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ABSTRACT Predicting the movement of arriving passengers to their landside destination is of great value
to airport landside operations. This paper focuses on the arriving passengers who leave the airport by private
cars in the terminal parking lots. Disregarding the micro-behavior of passengers, we limit our focus on the
time consumption for passengers from flight arrival to parking exit. Traditionally, this information is usually
obtained through costly passenger questionnaires. To reduce cost, we develop an alternative way based on
time series analysis. Specifically, we try to identify direct causal paths that exhibit significant positive effects,
as the lag time to be estimated is the time distribution of these positive lag effects. To overcome the influence
of confounding factors, we propose a practical methodology based on developing a set of distributed lag
models under different control schemes. The key features of our approach are low data requirements and low
mathematical complexity, which make it applicable in the daily operation of airports. We further conduct a
case study at Shanghai Pudong International Airport (PVG) to illustrate the proposed methodology. The lag
time estimation results are consistent with practical experiences. Sensitivity analyses validate the consistency
and reliability of our results. Our research provides a practical way for estimating the lag time between flight
arrivals and parking exit volumes, as well as more support for evaluating and improving airport landside
operations.

INDEX TERMS Airport landside operations, parking exit volumes, flight arrivals, time series analysis,
distributed lag model.

I. INTRODUCTION
The rapid economic expansion and thriving aviation sec-
tor in China have led to a significant surge in air travel
demand. According to data released by the Civil Aviation
Administration of China (CAAC), the entire aviation industry
witnessed a remarkable increase in passenger traffic, reaching
660 million passenger traffic in 2019, an increase of over
50% from 436 million in 2015. The continuous growth of air
passenger numbers has placed substantial pressure on airports
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and their infrastructure, demanding a more robust response to
meet the escalating requirements [1], [2], [3].

Parking facilities constitute a vital component of airport
landside operations, as a considerable number of passengers
choose to access and leave airports by private cars such as
driving and app-based ride-hailing for convenience. Due to
its importance, airport parking has attracted much attention
in recent years. Numerous related studies are carried out
on fields such as revenue management [4], [5], [6], opera-
tions management [7], performance evaluation [8], parking
behavior [9], [10], [11], and demand forecast [12], [13], [14],
to comprehensively explore and address various aspects of
airport parking-related challenges and opportunities.
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Compared to conventional parking lots, airports exhibit
distinct parking demand characteristics influenced by a mul-
titude of factors. Ashford and Wright [15] explained that
parking demand at airports is a multifaceted function influ-
enced by several factors, including the volume of individuals
accessing the airport, the available modes of access, the
characteristics of air travelers, the parking costs, and the dura-
tion of parking periods. In the context of airports in China,
the separation of drop-off (departure) and pick-up (arrival)
channels adds complexity to the parking dynamics. Private
cars are required to enter the parking lots to pick up arriving
passengers, leading to a surge in parking volumes and causing
congestion during peak hours. Estimating the time passengers
take from flight arrivals to parking exits is the foundation for
congestion relief. This is because the airport operators would
be able to predict the peak volumes in the parking lots based
on the flight arrival schedules and take measures in advance
to alleviate the impact of congestion. The lag time estimates
also help evaluate airport service levels, as time indicators are
key performance parameters in many previous studies [16].
To achieve the collaborative optimization of airport flight
arrival and taxi carrying order, Ding et al. established a
matching interaction model based on flight and taxi data from
Shanghai Hongqiao Airport [17]. However, to the best of our
knowledge, no study has been conducted on flight arrivals and
parking exit volumes, which have growing importance due to
the increasing usage of online vehicles.

A simple way to estimate the lag time is to divide the dis-
tance by the speed. Specifically, divide the average walking
distance by the average walking speed and add the average
waiting time of each process. This approach is very straight-
forward, but difficult to obtain information other than the
mean value, and its accuracy highly depends on the opera-
tors’ personnel experience. Another way is considering the
behavior of passengers, and developing simulation models to
predict their activities, like [18], [19], and [20].More recently,
Wang et al. presented a stochastic model for capturing the
decision dynamics of domestic departure passengers, where
travel experience and time pressure are considered [21].
Although simulation models can achieve a high level of accu-
racy and show the distribution of passenger flows, it is costly
to tune and adopt them in practice. In addition, simulation
models cannot reflect real-time situations. In practice, airport
operators often employ passenger questionnaires, such as
requesting flight numbers from passengers leaving the park-
ing areas, to assess the time it takes for passengers to travel
from flight arrival to parking exit. This time is equivalent to
the lag time between flight arrivals and parking exit volumes.
The main drawbacks are its high cost and inability to provide
real-time information.

To overcome the shortcomings of the above methods,
we propose a practical approach based on the distributed lag
model to estimate the lag time between flight arrivals and
parking exit volumes at PVG. The distributed lag model is
a single equation regression technique that can incorporate
both lags of the dependent variable and other independent

FIGURE 1. Passenger processes from flight arrival to parking exit.
Extended based on [16].

variables to estimate the dynamic causal relationships
between variables. In recent years, it has been widely
applied in fields such as monetary economics [22], housing
prices [23], energies [24], air pollution [25], etc. Moreover,
it has gained popularity in transportation research for investi-
gating the relationship between transport and socioeconomic
variables (see [26], [27], [28], [29], [30]). Our methodology
adopts distributed lag models to depict the dynamic causal
relationship between the number of arriving flights and exit-
ing vehicles. The lag time estimates are derived from the
results of models under different control schemes. Compared
to simulation methods, our methodology does not require a
lot of data and arithmetic power. Moreover, it is not mathe-
matically complex, thus very suitable for the daily operations
of airports.

The main contributions of this study are as follows. First,
we employ causal diagrams to encapsulate our prior knowl-
edge about the underlying impact mechanism and describe
the lag time estimation problem as identifying the exis-
tence of direct causal paths. Causal diagrams offer simple
but powerful tools for modeling causal relationships, which
are composed of dots (representing variables) and arrows
(representing the direct causal relationship between these
variables). The usage of causal diagrams enhances the clarity
and reliability of our investigation. Second, we propose a
practical approach based on distributed lag models to derive
lag time estimates in the presence of multiple known and
unknown confounders. A set of distributed lag regressions
under different control schemes is introduced to eliminate
the impact of confounders since controlling variables cannot
block direct causal paths, but indirect and non-causal paths
do. Third, the case study at PVG and the following sensitivity
analyses not only verify the effectiveness and robustness of
our methodology but also provide more insights that may
contribute to the improvement of PVG’s service quality.

The remainder of this paper is organized as follows.
Section II introduces the problem. In Section III, we present
the specific framework of our statistical approach. Based on
empirical data, Section IV provides the estimation results
of the lag time between flight arrivals and parking exit vol-
umes in PVG. Section V performs sensitivity analyses to
demonstrate the robustness of the estimation results and the
applicability of our methodology. Section VI concludes the
study.
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FIGURE 2. Illustration of assumptions and objectives.

II. PROBLEM DESCRIPTION
A. RELATED PASSENGER ACTIVITIES
Fig. 1 depicts the routine activities associated with arrival
passengers leaving the airport by private cars. It is important
to note that the immigration checking is done only for inter-
national passengers.

Flight arrivals are expected to have dynamic causal effects
on parking exit volumes, because of the linkage between these
processes. That is the effect on parking exit volumes in the
future of a change in flight arrivals. The time periods at which
this effect acts are the lag time we are trying to estimate.

B. ASSUMPTIONS AND OBJECTIVES
To conduct analysis, the following assumptions are made
for the dynamic causal effects based on common sense and
practical experiences.
Assumption 1: The effects are positive if exist. This is

because an increase in the number of flight arrivals generally
results in more passengers heading to the parking lot, leading
to a subsequent increase in the number of exiting vehicles.
Assumption 2: The effects will not be immediately follow-

ing flight arrivals, as passengers require some time to walk to
the parking lot for a ride. In other words, it is expected to be
a lag effect.
Assumption 3: The effects may last for a period as each

passenger takes a different amount of time to complete the
relevant process.

Fig. 2(a) illustrates Assumptions 2 and 3 through a simple
causal diagram. Let Tt andPt represent the number of arriving
flights and exit vehicles, respectively. According to Assump-
tions 2 and 3, suppose that the effect lags by p time units and
lasts for q, which means that Tt−p, Tt−p−1,. . . , Tt−p−q can
directly affectPt , as indicated by the green arrows in Fig. 2(a).
Our objective is to determine if there is a direct effect from

Tt−m to Pt for some m > 0. For a given m, the existence of

FIGURE 3. Illustration of potential confounding factors.

such direct effect means that flight arrivals will affect parking
exit volumes after |m| periods. These m’s multiplied by the
length of the time interval are the lag time estimates between
flight arrivals and parking exit volumes. It is important to
note that when referring to direct effects, we do not imply
that Tt−m can affect Pt directly without passing through any
mediator, which is impossible due to the related passenger
activities. In fact, the direct effects we are talking about are
relative to the indirect effects that pass through the past values
of Pt . As shown in Fig. 2(b), Tt−p−q−1 can only affect Pt
indirectly through the red arrows, so that it is out of the lag
time range. Therefore, we need to block these indirect causal
paths by controlling the past values of Pt for the accuracy of
the lag time estimates.

C. POTENTIAL BIASES DUE TO OTHER FACTORS
It is worth mentioning that controlling the past values of Pt
may introduce new challenges when confounding factors like
M in Fig. 3 exist.
In the example of Fig. 3, controlling the past values of Pt

can effectively block all indirect causal paths but would open
a non-causal path that confounds Tt−p−q−1 and Pt , as shown
by the red arrows 1-3. Also note that if M can affect Tt−p+1,
then Tt−p+1 would affect Tt−p−q−1 through a non-causal path
via M as red arrows 4 and 3, although there is not a direct
causal path from Tt−p+1 to Pt .

In practice, M might be time series variables like weather
conditions and non-time series variables such as airlines.
Weather conditions can affect the number of arriving flights
and exit vehicles, respectively, as poor weather can lead to
flight delays and road congestion around parking lots. The
airlines can determine the landing time of arriving flights.
Meanwhile, factors such as the level of ground handling
services provided by the airlines may affect the volume
of parking departures by affecting passengers’ waiting and
walking time.

Controlling M may not always provide a perfect solution,
especially when M is unobservable or unknown. In such
cases, one alternative is to find and control a proxy of M ,
such as X in Fig. 3, which can somewhat mitigate the biases
introduced by M . For a multi-terminal airport with multiple
parking lots, X can be the number of exiting vehicles of
parking lots serving other terminals.
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In a word, we need to identify the past values of Tt that have
a direct effect on Pt in the presence of multiple known and
unknown confounders. Moreover, the positivity of such direct
effects is assumed, which is critical in our methodology.

D. PROBLEM DEFINITION
As mentioned earlier, the lag time we aim to estimate cor-
responds to the temporal distribution of the lag effects from
flight arrivals to parking exit volumes. The lag effects repre-
sent the direct causal effects from past flight arrivals to the
current parking exit volume. The problem of lag time esti-
mation can be transformed into identifying the existence of
such causal effects, which are positive, as stated in Assump-
tion 1. Specifically, we aim to determine the presence of direct
causal paths from Tt−m to Pt for some m > 0, rather than
estimating the exact value of the causal effects.

Intelligent data-driven methods, such as graph neural net-
works, have been extensively utilized and have achieved
state-of-the-art performance in various traffic forecasting
problems [31]. These methods can model complex rela-
tionships between time series variables and make accurate
predictions. However, their lack of interpretability makes it
challenging to directly interpret and understand the relation-
ships between their internal structures and parameters. This
limitation can make it difficult to assess whether there are
direct causal effects between variables, and thus may not be
suitable for our research problem.

In comparison to these ‘‘black-box’’ methods, the tradi-
tional linear regression method is much more straightforward
and intuitive. It allows for direct interpretation of the impact
of each feature on the target variable as the parameters cor-
respond to the weights assigned to each feature. Moreover,
linear regression offers advantages in terms of computational
efficiency, lower data requirements, and reduced risk of over-
fitting. Summarizing the aforementioned advantages, we will
employ linear regression in our methodology to describe the
causal relationship between variables. The presence of direct
causal paths is equivalent to the regression coefficient being
significantly positive in the linear regression model when
all backdoor paths are controlled. Thus, our problem can be
transformed into building appropriate linear regression mod-
els and identifying lag variables with significantly positive
regression coefficients. The lag time corresponding to the
eligible lag variables is the estimated lag time between flight
arrivals and parking exit volumes.

III. METHODOLOGY
A. GENERAL FRAMEWORK
Fig. 4 shows the flowchart of the proposed method. Raw data,
including flight arrival records and parking exit records, are
collected from airport information systems. A data cleaning
process is performed to eliminate duplicate and excep-
tional records caused by equipment or other issues. Time
series variables representing flight arrivals and parking exit
volumes are generated based on the cleaned data and a pre-
defined time unit (e.g., every 10 minutes). We further employ

FIGURE 4. Flowchart of the proposed method.

distributed lag regression models to quantify the dynamic
effects between flight arrivals and parking exit volumes (see
Section III-B).

Due to cost and practical constraints, it is impossible to
collect all confounders, which may introduce biases in the
coefficient estimates of these regressions. To overcome this
issue, we will establish models containing different com-
binations of control variables and compare the results to
obtain the lag time estimates. Since indirect and non-causal
paths are affected by the choice of control variables, direct
ones are not. Based on the positivity of such direct effects,
explanatory variables that are positively significant under all
settings will be considered directly affecting the dependent
variable, and then the lag time estimates will be inferred from
these variables (see Section III-C).

B. ESTABLISHING DISTRIBUTED LAG MODELS
The distributed lag model with multiple explanatory and
control variables is shown in (1):

Yt =

l1∑
i=1

δ1,iX1,t−i+ . . . +

lk∑
i=1

δk,iXk,t−i

+

d1∑
i=1

β1,iD1,t−i+ . . . +

dr∑
i=1

βr,iDr,t−i + β0 (1)

where Yt is the dependent variable; Xp,t−i’s are the lags of
the pth explanatory variable; Dq,t−i’s are the lags of the qth
control variable; k and r denote the number of explanatory
and control variables, respectively; δ’s and β’s are regression
coefficients; l’s and d’s are predetermined lag lengths of
explanatory and control variables, respectively.

In our models, the dependent variable is the number of
exit vehicles at a parking lot (e.g. Pt ), and the explanatory
variables are the lags of the number of arriving flights at the
terminals it serves (e.g. Tt−k ). The following decisions are
critical before establishing model equations.

• Determine the control variables. The lags of the depen-
dent variable are chosen as control variables to block indirect
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TABLE 1. All possible control schemes under two feasible control
variables (r = 2).

causal paths. If the airport operates more than one parking lot,
the lags of the parking exit volumes at other parking lots are
also controlled as proxies of confounders.

• Determine the time unit. The quality of our lag time
estimates depends on the length of the time unit. On the
one hand, rough time units can lead to inaccurate estimation
results. On the other hand, exact time units may lead to
estimation results sensitive to random errors.

• Determine the lag lengths of explanatory and control
variables. This needs to be done in the context of the airport
conditions and the time unit. The goal is to ensure that the
possible values of the lag time are within the coverage of the
model variables.

By taking different combinations of feasible control vari-
ables, wewill establish several distributed lagmodels for each
pair of parking lots and corresponding terminals. For each
pair, the number of equations is 2r , where r is the number
of feasible control variables. For example, if we have two
feasible control variables for a pair (r = 2), namely D1,t and
D2,t , four equationswill be established corresponding to eight
different control schemes as shown in Table 1.
It is worth noting that within our methodology, the depen-

dent variable can also serve as a control variable. This is
possible as the lags of the dependent variable can be incorpo-
rated on the right-hand side of the distributed lag regression
model, commonly referred to as an autoregressive distributed
lag (ARDL) model.

C. OBTAINING ESTIMATION RESULTS
We employ ordinary least squares (OLS) to estimate the coef-
ficients of all established regressions. To compute standard
errors and determine the statistical significance of variables,
we will utilize the heteroskedasticity and autoregression-
consistent (HAC) variance estimator proposed by Newey and
West [32]. The truncation parameter of the HAC estimator is
computed by:

m= 0.75N 1/3 (2)

where m represents the truncation parameter, and N denotes
the number of observations.

Setting a threshold parameter α (e.g. α = 0.05) and
selecting the explanatory variables whose significance level
reaches α in all regression models. Obviously, their signifi-
cance needs to be positive. The lag time estimate is obtained
by multiplying their lag values and the length of the time unit.
For example, if Tt−3 and Tt−4 under 10-minute time units
are eligible, we can conclude that the lag time estimate is
30-40 minutes.

D. PROOF OF VALIDITY
Here, we demonstrate the validity of the proposed methodol-
ogy. Specifically, we prove that it can correctly estimate the
lag time if Assumption 4 holds.
Assumption 4: Back-door paths have much weaker effects

than true causal paths.
A back-door path is any path from X to Y that starts with an

arrow pointing to X [33]. The presence of backdoor paths can
introduce bias in the regression coefficients. In our problem,
paths like the one consists of arrows 4 and 3 in Fig. 3 are
typical back-door paths (referred to as type I back-door paths
for simplicity). These paths can result in underestimation of
the lag time as they may confound the independent variable
with the dependent variable before the lag effect begins.
While controlling for a confounding variable M can block
these backdoor paths, it may create new back-door paths like
arrows 1-3 in Fig. 3 (referred to as type II back-door paths).
These paths may lead to overestimation of the lag time as they
may confound the independent variable with the dependent
variable after the lag effect ends.

As mentioned before, in our scenario,M can be time series
variables like weather conditions or non-time series variables
like airlines. Generally, their impact on parking exit volumes
is weaker than the direct effect of flight arrivals. Moreover,
for effective airport operations management, meaningful esti-
mates of lag time align with periods when flight arrivals
significantly influence parking exit volumes, in which the
direct causal effect should prevail. In conclusion, we consider
Assumption 4 to be reasonable.

SinceM is usually unobservable or unknown, suppose that
we are able to control a proxy of M , such as X in Fig. 3.
ControllingX canmitigate the impact ofM . A ‘‘good’’ choice
of X is critical, since we need to effectively mitigate the
impact of M to obtain accurate estimates. In this context,
we introduce the following Theorem 1.
Theorem 1: If Assumption 1-4 hold, the proposed method

can accurately estimate the lag time between flight arrivals
and parking exit volumes when controlling X effectively
mitigates the impact ofM .

Proof: Proving Theorem 1 is equivalent to proving that
for each m > 0, Tt−m is positive significant in all established
regressions if there exists a direct causal path from Tt−m to
Pt . Otherwise, it does not exist. Suppose that the direct causal
path exists for p ≤ m ≤ p+ q.
i) Consider the case that p ≤ m ≤ p+ q:
In this case, Tt−m directly affects Pt . Tt−m can also

indirectly affect Pt through the past values of Pt . Type II
back-door paths may exist when controllingM .

Under the control scheme that do not introduce control
variables (referred to as scheme I for simplicity), the regres-
sion coefficient is positively significant as it captures the
combined direct and indirect causal effects.

Under the control scheme that controls the past values ofPt
(referred to as scheme II), the regression coefficient remains
positively significant as it accounts for the sum of direct
effects and the effects of type II back-door paths. According
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TABLE 2. Information of datasets.

to Assumption 4, the effects of back-door paths cannot negate
the positive direct effect.

Under the control scheme that controls X (referred to as
scheme III), the regression coefficient remains positively sig-
nificant as it represents the sum of direct and indirect causal
effects, along with a portion of the effects of type II back-door
paths.

Under the control scheme that controls both the past val-
ues of Pt and X (referred to as scheme IV), the regression
coefficient remains positively significant as it captures the
combined direct causal effects and a portion of the effects of
type II back-door paths.

ii) Consider the case that m< p:
In this case, Tt−m does not affect Pt directly or indirectly.

Type I back-door paths exist when not controlling M . Tt−m
cannot indirectly affect Pt .
Under scheme III and IV, Type I back-door paths are

effectively closed by X (completely if we can control M ).
Since the regression coefficient captures the effects of type I
back-door paths, it cannot be positively significant.

iii) Consider the case that m > p+ q:
In this case, Tt−m does not directly affect Pt . Type II

back-door paths exist when controlling M . Tt−m can indi-
rectly affect Pt through the past values of Pt .
Under scheme II and IV, Type II back-door paths are

effectively closed by X (completely if we can control M ).
Since the regression coefficient captures the effects of type II
back-door paths, it cannot be positively significant. □

IV. CASE STUDY
A. DATA DESCRIPTION
The data used for the analysis are provided by the airport
authority, including flight arrival and parking exit records of
PVG from Jan. 20, 2023, to Jan. 27, 2023.

PVG consists of four terminals: T1, TS1, T2, and TS2.
Among them, TS1 and TS2 are satellite terminals connected
to T1 and T2, respectively, via the automated people mover
(APM) system. Adjacent to terminals T1 and T2, parking lots
P1 and P2 serve as self-park facilities for T1/TS1 and T2/
TS2, respectively.

Our raw datasets include the flight arrival records at termi-
nals T1, TS1, T2, and TS2, as well as the parking exit records
at parking lots P1 and P2. It is worth mentioning that the raw
data exclude the shared flight numbers. Based on our research
purpose, we only retain the arrival records of commercial
passenger flights and the exit records of non-staff vehicles.
Duplicate and exception records due to equipment or other

TABLE 3. Information of the time series variables.

issues are also deleted. Table 2 shows the record counts of
each dataset, before and after the data cleaning process.

For each dataset, we generate a time series variable that
represents the count of records within 10-minute intervals.
The descriptive information of these variables is presented in
Table 3. All of them have passed the unit root test proposed
by Peter and Perron [34] at a significance level of 0.01, which
guarantees their stationarity.

B. MODEL EQUATIONS
Based on PVG’s current situation, we construct two sets
of distribution lag models with P1t and P2t as dependent
variables, respectively. The first set takes T1t and TS1t as
explanatory variables, as shown in (3)-(6), while T2t and
TS2t are the explanatory variables of the second set, as
(7)-(10). Both sets take P1t and P2t as feasible control vari-
ables. The time unit is taken as 10 minutes and the lag lengths
of explanatory and control variables are all set as 10.

P1t =

10∑
i=1

δ11,iT1t−i +
10∑
i=1

δ12,iTS1t−i + β1
0 (3)

P1t =

10∑
i=1

δ21,iT1t−i +
10∑
i=1

δ22,iTS1t−i +
10∑
i=1

β2
1,iP1t−i + β2

0

(4)

P1t =

10∑
i=1

δ31,iT1t−i +
10∑
i=1

δ32,iTS1t−i +
10∑
i=1

β3
1,iP2t−i + β3

0

(5)

P1t =

10∑
i=1

δ41,iT1t−i +
10∑
i=1

δ42,iTS1t−i

+

10∑
i=1

β4
1,iP1t−i +

10∑
i=1

β4
2,iP2t−i + β4

0 (6)

P2t =

10∑
i=1

δ51,iT2t−i +
10∑
i=1

δ52,iTS2t−i + β5
0

(7)

P2t =

10∑
i=1

δ61,iT2t−i +
10∑
i=1

δ62,iTS2t−i +
10∑
i=1

β6
1,iP2t−i + β6

0

(8)

P2t =

10∑
i=1

δ71,iT2t−i +
10∑
i=1

δ72,iTS2t−i +
10∑
i=1

β7
1,iP1t−i + β7

0

(9)
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TABLE 4. Coefficient estimation results of explanatory variables in the
models corresponding to parking lot P1. Column (a)-(d) correspond
to (3)-(6), respectively. ∗∗∗, ∗∗, ∗ represent 1% level, 5% level and 10%
level of significance respectively.

TABLE 5. Coefficient estimation results of explanatory variables in the
models corresponding to parking lot P2. Column (a)-(d) correspond
to (7)-(10), respectively. ∗ ∗ ∗, ∗∗, ∗ represent 1% level, 5% level and 10%
level of significance respectively.

P2t =

10∑
i=1

δ81,iT2t−i +
10∑
i=1

δ82,iTS2t−i

+

10∑
i=1

β8
1,iP2t−i +

10∑
i=1

β8
2,iP1t−i + β8

0 (10)

C. ESTIMATION RESULTS
Tables 4 and 5 present the coefficient estimation results of
explanatory variables in the models corresponding to parking
lots P1 and P2, respectively. According to (2), the HAC
truncation parameter is set to m = 8. Taking the threshold
parameter as α =0.05, the explanatory variables whose sig-
nificance level reaches the threshold in all the columns (a)-(d)
are highlighted in bold.

TABLE 6. Lag time estimates across different time units.

As shown in Table 4, T14, T15, T16, TS15, and TS16 are
positively significant at the 5% significance level under all
control schemes. This implies that flight arrivals at termi-
nal T1 have an impact distributed after 40-60 minutes on
parking lot P1’s parking exit volumes, and flight arrivals
at TS1 have an impact distributed after 50-60 minutes on
parking lot P1’s parking exit volumes. Following the same
rule, we can conclude from Table 5 that the lag time estimates
are 40-60 minutes and 50-70 minutes, respectively, between
terminals T2, TS2, and parking lot P2.

In conclusion, our results indicate that:(1) the lag effect
of flight arrivals at T1 on parking exit volumes at P1
distributes between 40-60 minutes; (2) the lag effect of
flight arrivals at TS1 on parking exit volumes at P1 dis-
tributes between 50-60 minutes; (3) the lag effect of flight
arrivals at T2 on parking exit volumes at P2 distributes
between 40-60 minutes; (4) the lag effect of flight arrivals
at TS2 on parking exit volumes at P2 distributes between
50-70 minutes. We observe that the lag time between satellite
terminals and parking exit volumes are longer on average,
which may be due to their further distance. Overall, our lag
time estimates are consistent with practical experiences.

Moreover, we also note that no explanatory variable is neg-
atively significant under all control schemes. To understand
this, consider again that the direct effect is positive, so the
negativities must be due to some indirect and non-causal
paths. Due to the influence of control variables on these paths,
their effects may vary significantly under different control
schemes. As a result, the probability that an explanatory
variable is negatively significant in all control schemes is
low. It also demonstrates the practicality and rationality of
our methodology.

V. SENSITIVITY ANALYSIS
We further perform three sets of sensitivity analyses to
assess the robustness of the estimation results and get more
insights. The first set explores the impact of using different
time units. The second set investigates whether the lag time
estimates are sensitive to the HAC truncation parameter m.
The difference between domestic and international arriving
flights is analyzed in the last one.
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TABLE 7. Lag time estimates across different truncation parameter
settings.

TABLE 8. Information of additional time series variables.

A. IMPACT OF USING DIFFERENT TIME UNITS
We examine the impact of using different time units, specif-
ically, lag time estimates are derived using 5-minute and
15-minute time units. Note that the lag lengths are set as
20 and 7, respectively. We also tune the HAC truncation
parameter according to (2) (m = 10 under 5-minute units
and m = 7 under 15-minute units). Table 5 presents the lag
time estimates across different time units.

The estimation results are mostly consistent, except for
the matching errors caused by different time units. However,
it is still critical to choose proper time units according to the
practical situation. As shown in Table 6, the results of TS1
and TS2 under 15-minute units seem inaccurate, while the
5-minute units lead to discontinuous significant lags in T1,
which may indicate a potential lack of robustness.

B. IMPACT OF HAC TRUNCATION PARAMETER
We present the lag time estimates across different trunca-
tion parameter settings in Table 7. The method used for the
estimations is the same as before, except that different HAC
truncation parameters are used in calculating the significance
level of explanatory variables. Specifically, ‘‘none’’ means
we use the general standard errors instead of HAC standard
errors.

From Table 7, we can conclude that the lag time estimates
are insensitive to changes in the HAC truncation parameter
m, as the results are mostly consistent. The only difference
is that when we use the general standard errors, the lag time
estimates between T2 and P2 change from 40-60 minutes to
30-60minutes. This points out the reliability of our estimation
results and the necessity of introducing HAC estimators.

C. DOMESTIC VERSUS INTERNATIONAL ARRIVALS
It is beneficial to find out if the lag time estimates are sensi-
tive to domestic versus international arrivals, as international
arrivals go through a longer process that includes immigration

TABLE 9. Coefficient estimation results of selected explanatory variables.
∗∗∗, ∗∗, ∗ represent 1% level, 5% level and 10% level of significance
respectively.

TABLE 10. Coefficient estimation results of selected explanatory
variables. ∗∗∗, ∗∗, ∗ represent 1% level, 5% level and 10% level of
significance respectively.

and customs. Based on this consideration, we also classify
regional flights as international for research. In our case of
PVG, only terminals T1 and T2 had international arrivals
during the study period. Time series variables named DT1t ,
IT1t ,DT2t , and IT2t are generated as shown in Table 8, where
‘‘D’’ and ‘‘I ’’ denote domestic and international, respectively.

Two sets of distributed lag models are built following
the same settings as (3)-(6) and (7)-(10), respectively. The
only difference is that the explanatory variables T1t in
(3)-(6) are replaced by DT1t and IT1t , so do T2t in (7)-(10).
Tables 9 and 10 present the coefficient estimation results of
explanatory variables in the models corresponding to parking
lots P1 and P2, respectively.

As shown in Tables 9 and 10, domestic flight arrivals at
terminal T1 have an impact distributed after 40-60 minutes
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on parking lot P1’s parking exit volumes; international flight
arrivals at T1 have an impact distributed after 60-70 minutes
on P1’s parking exit volumes; domestic flight arrivals at
terminal T2 have an impact distributed after 40-50 minutes
on parking lot P2’s parking exit volumes; international flight
arrivals at T2 have an impact distributed after 60-80 minutes
on P2’s parking exit volumes. It can be seen that these results
are relatively consistent with the previous conclusion of
40-60 minutes and reflect the impact of immigration and
customs processes on international arrival passengers.

VI. CONCLUSION AND DISCUSSIONS
In this paper, we conduct a time series analysis based on
distributed lag models to estimate the lag time between flight
arrivals and parking exit volumes. The main idea of our
methodology is transforming the lag time estimation problem
into identifying the existence of direct causal effects from
the lags of the number of arriving flights to the number
of exit vehicles. If the effects exist, the corresponding lag
numbers indicate the lag time. In order to eliminate the impact
of confounders, a set of distributed lag regression models
under different control schemes is introduced. The existence
of the effects is recognized when corresponding explanatory
variables are positively significant under all control schemes.
This approach is practical and convenient as we only need to
collect time series corresponding to the number of arriving
flights and exit vehicles, which can save a lot of efforts in
data collection. In addition, the models and their mathemat-
ical calculations are simple and suitable for everyday airport
operations.

Taking PVG as an illustrative example, we derive the
lag time estimates between terminals T1/TS1 and parking
lot P1, as well as T2/TS2 and P2, respectively. The results
indicate that the lag time estimates between T1 and P1 are
40-60 minutes; the lag time estimates between TS1 and P1
are 50-60 minutes; the lag time estimates between T2 and P2
are 40-60 minutes; the lag time estimates between TS2 and
P2 are 40-60 minutes. Sensitivity analyses are performed to
check the robustness of the results, which demonstrate that
our results are not only insensitive to different choices of
the HAC truncation parameter m but also consistent under
different time units. 10 min is suggested to use as time units
for a balanced trade-off between accuracy and robustness.
Moreover, we also find that our methodology can not only
provide lag time estimates that are consistent with practical
experiences but also identify the distinction between interna-
tional and domestic arrivals due to immigration and customs.

In a word, our research offers a practical methodology for
estimating the lag time between flight arrivals and parking
exit volumes. The accurate lag time estimates are helpful not
only in automating landside operations like staffing parking
lots and TNC dispatch based upon real-time flight arrivals
data but also in evaluating the efficiency and service qual-
ity of the airports. Some directions for future research are
summarized as follows. First, it is beneficial to adopt our
methodology onmore transportationmodes, such as taxis and

public transit, to gain more insights into airport landside oper-
ations. Second, it is worthwhile to use pedestrian simulation
technology to verify our findings, as the lag time is highly
related to the movement of passengers. Third, gathering
datasets from other airports and time periods can help further
validate ourmethodology andmake necessary improvements.

ACKNOWLEDGMENT
The authors sincerely thank the associate editor and two
anonymous reviewers for their valuable suggestions and com-
ments, which have greatly contributed to the improvement of
this manuscript.

REFERENCES
[1] A. Evans and A. Schäfer, ‘‘The impact of airport capacity constraints on

future growth in the U.S. air transportation system,’’ J. Air Transp. Man-
age., vol. 17, no. 5, pp. 288–295, 2011.

[2] L. Budd, S. Ison, and T. Budd, ‘‘Improving the environmental per-
formance of airport surface access in the U.K.: The role of public
transport,’’ Res. Transp. Econ., vol. 59, pp. 185–195, Nov. 2016, doi:
10.1016/j.retrec.2016.04.013.

[3] C. Malandri, L. Mantecchini, and M. N. Postorino, ‘‘Airport ground access
reliability and resilience of transit networks: A case study,’’ Transp. Res.
Proc., vol. 27, pp. 1129–1136, Jan. 2017, doi: 10.1016/j.trpro.2017.12.022.

[4] A. Kanafani and L. H. Lan, ‘‘Development of pricing strategies
for airport parking—A case study at San Francisco Airport,’’ Int.
J. Transp. Econ., vol. 15, no. 1, pp. 55–76, 1988. [Online]. Available:
http://www.jstor.org/stable/42748215

[5] A. Papayiannis, P. V. Johnson, D. Yumashev, and P. Duck, ‘‘Revenue
management of airport car parks in continuous time,’’ IMA J. Manage.
Math., vol. 30, no. 1, pp. 1–35, Jan. 2019, doi: 10.1093/imaman/dpy015.

[6] C. Cheng and P. Qi, ‘‘Impact analysis of parking price adjustment on the
quality of service of airport parking lots for light vehicles,’’ J. Adv. Transp.,
vol. 2019, pp. 1–9, Jun. 2019, doi: 10.1155/2019/3847837.

[7] Handbook to Assess the Impacts of Constrained Parking at Airports, Nat.
Academies Sci. Med., 2010.

[8] X. Liu, Q. Zhang, and Y. Lu, ‘‘Evaluation system of hub airport park-
ing building project based on fuzzy comprehensive evaluation method,’’
in Proc. 7th Int. Conf. Inf. Sci., Comput. Technol. Transp., May 2022,
pp. 1–11.

[9] Y. Ge, A. Biehl, S. Ravulaparthy, V. Garikapati, M. Lunacek, and
C. Phillips, ‘‘Joint modeling of access mode and parking choice
of air travelers using revealed preference data,’’ Transp. Res. Rec.,
J. Transp. Res. Board, vol. 2675, no. 11, pp. 699–713, Nov. 2021, doi:
10.1177/03611981211019037.

[10] M. K. Jha, P. Schonfeld, and F. McCullough, ‘‘A machine learn-
ing and simulation-based dynamic parking choice model for airports,’’
J. Air Transp. Manage., vol. 111, Aug. 2023, Art. no. 102425, doi:
10.1016/j.jairtraman.2023.102425.

[11] H. Qin, J. Gao, G. Zhang, Y. Chen, and S. Wu, ‘‘Nested logit model
formation to analyze airport parking behavior based on stated preference
survey studies,’’ J. Air Transp. Manage., vol. 58, pp. 164–175, Jan. 2017,
doi: 10.1016/j.jairtraman.2016.10.011.

[12] R. Guo, X. Shen, and H. Kang, ‘‘Improved CS algorithm and its application
in parking space prediction,’’ J. Bionic Eng., vol. 17, no. 5, pp. 1075–1083,
Sep. 2020, doi: 10.1007/s42235-020-0056-x.

[13] C.-W. Lin, W. Li, Y. Huanh, and G. Yang, ‘‘Parking demand forecasting
in airport ground transportation system: Case study in Hongqiao Airport,’’
Inf. Sci., 2015.

[14] F. Adam and M. Vanderschuren, ‘‘Determining long-term parking
needs at OR Tambo international airport in Johannesburg,’’ J. Air
Transp. Manage., vol. 15, no. 6, pp. 363–367, Nov. 2009, doi:
10.1016/j.jairtraman.2009.04.007.

[15] N. Ashford and P. H. Wright, ‘‘Airport access,’’ in Airport Engineering,
1992, pp. 418–444.

[16] A. Thampan, K. Sinha, B. R. Gurjar, and E. Rajasekar, ‘‘Functional
efficiency in airport terminals: A review on overall and stratified service
quality,’’ J. Air Transp. Manage., vol. 87, Aug. 2020, Art. no. 101837, doi:
10.1016/j.jairtraman.2020.101837.

VOLUME 12, 2024 63359

http://dx.doi.org/10.1016/j.retrec.2016.04.013
http://dx.doi.org/10.1016/j.trpro.2017.12.022
http://dx.doi.org/10.1093/imaman/dpy015
http://dx.doi.org/10.1155/2019/3847837
http://dx.doi.org/10.1177/03611981211019037
http://dx.doi.org/10.1016/j.jairtraman.2023.102425
http://dx.doi.org/10.1016/j.jairtraman.2016.10.011
http://dx.doi.org/10.1007/s42235-020-0056-x
http://dx.doi.org/10.1016/j.jairtraman.2009.04.007
http://dx.doi.org/10.1016/j.jairtraman.2020.101837


Z. Shi et al.: Estimating the Lag Time Between Flight Arrivals and Parking Exit Volumes

[17] X. Ding, Z. Liu, G. Shi, H. Hu, J. Chen, K. Yang, S. Wan, and J. Wu,
‘‘The optimization of airport management based on collaborative optimiza-
tion of flights and taxis,’’ Discrete Dyn. Nature Soc., vol. 2022, pp. 1–16,
Feb. 2022, doi: 10.1155/2022/4542299.

[18] S. Eilon and S. Mathewson, ‘‘A simulation study for the design of an air
terminal building,’’ IEEE Trans. Syst., Man, Cybern., vol. SMC-3, no. 4,
pp. 308–317, Jul. 1973, doi: 10.1109/TSMC.1973.4309241.

[19] M. R. Gatersleben and S. W. Van der Weij, ‘‘Analysis and simu-
lation of passenger flows in an airport terminal,’’ in Proc. Winter
Simulation Conf. Simulation, Bridge Future, 1999, pp. 1226–1231, doi:
10.1109/wsc.1999.816845.

[20] P. Fonseca i Casas, J. Casanovas, and X. Ferran, ‘‘Passenger flow sim-
ulation in a hub airport: An application to the Barcelona international
airport,’’ Simul. Model. Pract. Theory, vol. 44, pp. 78–94, May 2014, doi:
10.1016/j.simpat.2014.03.008.

[21] Y. Wang, T. Liu, M. Hu, S. Alam, and V. N. Duong, ‘‘Tempo-
ral patterns underlying domestic departure passengers behavior in
the airport,’’ IEEE Access, vol. 8, pp. 127969–127980, 2020, doi:
10.1109/ACCESS.2020.3008438.

[22] J. U. Matola, ‘‘How monetary policy affects industrial activity in Malawi:
Evidence from ARDL and VAR models,’’ Cogent Econ. Finance, vol. 11,
no. 1, Dec. 2023, doi: 10.1080/23322039.2023.2190643.

[23] F. Chege, H. F. Gholipour, and S. Yam, ‘‘The long-run impact of remit-
tances on house prices in Kenya,’’ Int. J. HousingMarkets Anal., vol. 2023,
pp. 1–15, Jun. 2023, doi: 10.1108/ijhma-04-2023-0047.

[24] M. D. Doran, M. M. Poenaru, A. L. Zaharia, S. Vătavu, and O. R. Lobonţ,
‘‘Fiscal policy, growth, financial development and renewable energy in
Romania: An autoregressive distributed lag model with evidence for
growth hypothesis,’’ Energies, vol. 16, no. 1, p. 70, Dec. 2022, doi:
10.3390/en16010070.

[25] A. Abedi, M.M. Baygi, P. Poursafa, M.Mehrara, M.M. Amin, F. Hemami,
and M. Zarean, ‘‘Air pollution and hospitalization: An autoregressive dis-
tributed lag (ARDL) approach,’’ Environ. Sci. Pollut. Res., vol. 27, no. 24,
pp. 30673–30680, Aug. 2020, doi: 10.1007/s11356-020-09152-x.

[26] D. He, Q. Yin, M. Zheng, and P. Gao, ‘‘Transport and regional
economic integration: Evidence from the Chang-Zhu-Tan region
in China,’’ Transp. Policy, vol. 79, pp. 193–203, Jul. 2019, doi:
10.1016/j.tranpol.2019.04.015.

[27] M. Z. Khan, ‘‘Analyzing road transport (Passenger and Freight) demand
in Pakistan with auto-regressive distributed lag co-integration approach,’’
Transp. Res. Record: J. Transp. Res. Board, vol. 2675, no. 4, pp. 155–170,
Apr. 2021, doi: 10.1177/0361198120974007.

[28] S. Bektaş, ‘‘Examining the impact on road safety performance
of socioeconomic variables in Turkey,’’ Transp. Res. Rec.,
J. Transp. Res. Board, vol. 2676, no. 1, pp. 435–445, Jan. 2022, doi:
10.1177/03611981211036374.

[29] M. Shafique, A. Azam, M. Rafiq, and X. Luo, ‘‘Investigating the Nexus
among transport, economic growth and environmental degradation: Evi-
dence from panel ARDL approach,’’ Transp. Policy, vol. 109, pp. 61–71,
Aug. 2021, doi: 10.1016/j.tranpol.2021.04.014.

[30] J. Chi, ‘‘Asymmetric gasoline price effects on public transit ridership: Evi-
dence fromU.S. cities,’’Transp. Res. Rec., J. Transp. Res. Board, vol. 2676,
no. 5, pp. 643–659, May 2022, doi: 10.1177/03611981211069065.

[31] W. Jiang and J. Luo, ‘‘Graph neural network for traffic forecasting:
A survey,’’ Expert Syst. Appl., vol. 207, Nov. 2022, Art. no. 117921, doi:
10.1016/j.eswa.2022.117921.

[32] W. K. Newey and K. D. West, ‘‘Hypothesis testing with efficient method
of moments estimation,’’ Int. Econ. Rev., vol. 28, no. 3, p. 777, Oct. 1987,
doi: 10.2307/2526578.

[33] J. Pearl and D. Mackenzie, The Book of Why: The New Science of Cause
and Effect. Basic Books, Inc., 2018.

[34] P. C. B. Phillips and P. Perron, ‘‘Testing for a unit root in time series regres-
sion,’’ Biometrika, vol. 75, no. 2, p. 335, Jun. 1988, doi: 10.2307/2336182.

ZHIYUAN SHI received the B.S. degree in traf-
fic engineering from Tongji University, in 2022,
where he is currently pursuing the Ph.D. degree in
urban mobility. His research interests include air
transportation, transportation operations manage-
ment, and urban logistics.

KE HUANG received the B.S. degree in trans-
portation engineering from Fuzhou University,
in 2021. He is currently pursuing the M.S.
degree in transportation planning and manage-
ment with Tongji University. His research interests
include data analysis and optimization of parking
management.

SHAOZHI HONG received the B.S. degree
in materials science and engineering, the M.S.
degree in architectural and civil engineering,
and the Ph.D. degree in industrial engineer-
ing and management from Tongji University,
in 1995, 2002, and 2011, respectively. He is cur-
rently the Director’s Assistant with the National
Maglev Transportation Engineering Research and
Development Center and the Deputy Director of
Shanghai Collaborative Innovation Research Cen-

ter for Multi-Network and Multi-Modal Rail Transit. His research interests
include airport economy, mobility planning, infrastructure digitization, and
security emergency management. He is a member of Shanghai Municipal
Transportation Commission and Shanghai Urban and Rural Construction
Committee.

WANQING SU received the B.S. degree in trans-
portation from Southwest Jiaotong University,
in 2022. She is currently pursuing the master’s
degree in transportation with the Institute of Rail
Transit, Tongji University. Her research interests
include profit sharing and incentive mechanisms
in freight air-rail intermodal transport.

63360 VOLUME 12, 2024

http://dx.doi.org/10.1155/2022/4542299
http://dx.doi.org/10.1109/TSMC.1973.4309241
http://dx.doi.org/10.1109/wsc.1999.816845
http://dx.doi.org/10.1016/j.simpat.2014.03.008
http://dx.doi.org/10.1109/ACCESS.2020.3008438
http://dx.doi.org/10.1080/23322039.2023.2190643
http://dx.doi.org/10.1108/ijhma-04-2023-0047
http://dx.doi.org/10.3390/en16010070
http://dx.doi.org/10.1007/s11356-020-09152-x
http://dx.doi.org/10.1016/j.tranpol.2019.04.015
http://dx.doi.org/10.1177/0361198120974007
http://dx.doi.org/10.1177/03611981211036374
http://dx.doi.org/10.1016/j.tranpol.2021.04.014
http://dx.doi.org/10.1177/03611981211069065
http://dx.doi.org/10.1016/j.eswa.2022.117921
http://dx.doi.org/10.2307/2526578
http://dx.doi.org/10.2307/2336182

