and
AVOF and tested on CEPDOF, and vice versa for other
transformations. As neither approach from Li et al. [9] nor
Tamura et al. [13] is designed to be trained on rotated
bounding boxes, for the purposes of this work, they are
both trained solely on the COCO dataset, as described in
their respective papers. Moreover, Tamura et al. employed
a top-view standard-lens image dataset called DPI-T [37]
for training, in addition to the COCO dataset; however, this
dataset is currently inaccessible and thus cannot be used in
this study.

Table 2 provides a detailed performance comparison
of various methods evaluated on three different datasets:
HABBOF, CEPDOF, and AVOF. The evaluation is conducted
on an NVIDIA RTX 4090 graphics card, which is a high-end
hardware platform for deep learning and computer vision
tasks. The performancemetrics include the Average Precision

66242 VOLUME 12, 2024



D. Tsiktsiris et al.: Improving Passenger Detection With Overhead Fisheye Imaging

FIGURE 4. Passenger count over time received from: (a) the automated data stream; and (b) the driver’s (manual counting) data stream.

FIGURE 5. Data from BigQuery: Four passengers are getting on the
shuttle. In the right-side the manual count from the operator’s app is
depicted with data points received when state changes (button is pushed
in the shuttle). In the left side the data points are received continuously
from our automated method. The count includes the on-board operator.

at an IoU threshold of 50% (AP50), Precision (P), Recall
(R), and F1-Score (F), alongside the frame rate measured in
frames per second (FPS), which indicates the inference speed
of each method. These metrics collectively offer insights
into the accuracy, efficiency, and speed of the evaluated
methods under different resolution settings, denoted in
parentheses next to each method’s name, indicating the
input resolution scaled by a power of two. A confidence
threshold of 0.3 is used for all methods to calculate Precision,
Recall, and F-measure, with test results demonstrating that
our method achieves the best performance in CEPDOF
and AVOF and the fastest execution speed at a resolution
of 1024 × 1024 among all tested methods. The RAPiD
(608) method achieves the highest FPS of 52.5 at a lower
resolution of 608, making it an attractive option for real-time
applications. On the other hand, the RAPiD (1,024) method
showcases the best AP50 performance on the HABBOF
dataset with a score of 98.1% at a lower frame rate of
27.7 FPS. This trade-off between accuracy and speed is
a common challenge in the design and implementation of
object detection systems. The proposed method, exhibits a
balanced performance across all datasets, achieving a nearly
top AP50 on HABBOF (97.9%) and the highest scores on
CEPDOF (86.1% AP50) and AVOF (92.3% AP50). Notably,
our method’s performance at HABBOF is slightly lower than
RAPiD (1,024), where human objects appear in an upright
pose (movement), a significant observation since people
walking or standing typically exhibit radial orientation in
overhead fisheye images, Our method also demonstrates a
high frame rate of 29.1 FPS, indicating its efficiency and

suitability for applications requiring both high accuracy and
real-time processing.

The system was evaluated on automated minibuses in
Copenhagen and Geneva. The solution was installed on
NAVYA autonomous vehicles, featuring a NVIDIA Jetson
AGX Xavier platform and a D-Link DCS-4625 fisheye
camera. The camera was connected directly to the Jetson
system via Ethernet through the RTSP protocol. Both
components are powered by the vehicle’s batteries and
Tensor-RT conversion was performed to maximize the
algorithm’s efficiency, reducing the power consumption to
approximately 10 Watts.

The in-shuttle operator on site has already manually been
counting passengers using the operator app; hence, validating
the automated passenger counting has been done through
comparison with data received from the operator’s phone data
stream (Fig. 4). In Fig. 6, the manual passenger count is
seen to the left, where each person getting on the shuttle is
entered as 1s in the data stream. Within the same minute as
the operator manually counts the 4 entries, the data stream
received from the Jetson increases to a count of 5 passengers
(4 passengers and the operator). After comparing all data
points received within a stable two-day period of operation,
the accuracy of the count was further investigated. Only the
times where data from our automated approach showed more
than 1 person (other than the driver) in the shuttle were
extracted and compared. The timestamp is given inUTC time,
meaning the actual time was (Copenhagen summer time)
2 hours ahead. By comparing visually the two data streams
in Fig. 4, we could see that patterns indicate a similar count
of passengers. Initially, an appropriate algorithm to determine
the total number of passengers on board was developed that
counted only the increases in passenger numbers. However,
the oscillating nature of the automated counting data results in
a higher total passenger count, combined with the occasional
inaccuracies in the exact number of onboard passengers,
which pose an ongoing challenge. A post-processing filtering
method would help mitigate the error.

D. QUALITATIVE RESULTS
Based on all of the aforementioned information, the main
findings of this study suggest that our approach can be
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FIGURE 6. Installation in a NAVYA autonomous minibus. Hardware setup
consists of a NVIDIA Jetson AGX Xavier device (highlighted in the red box)
and a D-Link DCS-4625 fisheye camera (highlighted in blue box).

FIGURE 7. Illustration of a false positive: The green bounding box
represents a correctly identified individual, whereas the red bounding
box indicates a false positive detection by the algorithm, misidentifying a
piece of cloth as a person. This example highlights the challenges in
discriminating between actual human figures and objects with similar
form factors in complex visual scenes.

successfully implemented across both simple and challenging
tasks, while simultaneously maintaining high computational
efficiency. Furthermore, it was found that the network’s
performance is enhanced when the input image resolution
is increased to 1,024 × 1.024, at the expense, however,
of doubled inference time. Sample results can also be seen
for the three datasets in Fig. 9, demonstrating nearly flawless
detection across various scenarios, including diverse body
poses, orientations, and backgrounds.

However, certain scenarios, such as images of people
on a projection screen, low-light conditions, and hard
shadows, continue to pose challenges. Our study encounters
the challenge of false positives as Fig. 7 illustrates. The
algorithm, while adept at identifying individuals with a high
degree of accuracy, as denoted by the green bounding box,

also exhibits some erroneous classifications. An indicative
example is the detection of a non-human object – specifically,
a piece of cloth – as a person, highlighted by the red bounding
box. Such false positives are not only statistical outliers
but also highlight the complexities that these algorithms
must navigate. The discriminative power of the algorithm
could be tuned to differentiate between human figures and
objects similar in shape or size to mitigate the incidence of
false positives and enhance the robustness of the detection
system in diverse operational environments. Similarly, Fig. 8
illustrates a sequence of extreme and rapid lighting variations
caused by shadows and the vehicle’s motion. This is a
perfect example of a delayed exposure adaptation from the
camera sensor, despite featuring WDR. The sudden change
in slide 3 results in blown highlights in the image, blending
the person’s appearance with the vehicle color. This loss of
detail results in a failure in the detection of the passenger.
Finally, Fig. 9 illustrates a comparison between the proposed
method (left side) and [33] (right side) in a crowded scenario.
The proposed method correctly detects the two passengers
that are partially occluded.

E. ABLATION STUDY
In this section, we conduct ablation experiments to highlight
the contribution of each loss function to the overall model
performance. As a baseline, we use the second-best model
from the comparison table (Table 2) by Duan et al. [33]
(first two rows of the Table 3). The second row of the
table shows the results of a fine-tuned version of [33] on
the MW-R dataset, as in their original paper. Angle, Scale,
and the combined Angle + Scale are the results of our
implementation in the same dataset.

TABLE 3. Ablation study of various loss functions performance on our
dataset.

VI. CHALLENGES AND LIMITATIONS
The proposed rotation-aware detection framework offers a
significant advancement in the field of overhead fisheye
passenger detection. However, it’s important to acknowl-
edge potential challenges and limitations. The specialized
techniques involved in addressing the unique distortions of
fisheye images could increase complexity for developers and
end-users who are less familiar with advanced computer
vision methods. Moreover, as with many object detection
approaches, false positives remain a concern, requiring
further refinement of the algorithm’s ability to discriminate
between passengers and other objects. Furthermore, the
trade-off between image resolution for better accuracy and
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FIGURE 8. Light variations can cause loss of detail in the camera stream, especially without WDR capable sensors.

FIGURE 9. Results from the proposed method (left side) and [33] (right side). The proposed method detects correctly the two passengers that are partially
occluded.

the resulting impact on computational efficiency highlights
the need to find a practical balance for real-world applica-
tions, especially those needing real-time processing. Finally,
using a fixed confidence threshold across all datasets might
limit adaptability; exploring dynamic thresholding strategies
could provide greater flexibility. To enhance the practical
deployment of our solution, future research could focus on
simplifying implementation for non-expert users, refining its
discriminative abilities tominimize false positives in complex
environments, exploring computational and energy efficiency
optimizations for real-timeAV applications, and investigating

adaptive thresholding strategies to increase robustness under
varying conditions.

VII. CONCLUSION
In this paper, we present a novel algorithm for passenger
detection in overhead fisheye images, addressing the limita-
tions of traditional approaches that rely on radially-aligned
bounding boxes. Our end-to-end, rotation-aware detection
framework utilizes arbitrarily-oriented bounding boxes, pro-
viding greater flexibility and enhanced detection accuracy.
We introduce a fully convolutional neural network (CNN)
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that directly regresses the orientation of each bounding box,
combined with a specialized scale and angle loss function.
Extensive pre- and post-processing steps are eliminated,
reducing computational complexity. Additionally, we present
a new dataset designed for in-cabin passenger detection and
counting. Our experimental results demonstrate a significant
5.3% improvement in average precision over existing over-
head people detection methods, and we validate our approach
through real-world deployments in Copenhagen and Geneva,
underscoring its value for public transport operators.
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