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ABSTRACT Melanoma, a global health concern, undergoes a transformative shift in early diagnosis through
the integration of artificial intelligence (AI) and environmental factors. Exposure to UVB is the main
cause of DNA deterioration in skin cells. The DNA molecules absorb UVB photons, which causes the
creation of photoproducts such as pyrimidine (6-4), pyrimidone photoproducts (6-4PPS), and cyclobutane
pyrimidine dimers (CPDs). These photoproducts alter important genes, including those that control cell
development and apoptosis. These genetic changes accumulate over time as a result of UV-induced DNA
damage to melanocytes, turning normal cells into malignant melanoma cells. This study explores the
incorporation of ultraviolet (UV) radiation, DNA damage, UV signature mutations, skin pigmentation,
melanin biochemistry, and gene-environment interactions intoAI-poweredmelanoma identification systems.
The analysis highlights the importance of these factors, contributing to the intricacies of melanoma and
emphasizing their critical inclusion in predictive models. Design goals for AI systems prioritize accuracy,
customization, comprehensibility, and ethical adherence. AI emerges as a potent ally in reshaping public
health initiatives, identifying high-risk areas and populations, redefining early detection, and preventing
melanoma on a population-wide scale. The increased incidence of melanoma cases globally can be attributed
to overexposure to ultraviolet (UV) radiation. As a significant risk component, this environmental factor is
responsible for the startling increase in melanoma incidence that has been occurring since the mid-1960s.
The digital dermoscopy in conjunction with AI and environmental factors has demonstrated potential to
support early melanoma detection. This study underscores the potential of AI to revolutionize melanoma
research, leveraging insights from UV radiation, DNA damage, UV signature mutations, skin pigmentation,
melanin biochemistry, and their interactions for enhanced diagnostic capabilities and improved public health
outcomes.

INDEX TERMS Skin cancer, ultraviolet (UV) radiation, environment, melanoma, analysis, detection,
classification.

I. INTRODUCTION
Melanoma is an aggressive and life-threatening form of skin
cancer that originates from melanocytes, the specialized cells
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responsible for producing the pigment melanin [1], [2]. It is
regarded as the most severe type of skin cancer due to its
propensity to metastasize, or spread fast to other locations
inside the body, if it is not identified and treated at an early
stage [3]. According to Statista, it was predicted that in
2023 there would be a total of 97,610 new melanoma skin
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cancer cases, of which 10,950 would occur in California.
This statistic shows the estimated number of new cases of
melanoma of the skin in the U.S. in 2023, by state [4].
In 2020, 4.77 men and 2.69 women per 100,000 popula-
tion died as a result of malignant melanomas of the skin
in England. The North East had the highest mortality rate
for men in this year, with 5.85 men per 100,000 population
dying from malignant melanomas, while the highest rate for
women was in the South West at 3.22 deaths per 100,000 [5].
Exposure to ultraviolet (UV) radiation, which can come from
both natural and artificial sources, is the main risk factor
for melanoma. Melanoma risk can be raised by prolonged
and strong exposure to UV rays from sunshine and by using
indoor tanning beds. UV radiation causes DNA damage in
skin cells, which results in genetic mutations that can cause
malignant growths to develop [6]. Moles or pigmented skin
lesions with uneven borders and asymmetry are frequent
signs of melanoma. These lesions can differ from ordinary
moles in terms of color, size, and shape. Although innocuous
moles can occasionally resemble melanoma, this emphasizes
the significance of attentive self-examination and routine skin
exams by dermatologists for early detection. Effective treat-
ment of melanoma depends on early diagnosis. Melanoma is
frequently treatable with surgical removal of the malignant
tissue when discovered in its early stages. Melanoma can be
extremely difficult to treat and perhaps deadly if it spreads to
other organs or lymph nodes as it advances [7], [8], [9].
The stage and severity of the disease determine the

melanoma therapy options. In situations of advanced illness,
various therapies such radiation therapy, immunotherapy, and
targeted therapy may be used. Surgery is the main treatment
for localized melanoma. These therapies try to destroy cancer
cells, improve immune system response, or focus on par-
ticular genetic abnormalities that fuel the development of
the cancer [10], [11], [12]. Figure 1 shows the origination
of melanoma through melanocytes and it also shows that
melanoma can spread to other locations inside the body
throughmetastasis. The risk ofmelanoma can be significantly
reduced through prevention. This entails engaging in sun-safe
practices including using sunscreen with a high SPF, using
protective gear like wide-brimmed hats and long sleeves,
looking for cover during the height of the sun’s rays, and
refraining from indoor tanning [13], [14]. People with a
history of melanoma in their families or those who have a lot
of moles should be very careful to check their skin and have
regular skin inspections by medical professionals [15], [16].
Melanoma is significantly influenced by environmental

factors as reflected from Figure 2. UV radiation, which is pro-
duced by both natural sources like sunlight and artificial ones
like tanning beds, is one of the main environmental variables
associated with melanoma. Long-term, high-intensity UV
radiation exposure is a recognized risk factor for developing
melanoma [17], [18]. Melanocytes, the skin’s pigment-
producing cells, are susceptible to DNA damage from UV
radiation when exposed, and this damage can result in genetic

abnormalities that cause malignant growths [19], [20]. A per-
son’s geographic location and local climate have an impact
on their chance of developing melanoma. Melanoma is fre-
quently more prevalent in areas with high UV exposure
levels, such as those nearer the equator or at higher eleva-
tions. Increased UV exposure in these regions, which can
be brought on by elements like lower atmospheric ozone
and more intense sunlight, is one reason for this geo-
graphic variance [21], [22], [23]. Lifestyle decisions and
practices connected to sun exposure can have a big impact on
melanoma risk. Melanoma risk can be increased by practices
including tanning, long periods spent outside without protec-
tion, and sunbathing [24]. On the other hand, melanoma risk
can be decreased by engaging in sun-safe behaviors including
putting on sunscreen with a high sun protection factor (SPF),
wearing protective clothes (such as wide-brimmed hats and
long sleeves), seeking cover during peak sun hours, and
refraining from indoor tanning. The interaction between envi-
ronmental factors and melanoma is nuanced, with lifetime
cumulative UV exposure being a key determinant. Excessive
sunburns, especially in infancy or adolescence, are linked to
a higher chance of developing melanoma in later life. People
who work outside or participate in outdoor recreational activ-
ities are alsomore susceptible to UV radiation and its possible
negative effects on health [25], [26].
Artificial intelligence (AI)-based melanoma detection and

classification is a promising area of innovation in the health-
care industry. AI has the ability to enhance the effectiveness
and precision of melanoma diagnosis and it provides a life-
line to early detection [27], [28], [29]. Convolutional neural
networks (CNNs) are the foundation of deep learning algo-
rithms employed in melanoma detection and classification
systems [30]. These algorithms can learn to recognize minor
patterns and traits connected to melanoma since they have
been trained on enormous datasets of dermatoscopic pic-
tures [31]. AI’s primary strength is its capacity to quickly
and consistently process and interpret enormous amounts of
visual data. Human dermatologists may encounter fatigue,
cognitive bias, and subjective variability in their judgments,
whereas AI systems are not susceptible to these limitations.
This objectivity reduces the possibility ofmissed diagnoses or
false positives, strengthening the validity of AI-driven assess-
ments. AI has the ability to offer dermatologists priceless
assistance in their clinical work. Dermatologists can have
the facility to examine patients with greater confidence when
using AI algorithms for quick analysis and examination of
skin lesion images [32], [33]. In circumstances where der-
matologists are overworked, the inclusion of AI into clinical
operations helps hasten the diagnosing process. However, the
availability and caliber of data also play a role in how well
AI detects and categorizes melanoma. To correctly train AI
models, a wide variety of representative datasets are neces-
sary. In order to be current and flexible to changingmelanoma
characteristics, it is also a problem to make sure that AI
systems are regularly updated with new data. Researchers are
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FIGURE 1. Origination and spread of melanoma disease.

FIGURE 2. Melanoma influenced by environmental factors.

investigating the integration of environmental components
into the AI models to improve the capabilities of AI in the
detection of melanoma [27]. The effectiveness of melanoma
risk assessment can therefore be increased by accounting
for environmental factors like geographic location and UV
radiation exposure, since AI algorithms perform well when
large amounts of relevant data are available [27], [34].

Impact of environmental factors on the diagnosis and clas-
sification of the disease using artificial intelligence (AI) is
an important part of melanoma research and treatment [35].
AI has a lot of potential to increase the accuracy of melanoma
diagnosis, even if incorporating environmental data into AI
models can add a context layer that can enhance the pre-
cision and relevance of melanoma assessments [36], [37].
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It is important to recognize that exposure to ultraviolet
(UV) radiation has a substantial impact on the emergence of
melanoma. Excessive UV exposure come from both natural
sources like sunlight and artificial ones like tanning beds is
a well-known risk factor for melanoma. DNA in skin cells
are damaged by UV light, leading to genetic defects that
promote the development of malignant melanoma cells [38],
[39], [40], [41]. An AI system may consider a person’s out-
door activities, level of sun protection, and the UV index
in their area when evaluating skin lesions. AI can be used
to examine satellite-based data and estimate UV radiation
levels across various geographies. This data can be used to
identify high-risk areas and correlate them with melanoma
incidence rates, enabling focused public health initiatives and
awareness raising efforts [42]. Personalized risk evaluations
are also made possible by the inclusion of environmental
elements in AI models. AI can offer more individualized
suggestions for early detection and prevention by taking into
account a person’s particular combination of genetic predis-
position and environmental exposures [43]. There are still
difficulties in gathering precise and thorough environmental
data for AI models. Researchers and healthcare professionals
face a number of obstacles, including the necessity for reli-
able data sources, data privacy concerns, and the requirement
for ongoing upgrades and calibration of AI systems with
changing environmental elements [44], [45], [46].

A. RESEARCH GOALS
The following are the research goals of the proposed study:

• This study aims to integrate environmental factors
including geographic location and UV exposure, into
AI-driven systems for melanoma detection and clas-
sification while analyzing and synthesizing existing
methods.

• This study aims to identify the inadequacies and dif-
ficulties with current AI-based melanoma detection
and classification models by considering environmen-
tal factors and offer possible remedies.

• This study aims to offer design guidelines for the cre-
ation of melanoma detection and classification systems
powered by AI that takes into consideration environ-
mental aspects into account.

• This study aims to utilize environmental data as a
fundamental component in the algorithmic framework,
to investigate fresh methodologies and AI techniques
for the identification of melanoma.

• This study aims to assess the impact of AI-driven
melanoma detection and classification, focusing on
personalized risk assessments, early intervention, and
enhanced patient outcomes.

B. RESEARCH MOTIVATION
The importance of proposed study lies in its potential to
improve public health outcomes and medical procedures
by deepening our understanding of the important con-
nection between early diagnosis, melanoma illness, and

environmental factors. The significance of this research is
highlighted by a few significant points:

• Incidence rates for melanoma have been rising sub-
stantially in recent years. Investigating the impact of
environmental factors in detection can help inform pre-
ventive efforts and shed light on how melanoma is
evolving.

• Insights from this study can help preventive measures,
such promoting sun-safe habits, targeted to individuals’
environmental exposures, thereby lowering the risk of
developing melanoma.

• Appropriate early detection and categorization using AI
can optimize the distribution of healthcare resources,
ensuring that people at higher risk receive screenings
and interventions in a timely manner and possibly low-
ering healthcare expenditures.

• By incorporating environmental data into AI-driven
melanoma diagnosis, it is possible to provide more indi-
vidualized risk assessment and prevention advice based
on each person’s particular profile.

• Enhanced melanoma diagnosis and risk assessment
has wider-ranging effects on public health, including
decreased healthcare costs, enhanced quality of life for
melanoma survivors, and raised awareness of the need
for sun protection.

• As melanoma is a worldwide problem, knowledge of
the environmental factors that influence its identification
can be useful and applicable in a variety of locationswith
various UV radiation exposure levels.

The remaining sections of this article are organized as fol-
lows: We will discuss surveys and relevant literature in
Section II. Section III will explain the intricate interac-
tions between melanoma and the environment and go into
how factors like UV radiation exposure, regional influences,
and climate affect the growth of melanoma. Convolutional
neural networks (CNNs) and other machine learning tech-
niques will be highlighted in Section IV as it delves into
the area of AI techniques used for melanoma detection
and classification. Section V presents the detail of integra-
tion of environmental factors into AI-based detection and
classification of melanoma. The design goals for creating
AI-powered melanoma detection systems will be highlighted
in Section VI. The current research concerns and challenges
will be examined in Section VII to identify areas that require
further research. Finally, Section VIII offers a conclusion that
highlights the significance of considering environmental fac-
tors in the context of melanoma detection and classification
using AI.

II. EXISTING SURVEYS
AI has brought about significant advancements in the fields of
technology and medicine by enabling computers to think and
act like humans. This is having a significant impact on the
detection and diagnosis of melanoma. This section reviews
the existing literature to explore how AI is assisting med-
ical professionals in identifying and diagnosing melanoma.
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We gain further insights into how AI can improve the detec-
tion and prevention of melanoma disease in the context of
environmental factors.

A review study was conducted on a dangerous tumor
called cutaneous melanoma (CM) develops from the skin’s
pigment-producing melanocytes [47]. The study shows that
the frequency of CM has been rising over the last few
decades, which presents a concerning picture of its preva-
lence. There were 351,880 new cases recorded globally in
2015, and this worrying trend continued in 2019 with about
96,000 new cases. This increasing burden highlights the
important need for a thorough understanding of the early
identification and treatment of CM, especially in light of
the disease’s well-known high death rate—especially when it
reaches the metastatic stage. Successful therapy depends on
early discovery, but the traditional diagnostic method, which
uses histology, has drawbacks of its own. As a result, this
paper emphasizes how important early diagnosis and treat-
ment are to raising patient survival rates. It also emphasizes
how important such information is for both quickly detecting
metastases and assisting in the creation of cutting-edge treat-
ment approaches. This article essentially acts as a compass,
guiding readers through the terrain of early cancer diagnosis
and treatment while providing ideas that may point the way
toward a more optimistic and bright future in the fight against
this aggressive cancer. A review study was conducted on the
risk factors connected to cutaneous melanoma [48]. Through
a thorough search of reputable resources like PubMed, Sci-
ence Direct, Medline, Scopus, Scholar Google, and ISI Web
of Knowledge, the authors have found relevant papers that
provide insight into the complex field of melanoma risk.
The increased incidence of melanoma cases globally can
be attributed, in part, to overexposure to ultraviolet (UV)
radiation. As a significant risk factor, this environmental
factor is responsible for the startling increase in melanoma
incidence that has been occurring since the mid-1960s. The
review has a broad perspective, investigating the impact of
individual characteristics, such as skin type, lifestyle choices,
vitamin D levels, and the function of antioxidants in pro-
tecting against melanoma, as well as geographical factors,
such as latitude. The integration of novel biomarkers holds
the potential to unveil the complex mechanisms that underlie
the pathogenesis of melanoma and individual vulnerability,
thereby paving the way for the development of more effi-
cacious preventive and therapeutic measures. This analysis
emphasizes how important it is to understand the complex
network of variables driving the rise in cutaneous melanoma
cases while also providing hope for better targeted treatments
in the ongoing fight against this deadly illness.

It is commonly known that dermoscopy can improve the
accuracy of melanoma diagnoses [49]. More recently, dig-
ital dermoscopy in conjunction with artificial intelligence
(AI) has demonstrated potential to support melanoma detec-
tion [50]. Nevertheless, there is not enough solid data to
compare dermoscopy with AI’s diagnostic accuracy in this

particular situation. This study set out to assess the diagnostic
accuracy of digital dermoscopy with artificial intelligence
(AI) and dermoscopy in the detection of melanoma. The
study also sought to examine the efficacy of several AI and
dermoscopic algorithms in melanoma detection. In order to
do this analysis, a comprehensive literature search was car-
ried out using different databases, covering dermoscopy and
digital dermoscopy with AI for melanoma diagnosis. Using
a pre-established evaluation form, the titles and abstracts of
the retrieved articles were used to filter them. To further eval-
uate the caliber of the studies incorporated into the analysis,
a quality rating formwas created. The degree of heterogeneity
between the studies was assessed, and meta-analytic tech-
niques were applied to the data in order to make comparisons
between various diagnostic techniques. Thirty papers out the
765 articles that were first retrieved satisfied the requirements
to be included in the meta-analysis. It was discovered that
the pooled sensitivity for AI was marginally greater than
that for dermoscopy (91% vs. 88%). On the other hand, der-
moscopy showed noticeably higher pooled specificity than
AI (86% vs. 79%). Yet, there was no discernible difference
between dermoscopy and AI when looking at the diagnos-
tic odds ratio, which offers a comprehensive assessment
of diagnostic performance (51.5 vs. 57.8). No discernible
variations were found in the diagnostic odds ratios across
the different dermoscopic diagnostic techniques. This study
indicates that for the diagnosis of melanocytic skin lesions,
dermoscopy and artificial intelligence work similarly well.
Moreover, no discernible differences in diagnostic efficacy
across various dermoscopic techniques were found. Interest-
ingly, some dermoscopic methods showed higher diagnostic
odds ratios: the three-point checklist, the seven-point check-
list, and the Menzies score. However, these results need to
be confirmed A study was conducted in [51] that covers the
most recent research on the genetic and behavioral risk factors
for melanoma as well as strategies for improving diagnosis
and lowering risk. Melanoma is a dangerous skin cancer,
with an anticipated 106,110 new cases predicted in 2021 and
rising incidence rates. This emphasizes how urgently preven-
tative efforts need to be improved. Sunscreen, UV protection
gear, protective clothes, and chemopreventive medications
are all included in these strategies. The effectiveness of these
actions is still unknown, though. The available information
on preventative measures is examined in this review together
with the genetic components of melanoma. To find pertinent
clinical trials, observational studies, and meta-analyses about
the incidence and prevention of melanoma, we carried out a
thorough assessment of the literature. Information on clinical
trials and epidemiology was gathered by searching online
resources. There is evidence to back up community-based
melanoma prevention measures, appropriate sunscreen use,
and population-wide screening programs. The majority of
recommended preventative medications have scant but devel-
oping clinical evidence. For continuous advancements in
melanoma prevention, more study on these medications is
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necessary, as is the development of artificial intelligence and
imaging methods for melanoma screening.

The discipline of artificial intelligence (AI), which aims
to develop computer programs that simulate human intel-
ligence, is expanding quickly and has a significant impact
on many facets of our life [35]. Its uses are numerous and
include everything from boosting search engines to power-
ing electric vehicles to simplifying and streamlining difficult
jobs. Interestingly, artificial intelligence has advanced signif-
icantly in the field of medicine, especially in oncology. The
potential of AI to support cancer patients’ clinical and thera-
peutic management has been highlighted by recent research.
‘‘Intelligent’’ devices and customized software are supple-
menting clinical judgments in certain medical settings to help
medical practitioners with the complex patient care process.
Clinical management of melanoma, a very complex and het-
erogeneous malignancy impacted by several hereditary and
environmental variables, is still difficult, especially when
the disease is advanced. Treatment choices are made more
difficult by the fact that therapies are frequently limited by
the emergence of innate or acquired resistance mechanisms.
In this regard, an increasing amount of evidence indicates
that AI, through the analysis of large datasets, can benefit
the treatment of patients with advanced melanoma, even
though further study is necessary. AI has the ability to save
patients from needless, unsuccessful treatments by helping
clinicians make the best therapeutic decisions. The purpose
of this study is to examine the most recent uses of AI in
relation to melanoma, with an emphasis on how it might
completely transform the way medication is administered.
The field of melanoma management stands to gain from
better informed and personalized therapeutic decisions by
utilizing AI’s power and capacity to process and interpret
large volumes of data. This will ultimately provide hope for
improved outcomes for patients battling this difficult cancer.

Unrepaired DNA damage in skin cells causes genetic
abnormalities that can result in malignant growths, making
skin cancer a serious and potentially fatal disease [52]. Early
skin cancer detection is essential since the disease is easier
to treat when discovered early. The need of early diagnosis is
underscored by the rising incidence rates of skin cancer, the
high death rate that is connected with it, and the significant
expenses of healthcare. Researchers have been working hard
to create a variety of early skin cancer detection methods in
order to overcome these issues. Frequently, these methods
depend on examining lesion characteristics, such as symme-
try, color, size, and form, in order to distinguish between
benign skin disorders and malignant melanoma. Deep learn-
ing techniques have drawn a lot of attention as one of themore
sophisticated approaches being investigated for early detec-
tion because of its capacity to automatically extract complex
patterns and features from medical pictures, including skin
lesions. The use of deep learning algorithms for skin cancer
early detection is reviewed in-depth and methodically in this
research. The evaluation includes research articles on skin

cancer diagnostics that have been published in credible pub-
lications. The study provides a synthesis of research findings
through a detailed analysis and presents insights in a variety
of formats, including tools, graphs, tables, methodologies,
and frameworks, to help readers better grasp the state of the
art in deep learning-based skin cancer detection. Through
the utilization of deep learning and the abundance of data
found in medical photographs, this study adds to the current
endeavors to enhance the early detection of skin cancer.
The fight against this deadly and pervasive disease has the
potential to improve patient outcomes, save treatment costs,
and ultimately save lives through early detection.

As the skin tumor that causes the greatest number of
deaths in Germany, malignant melanoma is a serious health
concern [53]. Effective melanoma treatment depends on
early detection. The nation’s skin cancer screening program
has drawn criticism, nevertheless, since death rates from
malignant melanoma have not decreased despite a rise in
melanoma diagnoses since it was implemented. This raises
the prospect of over-diagnosis, in which lesions that might
not have presented a major risk to health are identified.
Differentiating benign from malignant tumors can be diffi-
cult for a number of reasons. Certain lesions may exhibit
ambiguous biological behavior, placing them in a gray region.
Furthermore, several lesions that are currently considered
malignant could not have posed a risk to the patient’s life
because of their slow growth. Because there are currently
no reliable indicators, it is challenging to diagnose these
‘‘indolent’’ melanomas. Moreover, it is impossible to predict
with accuracy whether an in-situ melanoma will develop into
an invasive tumor. Over-diagnosis can raise therapy costs
and cause needless psychological and physical hardship for
those who are afflicted. On the other hand, under-diagnosis,
in which melanomas go unnoticed, can have a detrimental
effect on patient outcomes and necessitate more aggres-
sive treatment plans. Novel diagnostic approaches that can
decrease over-diagnosis and under-diagnosis and increase
objective evaluations in instances that are borderline are des-
perately needed. Making use of AI-based diagnostic tools
is one possible strategy that has produced encouraging out-
comes in preliminary tests. These instruments improve the
precision of melanoma diagnosis and lessen the subjectivity
involved in human evaluations. Although there is still work
to be done in order to integrate these AI applications into
clinical and pathology practice, this is an exciting opportunity
to enhance the precision and efficacy of melanoma diagnosis
and treatment in Germany and other countries.

Artificial intelligence (AI) has been applied to melanoma
in recent years, which accounts for most mortality due to
skin cancer [54]. No systematic research has been con-
ducted to provide a thorough overview of AI’s application
in melanoma. The objective of this research is to examine
the many uses of artificial intelligence in melanoma through
a methodical evaluation of previously published works.
51 papers were considered in this evaluation, which was
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conducted using the search phrases ‘‘artificial intelligence’’
and ‘‘melanoma’’ in the PubMed database as of August 1,
2020. The assessment of dermoscopic pictures, image seg-
mentation and processing, and the creation of AI-based
diagnostic tools are the main uses of artificial intelligence in
melanoma. AI has also shown useful in melanoma prognosis
evaluation, medication response forecasting, and metastasis
prediction. The study also examines the cooperative poten-
tial of human-AI collaborations in melanoma detection and
treatment, emphasizing the significance of taking patients’
viewpoints on AI into account. It is important to note that this
review did not look at all algorithms created without publish-
ing. Artificial intelligence seems to function satisfactorily in
the setting of melanoma, and there are a plethora of potential
uses in the future. Artificial intelligence has potential in the
treatment of melanoma, with applications ranging from prog-
nosis and diagnosis tomedication reactions and patient views.
There is a great deal of room for improvement in this area,
indicating a promising future for the use of AI to melanoma
research and clinical settings [54]. Convolutional Neural Net-
work (CNN)-based classifiers have become the go-to option
for melanoma detection in recent years. CNN classifiers have
been shown to be able to classify skin cancer photos on par
with dermatologists, which could lead to quicker and poten-
tially life-saving diagnoses [55]. With an emphasis on the
binary classification of melanoma, this paper offers a com-
prehensive evaluation of themost recent studies onmelanoma
classification using CNN. It investigates CNN classifiers,
evaluates their accuracy against unpublished datasets, and
looks at current research trends, obstacles, and possibilities
in the diagnosis of melanoma. Through a methodical search
of databases like IEEE, Medline, ACM, Springer, Elsevier,
and Wiley, the review found pertinent material. 55 reputable
papers were chosen for examination out of the 5112 studies
that were first found. The goal of the project is to gather
and disseminate cutting-edge research on CNN for melanoma
diagnosis. It outlines current research directions and points
out obstacles as well as openings in this important field. The
paper also suggests a taxonomy for melanoma detection that
summarizes the wide range of current approaches. Finally,
it offers a model for melanoma identification that addresses
obstacles and capitalizes on opportunities, providing insight-
ful information for anyone studying this area [55].
Melanoma identification using CNN-based classifiers is

a major improvement in medical imaging and diagnosis.
In addition to reviewing the state of the field, this study
provides a framework for comprehending present approaches
and tackling upcoming opportunities and problems. It is
well-positioned to support current initiatives to improve
the precision and efficacy of melanoma diagnosis, possibly
resulting in life-saving early identification and treatment [55].
Skin cancer is a serious and common health issue. Con-

ventional skin cancer diagnostic techniques can be expensive,
time-consuming, and need specialized training [29]. Artifi-
cial intelligence (AI) tools, such as deep neural networks

and machine learning-based techniques, have surfaced in
response to these difficulties and can help in the identification
and categorization of skin cancer. The numerous AI-based
technologies used for skin cancer detection and classification
are to be identified and categorized in this study. It also inves-
tigates the relationship between the size of the dataset, the
number of diagnostic classes, and the performance metrics
used to assess AI models in order to determine how reliable
the chosen research papers are. The Institute of Electrical
and Electronics Engineers (IEEE) Xplore, Association for
Computing Machinery Digital Library (ACM DL), and Ovid
MEDLINE databases were searched systematically for perti-
nent papers in accordance with the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses Extension for
Scoping Reviews (PRISMA-ScR) guidelines. Papers that met
the eligibility requirements required to be specifically about
skin cancer, use AI technology for classification or detection,
and satisfy further requirements. Results: Data extraction and
study selection were carried out by two separate reviewers.
A narrative structure was employed to synthesis the extracted
data, and studies were categorized according to the AI diag-
nostic methods and assessment metrics that were employed.
Nine hundred and sixty-six papers were obtained from the
three databases; fifty-three of them satisfied the requirements
to be reviewed. Out of them, 39 research used deep AI-based
techniques, and 14 studies used shallowAI-based techniques.
The chosen studies evaluated their AI models using up to
11 different measures; 39 of the research utilized accuracy
as the main evaluation indicator. Interestingly, research using
smaller datasets tended to show greater accuracy scores.
However, there were doubts about the dependability of mod-
els that scored higher on accuracy, particularly those that were
trained on tiny datasets with few diagnostic classes. This anal-
ysis emphasizes the necessity for uniformity in assessment
measures and datasets while highlighting the heterogeneous
landscape of AI-based skin cancer diagnosis algorithms. Vari-
ability in these parameters makes it difficult to compare
different approaches directly and casts doubt on the validity
of models that appear to have high accuracy scores. Address-
ing these issues will be essential to improving the precision
and efficacy of skin cancer diagnosis and categorization as
the field of AI in dermatology develops.

In the field of cutaneous oncology, melanoma detection,
prognosis, and therapy pose significant obstacles that have
a significant impact on patient outcomes and healthcare
costs [56]. There are now more options for resolving these
issues because to the quick development of artificial intel-
ligence (AI) applications in various fields. Using clinical
imaging, dermoscopic pictures, and histopathologic tissues,
advanced neural networks are being used to classify pig-
mented lesions. These endeavors may culminate in depend-
able prognostication and therapeutic response prediction,
along with earlier and more precise melanoma identifica-
tion. In this sense, melanoma detection and therapy are
greatly advancing due to artificial intelligence. AI-powered
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algorithms analyze clinical imaging, dermoscopic pictures,
and histopathologic material for assistance in the classifi-
cation of pigmented lesions. AI has the potential to predict
melanoma prognosis and therapy response, providing intelli-
gent data. It is used to guide medical decisions and improve
patient outcomes. AI holds a lot of promise for melanoma
detection and therapy, but there are still a number of problems
that required to be addressed. Creating legal frameworks and
incorporating AI into clinical practice continue to be chal-
lenging tasks. As the field of melanoma continues to advance,
it will be important to address such challenges in order to fully
realize AI’s potential for the purpose of improving patient
treatment.

Deep learning has become more important in recent time
and has shown to be an effective technique specifically in
the field which are complicated and require prior knowl-
edge [57]. One such area that is now having difficulties due to
a lack of medical resources is biomedicine. In this sense, the
use of deep learning for diagnosing diseases is an important
area of research. The article aims to give a broad overview
of the characteristics of skin lesions, the state of image tech-
nology, and the status of research on deep learning-based
classification of skin diseases. The study examines the fea-
tures of skin disorders and evaluates earlier research that
classified skin conditions using deep learning. This test cov-
ers a wide range of subjects, including classification schemes,
datasets, data processing techniques, and evaluation criteria.
The overview highlights the evolution of the subject and
describes the key factors and processes influencing derma-
tological diagnosis. It also enumerates the current issues and
possibilities this industry is experiencing. Notably, the study
confirms that deep learning-based techniques for identifying
skin diseases can, in certain situations, perform better than
dermatologists with extensive training experience.

Skin lesion picture assessment by hand has long been a
laborious and time-consuming procedure for the diagnosis
of skin cancer, especially melanoma [58]. Machine learning
and deep learning algorithms have been developed to eval-
uate these photos due to recent technological and computing
resource breakthroughs. Although these models have demon-
strated potential, the distinct and intricate characteristics of
skin lesion images continue to provide difficulties. The goal
of this thorough investigation is to present a current overview
of methods used to identify skin cancer from photographs of
skin lesions. The authors tried to create effective algorithm
that can reliably and automatically identify melanoma from
images. There are following five sections of their proposed
algorithm [58]:

• Finding Difficulties: The first section lists the difficul-
ties in identifyingmelanoma from photos of skin lesions,
such as problems with feature extraction, dataset size,
and image quality.

• Pre-processing and Segmentation: In order to improve
skin lesion photos for analysis, pre-processing and seg-
mentation techniques are covered in detail in the second
part.

• Comparative analysis: Assessing the advantages and
disadvantages of cutting-edge techniques, this section
compares and contrasts them.

• Classification Methods: In the fourth section, the var-
ious classification methods used to group skin lesions
into distinct skin cancer classifications are discussed.

• Performance Analysis: The last section looks at how
well cutting-edge techniques performed when used to
tackle skin lesion image analysis problems, especially
those from the International Skin Imaging Collabo-
ration (ISIC) in 2018 and 2019. The study empha-
sizes that better classification results for skin lesion
photos are obtained by using ensemble deep learn-
ing models on carefully segmented and preprocessed
images.

Melanoma has a high death rate, which emphasizes the sig-
nificance of early detection and appropriate treatment [59].
Numerous researchers have worked to create intelligent tools
that can aid in the early detection and diagnosis of diseases of
this nature, realizing the necessity for precise computer-aided
diagnosis systems. The thorough overview of current devel-
opments in cancer prediction is presented in this research,
with a particular emphasis on the use of artificial intelligence,
especially neural network-based systems, formelanoma diag-
nosis. For dermatologists, these systems are thought of as
intelligent support systems. Both theoretical and applied
contributions are included in the paper, with a focus on
new developments in decision-fusion-based multiple neural
network designs.

The review in [59] focused on the years 2018–2021 in
order to identify emerging patterns, taking into account the
most representative papers that were presented at high-impact
conferences and publications between 2015 and 2021. The
main databases that are used to train neural networks to
identify melanomas are also examined in this study. The
review offers insightful information about the subject of neu-
ral network-based melanoma detection. It draws attention to
the advancements made recently, particularly with regard to
the creation of sophisticated neural network designs. In order
to further the area, the report also analyzes research trends
and proposes a research agenda [59]. All things considered,
the application of artificial intelligence—in particular, neu-
ral networks—shows promise in terms of melanoma early
diagnosis and detection, which is vital for improving patient
outcomes and lowering death rates. Table 1 shows the com-
parison of existing work in terms of domain, main focus and
key findings.

The existing work surveys have concluded with the follow-
ing findings as reflected from Table 1:

• Environmental Variables and the Risk ofMelanoma [48]:
Melanoma is mostly associated with ultraviolet (UV)
radiation exposure. Since the mid-1960s, the incidence
of malignant melanoma has grown, in part because of
increased UV exposure.

• Individual and Geographic Variables [48]: Melanoma
risk can be influenced by geographical factors, such as
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TABLE 1. Comparison of existing surveys.

latitude. Skin type, lifestyle decisions, vitamin D levels,
and antioxidants are among the individual factors that
influence the risk of melanoma.

• Sunburn and Environmental Factors [48]: Melanoma
risk may be increased by sunburn episodes and exposure

to a variety of environmental factors, such as cosmetics
and photosensitizing medications.

• Genetic Factors [48]: The genetic foundations of
melanoma risk include both common polymorphism
genes and uncommon high-risk susceptibility genes.
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• Dermoscopy vs. AI Accuracy [50]: Both Dermoscopy
and AI are equally effective in identifying skin lesions
that are melanocytic. Better diagnostic odds ratios are
demonstrated by specific dermoscopic techniques.

• Prevention and Risk Reduction [51]: Sunscreen,
UV protection, protective clothing, and chemopreven-
tive drugs are among methods for preventing melanoma.
There is evidence to promote population-wide screening
initiatives and the preventative use of sunscreen.

• AI in the Treatment of Melanoma [35]: AI may
help physicians avoid treating patients with advanced
melanoma with inadequate therapies by assisting them
in selecting the best course of action.

• Deep Learning for Early diagnosis [52]: By examin-
ing lesion parameters, deep learning approaches show
promise for early skin cancer diagnosis. From medical
photos, these methods may automatically extract com-
plex patterns.

• AI-Based Diagnostic Tools for Germany [53]: In cir-
cumstances when melanoma diagnosis is borderline,
AI-based diagnostic tools can improve the objectivity
and accuracy of the diagnosis. AI has the potential to
decrease both over- and underdiagnoses.

• AI’s Potential in Melanoma Management [56]: • There
is potential for using AI in the diagnosis and treatment
of melanoma. In order to integrate AI, large, carefully
selected datasets and potential biases must be addressed.

• CNN-Based Melanoma Classification [55]: Skin cancer
photos can be classified using convolutional neural net-
work (CNN) classifiers in a manner that is comparable
to that of dermatologists. CNNs are an effective tool for
quick, potentially life-saving diagnoses.

• AI for Skin Cancer Detection [29]: The dependability
of AI models depends on standardization in assessment
measures and datasets. Direct comparisons between
approaches are impacted by the variability in these
parameters.

• AI’s Function in Prompt Detection [57]: Deep learning
techniques may prove to be more effective than derma-
tologists in particular situations. AI can enhance early
diagnosis and detection, which is essential for improving
patient outcomes.

Table 2 shows some facts and findings based on the existing
surveys. These findings highlight the complex relationship
between environmental, genetic, and lifestyle factors and
melanoma. They also emphasize how important AI and deep
learning are to improving the detection and treatment of
melanoma, raising the prospect of better patient outcomes and
lower death rates.

III. MELANOMA AND ENVIRONMENTAL FACTORS
Environmental factors are one of many elements that have a
significant impact on melanoma [48]. This section explores
the complex interaction between melanoma and the environ-
ment, illuminating the effects of factors including ultraviolet

(UV) radiation exposure, geographic influences, and climate
on the growth of this cancer.

A. EXPOSURE TO ULTRAVIOLET (UV) RADIATION
A well-known environmental component that considerably
aids in the growth of melanoma is ultraviolet (UV) radia-
tion [60]. In this section we explore the complex relationship
between exposure to UV radiation and melanoma, showing
the processes by which UV radiation affects the development
and spread of this illness.

There are three types of UV radiation: UVA, UVB, and
UVC, with UVB being the most biologically active [61].
DNA deterioration in skin cells, particularly in melanocytes,
is predominantly caused by UVB exposure. This damage
results from DNAmolecules absorbing UVB photons, which
causes the creation of photoproducts such pyrimidine (6-4)
pyrimidone photoproducts (6-4PPS) and cyclobutane pyrim-
idine dimers (CPDs) [62]. These photoproducts have the
potential to alter important genes, such as those that con-
trol cell development and apoptosis. These genetic changes
may accumulate over time as a result of UV-induced DNA
damage to melanocytes, turning normal cells into malignant
melanoma cells. The ‘‘UV signature’’ refers to this gradual
accumulation of mutations during melanoma growth [63].
Repeated and excessive UV exposure, particularly in child-
hood and adolescence, can raise the chance of developing
melanoma in later life. Sunburns, especially painful ones, are
closely linked to a higher risk of developing melanoma, and
getting one when someone is young increases that risk. The
fact that extreme UV radiation-induced DNA damage, like
that found in sunburns, can result in more dramatic genetic
alterations highlights the connection between sunburns and
melanoma. Therefore, minimizing exposure to UV radiation
and adopting sun-safe practices are important for lowering
the chance of developing melanoma [64]. Sunlight from the
sun and artificial UV radiation from sunlamps and tanning
beds both increase the risk of melanoma. UVA radiation
from tanning beds primarily damages DNA and speeds up
the aging process of the skin by penetrating deep into the
skin. An increased risk of melanoma has been linked to
prolonged and regular use of tanning beds, particularly in
younger people [65], [66].

B. GEOGRAPHIC INFLUENCES
The prevalence of melanoma is greatly dependent on geo-
graphic location [67]. In this section, we explored the
geographic factors as given in Figure 3 that affect the risk of
melanoma occurrence, such as latitude, altitude, and regional
variations.

One of the primary geographic factors influencing
melanoma risk is latitude. The chance of getting melanoma
varies significantly with distance from the equator. More
direct sunlight is experienced by regions closer to the equa-
tor, which raises UV radiation levels. This enhanced UV
exposure is mostly responsible for the higher melanoma
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TABLE 2. Facts and findings based on the existing surveys.

FIGURE 3. Geographic factors that affect the risk of melanoma occurrence.

incidence observed in these areas. However, UV radiation is
lower in regions farther from the equator due to the angle at
which sunlight enters the Earth’s atmosphere. Higher latitude
regions consequently often have lower rates of melanoma
occurrence. The ‘‘latitude gradient’’ in melanoma incidence

refers to this latitude-dependent pattern [68]. Altitude is
another geographical element that affects melanoma risk.
As atmospheric filtering decreases with altitude, UV inten-
sity rises. Individuals are exposed to increased UV radiation
levels in high-altitude places, such as mountainous regions.
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Even though these regions are found at higher latitudes,
the increased UV exposure can contribute to a higher risk
of melanoma [67]. Regional variations can have a substan-
tial impact on melanoma incidence rates within nations or
regions. Latitude, altitude, and other environmental condi-
tions, as well as human demographics and behaviors, all
have an impact on these variances. For instance, coastal areas
frequently have higher rates of melanoma due to increased
sun exposure brought on by outdoor activities and way of
life close to water bodies [69]. Socioeconomic and behav-
ioral factors also have an impact on geographic variations in
melanoma incidence. Greater levels of wealth in a region may
encourage more people to travel to warm climates, increas-
ing UV exposure and melanoma risk. The prevalence of
melanoma can also vary across different geographical areas
due to lifestyle factors including outdoor jobs and sunbathing
habits [70], [71].

C. CLIMATE AND ENVIRONMENTAL FACTORS
The development and spread of melanoma are significantly
influenced by climate and environmental factors as shown by
Figure 4, which include temperature, humidity, and regional
weather patterns [72]. This section investigates the com-
plicated interactions between these factors and the risk of
developing melanoma.

Sun exposure behavior and temperature are closely related.
Climates that are warmer frequently promote outdoor activ-
ities and attire that exposes more flesh to the sun. In warm
climes, prolonged and frequent sun exposure can raise the
risk of UV radiation exposure, which is known to contribute
to the development of melanoma. The increased accessibility
of outdoor activities may also encourage physical fitness
and healthy practices that reduce melanoma risk, therefore
the relationship between temperature and melanoma is com-
plex [73]. Humidity levels in a particular climate might have
an effect on skin health. Dryer skin may be more vulnerable
to UV radiation damage in low humidity settings, which are
typical of arid climates. The skin’s natural defenses against
damaging UV radiation might be compromised by dry skin.
As a result, people who reside in low-humidity environments
may need to exercise more caution when shielding their skin
from the sun [74]. Melanoma incidence rates can be impacted
by seasonal changes in the climate. The summer months,
when individuals spend more time outdoors and UV radiation
levels are normally greater, are when many places see an
increase in melanoma diagnoses. On the other hand, as a
result of reduced sun exposure during the winter, melanoma
diagnoses may rise. These seasonal fluctuations highlight the
significance of year-round awareness and the necessity of
increased summertime UV protection [75]. Local weather
patterns, including cloud cover and air circumstances, can
have an impact on the UV radiation’s strength. UV rays
may be partially blocked by cloud cover, lowering exposure.
On cloudy days, people could underestimate the need for
sun protection, which could increase their risk. Monitoring

the UV Index, which takes weather-related elements into
account, can offer advice on the daily requirement for sun
protection [76].

D. THE INTERACTION OF GENETIC AND ENVIRONMENTAL
FACTORS
Melanoma is influenced by both genetic predisposition and
environmental variables [77]. This section explored the com-
plex interaction between genetics and environment in the
melanoma formation process as given in Figure 5. It empha-
sizes how environmental exposures can either initiate or
aggravate genetic predisposition.

Significant proportion of melanoma instances are caused
by genetic factors. A person is said to be genetically predis-
posed to the disease if they have a family history of melanoma
or certain genetic alterations, such as those in the CDKN2A
or CDK4 genes. These genetic risk factors can enhance the
possibility that melanoma will develop, thus high-risk people
must perform routine skin checks and use attentive sun pro-
tection [78]. Environmental triggers can cause melanoma in
those who are genetically predisposed to cancer, even though
genetic predisposition is still a major component [79]. When
the skin is still forming during childhood and adolescence,
excessive UV exposure can have a significant impact on
melanoma risk later in life. Early UV exposure may more
easily activate genetic markers that promote melanoma risk,
therefore sun protection and sunburn prevention are signif-
icant during these formative years [80]. Genetic alterations
brought on by exposure to UV radiation frequently result in
a recognizable ‘‘UV signature’’ in melanoma tumors. These
mutations are distinct from those discovered in melanomas
that arise in locations that are not exposed to sunlight, empha-
sizing the connection between melanoma formation and UV
exposure. The existence of the UV signature supports the idea
that environmental variables play a role in the development of
melanoma [81]. High-risk people who have a family history
of melanoma or known genetic abnormalities ought to get
regular dermatologist skin checks. They should also take
careful sun protection measures to reduce their exposure to
UV rays [26].
The relationship between melanoma and environmental

factors emphasizes the important role that outside forces
play in the emergence of this potentially fatal skin disease.
UV radiation exposure, whether from the sun or artificial
sources like tanning beds, continues to be a major risk factor.
Melanoma susceptibility is increased over time by cumu-
lative UV exposure. The direct relationship between UV
exposure and melanoma incidence is highlighted by geo-
graphic variations in melanoma rates, with higher incidence
closer to the equator. Temperature, humidity, and altitude are
climate-related variables that are also connected to melanoma
risk; areas with greater temperatures and lower humidity have
higher incidence rates. Importantly, because these environ-
mental factors might influence genetic predisposition, it is
important to comprehend how genes and the environment
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FIGURE 4. Spread of melanoma influenced by climate and environmental factors.

interact. Prevention strategies, such sun protection and skin
checks, are still essential for lowering risk and promoting
early detection. However, further study is required to fully
understand the complex interactions between genetics and
environmental factors, thereby improving our capacity to
successfully prevent and treat melanoma.

IV. AI TECHNIQUES FOR MELANOMA DETECTION AND
CLASSIFICATION WITH TAXONOMY
This section presents the taxonomy and description of AI
techniques used for melanoma detection and classification.

A. TAXONOMY OF AI TECHNIQUES FOR MELANOMA
DETECTION AND CLASSIFICATION
Detection and classification of melanoma have been signifi-
cantly impacted by AI. Taxonomy for AI techniques used in
melanoma detection and classification can be categorized into
several key areas as shown in Figure 6. This section examines
the cutting-edge AI methodologies and strategies created to
enhance the precision and effectiveness of melanoma diagno-
sis and support medical professionals in early detection and
classification [82].

B. CONVOLUTIONAL NEURAL NETWORKS (CNNS) IN
MELANOMA DETECTION
Convolutional Neural Networks (CNNs) have transformed
the precision and effectiveness of diagnosis in the field of

melanoma detection. Due to the fact that these deep learning
architectures were created expressly for image analysis tasks,
they are ideally suited for the classification of dermatoscopic
images, where they excel at spotting minute patterns and
features suggestive of melanoma. The function of CNNs in
melanoma detection is examined in this section, as well as the
underlying mechanisms that support their effectiveness [83],
[84], [85].

CNNs are a subclass of artificial neural networks that
take their cues from how the human brain processes visual
information. They are made up of several layers, each of
which is intended to carry out a certain image analysis task:

• Convolutional Layers Convolutional layers enable fea-
ture extraction by applying filters (also known as
kernels) to the input image. Convolutional filters look
for edges, forms, and textures in the image.

• Pooling Layers: The feature maps produced by con-
volutional layers are downsample using pooling lay-
ers. The two most common pooling processes are
average-pooling and max-pooling, which compute the
average value and keep the maximum value in a region,
respectively.

• Fully Connected Layers Fully Connected Layers: These
layers carry out categorization functions and are fre-
quently seen near the end of a CNN. They use the
features that were collected and base their predictions
on them.
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FIGURE 5. Interaction between genetics and environment in the melanoma formation process.

CNNs are excellent at extracting features, which is impor-
tant for melanoma identification. Skin lesions can appear
complex in dermatoscopic images in ways that the human
eye might not be able to see. From these photographs, CNNs
automatically detect and learn the following features:

• Color Distribution: CNNs are able to identify color
changes throughout the lesion, which may be a sign of
malignancy. Asymmetrical or variegated color patterns
are examples of irregular color patterns that could be
signs of melanoma.

• Texture analysis: Texture characteristics, such as tiny
granular textures, may hold important information about
melanoma. These minor textures can be captured by
CNNs and used for categorization.

• Shape and asymmetry: Characteristics of the lesions’
form and asymmetry are important. CNNs evaluate
asymmetry and recognize irregular forms, two important
characteristics in the diagnosis of melanoma.

The process of teaching CNNs to identify melanoma entails
providing them with a sizable collection of tagged dermato-
scopic pictures. To reduce classification errors, the network
learns to modify its internal parameters (weights and biases).
The process of fine-tuning frequently involves transferring
knowledge from dermatoscopic pictures to general image
databases, such ImageNet, using pre-trained CNN mod-
els. This transfer learning strategy expedites model training
and improves output. Although CNNs have demonstrated

amazing success in melanoma detection, difficulties still
exist. The requirement for broad and representative datasets,
potential biases in training data, and the interpretability of
AI-generated outcomes are a few of these. These prob-
lems are being addressed in ongoing research in order to
increase the clinical usefulness and robustness of CNN-based
melanoma detection systems.

C. MELANOMA IMAGE PREPROCESSING IN DETECTION
In the use of artificial intelligence (AI) techniques, such as
Convolutional Neural Networks (CNNs), for melanoma iden-
tification, image preprocessing is an essential step. In order
to increase image quality, model performance, and facilitate
precise diagnosis, a number of actions are done on dermato-
scopic pictures before analysis. The importance of picture
preprocessing and the specific methods used in the context
of melanoma detection are covered in this section [86], [87],
[88]. Several important functions of image preprocessing in
melanoma detection include:

• Noise reduction: Artifacts and speckle noise are two
types of noise that can be present in dermatoscopic
images. Preprocessing methods eliminate or lessen this
noise to guarantee that AI models assess correct and
clean data.

• Standardization: By altering variables like bright-
ness, contrast, and color balance during preprocessing,
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FIGURE 6. AI Techniques for melanoma detection and classification.

photographs can be made more uniform. This stan-
dardization guarantees that input data for AI models is
consistent, enhancing their dependability and generaliz-
ability.

• Enhancement of Features: A few preprocessing meth-
ods, like contrast enhancement and sharpening, can draw
attention to certain features inside skin lesions. This
can help AI algorithms recognize subtle patterns and
structures melanoma-specific.

Common methods for image processing: Melanoma detec-
tion uses several popular picture preparation techniques,
including:

• Normalization: To remove fluctuations in image inten-
sity, normalization scales pixel values to a defined
range (for example, 0 to 1). This guarantees that AI
models handle all photos equally.

• Histogram Equalization: Histogram equalization
spreads out pixel values over a wider intensity range,
improving visual contrast. When applied to pho-
tographs with poor contrast, it is quite helpful.

• Gaussian Smoothing: To eliminate high-frequency
noise from an image, a Gaussian filter is applied. It sub-
tly distorts the image while keeping key information.

• Denoising filters: The removal of salt-and-pepper noise
and speckle from images is assisted by denoising filters
such as median and mean filters. These filters swap
out individual pixel values for the weighted average of
nearby pixels.

• Color Space Conversion: Converting images between
color spaces might improve some aspects or make
image analysis easier (e.g., RGB to grayscale or LAB).

• Selection of the region of interest (ROI): The region
of interest (ROI) for melanoma detection frequently
correlates to the skin lesion itself. Segmenting and
removing the lesion from the surrounding skin are two
image preprocessing procedures that may be used. Due
to the ability to concentrate solely on the pertinent area,
computational overhead is decreased, and accuracy is
increased.

D. MELANOMA FEATURE EXTRACTION IN DETECTION
In the use of artificial intelligence (AI) methods, such
as Convolutional Neural Networks (CNNs) for melanoma
diagnosis, feature extraction is an important step. Within
dermatoscopic images of skin lesions, pertinent traits or
patterns are automatically recognized and chosen. These
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collected properties provide the foundation for AI algorithms
to distinguish between benign andmalignantmelanomaswith
accuracy. The importance of feature extraction and the meth-
ods used in the context of melanoma detection are examined
in this section [87], [89], [90]. Feature Extraction’s Function:
For a number of reasons, feature extraction is important in the
detection of melanoma.

• Dimensionality reduction: Dermatoscopic images might
have a lot of data, which makes it difficult and expensive
to perform direct analysis. Through the selection of the
most useful and discriminating features, feature extrac-
tion lowers the dimensionality of the data.

• Pattern Recognition: The diagnosis of melanoma
depends on the recognition of particular structures and
patterns inside skin lesions. AI models can spot these
patterns due to feature extraction, which improves the
precision of their diagnosis.

• Interpretability: Extracted features frequently match
traits that can be seen and understood by the human eye,
like color changes, texture, and shape. This improves the
clarity and interpretability of diagnoses produced by AI.

Common Methods for Feature Extraction: Melanoma
detection uses several popular feature extraction techniques,
including:

• Color-Based Features: Color features record changes
in how colors are distributed inside a skin lesion. Color
histograms, color moments, and color texture descrip-
tors are a few examples of these properties. Unlike
benign lesions, melanomas frequently have uneven or
unbalanced color patterns.

• Texture analysis: The fine-grained structures of a pic-
ture are characterized by texture features. Techniques
like Local Binary Patterns (LBP) and Gray-Level
Co-occurrence Matrix (GLCM) can capture textural
characteristics, like uneven granularity or roughness,
which are symptomatic of melanoma.

• Shape Features: Shape-based features measure the
geometric characteristics of a skin lesion. These char-
acteristics can be used to describe melanoma-related
characteristics like asymmetry, irregularity, and the
presence of particular forms (such as spicules or
notches).

• Statistical Features: The distribution of pixel intensities
and color values inside a picture can be understood
using statistical features such as mean, standard devia-
tion, skewness, and kurtosis.

• Wavelet Transform: A wavelet transform extracts char-
acteristics at various degrees of detail by dissecting an
image into numerous sizes and orientations. This can be
especially useful for dermatoscopic images that capture
both fine and coarse features.

E. MACHINE LEARNING ALGORITHMS IN MELANOMA
DETECTION
In order to improve the precision and effectiveness of diag-
nosis, deep learning methods like Convolutional Neural

Networks (CNNs) and machine learning algorithms are
essential tools in the field of melanoma detection. The func-
tion of machine learning algorithms, their advantages and
uses, and their significance in the context of melanoma
detection are covered in this section [91], [92], [93], [94].
Machine learning algorithms—including both conventional
and cutting-edge methods—play a vital role in the identi-
fication of melanoma. These algorithms identify patterns,
features, and discriminative traits that distinguish between
benign and malignant skin lesions by training them on vast
datasets of dermatoscopic images. Machine learning models
can extrapolate from training data to produce predictions
about dermatoscopic images that have not yet been viewed.
This feature is essential for real-world clinical applications
where different skin lesions could be seen. By allocating
weights to various features, many machine learning models
produce findings that are understandable, enabling doctors
to comprehend the factors that go into the diagnosis of
melanoma. The following machine learning techniques have
been used to diagnose melanoma:

• Support vector machines (SVMs): For binary classifi-
cation problems like melanoma detection, SVMs are
frequently used. They identify an ideal hyperplane that
maximizes the margin between classes and is useful for
separating benign from malignant lesions [95].

• Decision Trees: Using a tree-like structure, decision
trees are simple models that depict decision-making
processes. To increase classification accuracy, they are
frequently used in conjunction with ensemble tech-
niques like Random Forests [96].

• Random Forests: These ensemble learning techniques
mix different decision trees to produce predictions that
are more reliable and precise. They excel in managing
large, complicated datasets with several attributes [96].

• k-Nearest Neighbors (k-NN): In feature space, k-NN
algorithms classify samples according to the domi-
nant class among those of their k-nearest neighbors.
Both classification and regression jobs can benefit from
them [96].

• Logistic Regression: The likelihood that a sample
belongs to a specific class is modeled using logistic
regression. It is a straightforward technique that works
well for binary classification issues like melanoma
detection [96].

• Features and Feature Engineering: Feature engineer-
ing frequently determines whether machine learning
methods for melanoma diagnosis are successful. From
dermatoscopic images, feature engineers choose and
extract pertinent traits such color distributions, texture
patterns, and form features. Machine learning models
use these traits as input so they can be more informed
in their decisions.

F. ENSEMBLE MODELS IN MELANOMA DETECTION
In the realm of melanoma detection, ensemble models have
become important because they provide a potent method for
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enhancing the precision, robustness, and dependability of
diagnostic tools. In the context of melanoma detection, this
section examines the significance of ensemble models, their
applications, and their effects [97], [98], [99], [100].
Overfitting, bias, and model variance are some promi-

nent problems in melanoma detection that ensemble models
address. They use numerous base models’ predictions (often
referred to as weak learners) to integrate them into a final
judgment that is typically more accurate and stable than
the judgment of the individual models. Ensemble models
combine the predictions of many models, each trained on
different subsets of data or with various parameter settings,
reducing the danger of overfitting. Ensemble models become
more robust to noise and outliers in the data by averaging out
errors or disputes among base models. By harnessing the col-
lective intelligence of various models, ensemble approaches
can improve classification accuracy. Melanoma detection
employs a number of ensemble approaches, including:

• Bagging (Bootstrap Aggregating): Training numerous
instances of the same base model on various bootstrap
samples (randomly resampled sections of the training
data) is known as bagging (Bootstrap Aggregating).
The final prediction is then calculated by averaging or
aggregating the results of different models.

• Boosting: Boosting is the process of training multiple
base models successively while increasing the weights
assigned to cases that the prior models incorrectly cat-
egorized. With this iterative process, a robust ensemble
model is produced.

• AdaBoost (Adaptive Boosting): It is a well-known
boosting algorithm that is employed in the identi-
fication of melanoma. Training examples are given
variable weights, with misclassified cases receiving
larger weights. Weak students are taught to fix the
errors of their elders.

• Gradient Boosting: Gradient Boosting sequentially
constructs an ensemble of decision trees. Every new
tree is taught to fix the flaws of the older trees. When
used for melanoma detection among other machine
learning applications, gradient boosting has demon-
strated astounding results.

G. TRANSFER LEARNING IN MELANOMA DETECTION
In the realm of melanoma detection, transfer learning is
a cutting-edge method that offers a potent way to use
pre-trained artificial intelligence models for increased effec-
tiveness and efficiency. In the context of melanoma detection,
this section examines the significance of transfer learning, its
applications, and its effects [101], [102], [103]. The necessity
for huge annotated datasets and the computational resources
necessary for building deep neural networks from scratch
are two issues that transfer learning solves in melanoma
diagnosis. Transfer learning’s primary function is the transfer
of information from one task or domain (such as generic pic-
ture recognition) to another, related task (such as melanoma
detection). This strategy has the following benefits: Transfer

learning enables the bootstrapping of the learning process
using pre-existing huge datasets for generic applications,
such as ImageNet. As a result, there is less need for detailed
labeled data unique to melanoma. Transfer learning speeds
upmodel training by beginning with pre-trainedmodels. Less
iterations are needed for fine-tuning on melanoma data than
for training from scratch. Models that have learned features
from a wide range of source domain images typically gener-
alize to melanoma detection tasks better. In order to identify
melanoma, several transfer learning approaches are used:

• Feature Extraction: In this method, fixed feature extrac-
tors are created using pre-trained models (such as
CNNs like VGG16 or ResNet). The top layers of
the network are eliminated or adjusted for melanoma-
specific categorization, while the lower layers, which
are in charge of low-level characteristics like edges and
textures, are left in place.

• Fine Tuning: Training a previously trained model on
melanoma data while maintaining some of the acquired
weights is known as fine-tuning. To adjust the model to
melanoma detection, the higher-level features, which
are more task-specific, can be fine-tuned.

• Model stacking:Model stacking is the act of combining
several previously trained models into an ensemble in
which each model handles the input data in a unique
way. The final prediction is then created by combining
the results of several models, which offers a variety of
views on the data.

H. MELANOMA DETECTION WITH EXPLAINABLE AI (XAI)
Explainable AI (XAI), which provides transparency and
interpretability in AI-driven diagnostics, has become a vital
component in the field of melanoma detection. In this
section, we examine the importance of XAI, its uses, and its
effects with regard to the identification of melanoma [104],
[105], [106]. Explainable AI addresses an important issue in
melanoma detection, as the clinical acceptability and trust
of AI-generated diagnoses depend critically on their inter-
pretability. The main function of XAI in melanoma detection
is to explain the rationale behind the choices made by AI
models, increasing their transparency and assisting doctors in
comprehending and validating the diagnosis. Key advantages
of XAI are as follows:

• Clinical Transparency: XAI approaches increase the
clarity of AI choices by visualizing or explaining the
features and patterns that went into a given diagnosis.
Clinicians are better able to comprehend and justify
these choices.

• Error detection: XAImakes it possible to locate potential
biases or faults in AI models. Clinicians can identify
instances when unexpected or confusing circumstances
may have led the model to make erroneous diagnoses.

• User Trust: XAI’s transparency and interpretability help
users have more confidence in AI systems, which pro-
motes their application in therapeutic contexts.
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The following XAI methods are used in the detection of
melanoma:

• Feature Visualization: Feature visualization techniques
create heatmaps or visualizations highlighting the areas
of an image that the model considered to be most
important. This aids clinicians in comprehending the
characteristics (such as color or texture) that contributed
to the diagnosis.

• Feature Importance: Methods like SHAP (SHapley
Additive exPlanations) and LIME (Local Interpretable
Model-agnostic Explanations) assign importance ratings
to certain features in order to quantify how much of an
impact they have on the model’s output.

• Activation Maximization: Activation maximization
techniques modify input images in order to enhance the
activity of particular neurons or model features. This
sheds light on the patterns the model searches for when
melanoma is detected.

• Rule-based Explanations: XAI approaches that are
based on rules produce human-readable rules or decision
trees that imitate the way AI models make decisions.
Clinicians can quickly interpret these rules.

Melanoma illness identification and classification byAI show
considerable improvements in early diagnosis and classifica-
tion precision. The ability of AI-based systems, in particular
deep learning models like Convolutional Neural Networks
(CNNs), to discern between benign and malignant skin
lesions has been impressively proven. To produce extremely
precise predictions, these systems take advantage of variables
like color patterns, texture, and shape properties. Utilizing
pre-trained models is now possible due to transfer learning
approaches, which also result in a decrease in training time
and data needs. Furthermore, AI-generated diagnoses are
now more transparent and trustworthy due to explainable
AI (XAI) techniques, which has facilitated their acceptance
in clinical contexts. The clinical integration of AI tools has
demonstrated potential for enhancing patient care, simpli-
fying processes, and giving dermatologists useful decision
help. Despite these successes, issues with data privacy, legal
compliance, and user education continue to exist and demand
continual attention. Overall, the use of AI in melanoma diag-
nosis is a game-changing advancement in healthcare with the
potential to increase the rate of early detection and eventually
save lives.

V. INTEGRATING ENVIRONMENTAL FACTORS INTO
AI-BASED DETECTION AND CLASSIFICATION OF
MELANOMA
A complex interaction of hereditary and environmental vari-
ables affects the development of melanoma as shown in
Figure 7. The development of melanoma is significantly
influenced by environmental factors, especially ultraviolet
(UV) radiation exposure, even if genetic predisposition is a
known risk factor.

An essential first step in improving the precision and effi-
cacy of early diagnosis and risk assessment is the integration

of environmental elements into AI-basedmelanoma detection
and classification [34], [107], [108], [109], [110]. It is impor-
tant to incorporate environmental elements into AI-driven
melanoma diagnosis for a number of reasons.

Going beyond genetics alone, the inclusion of environmen-
tal data enables a more thorough assessment of melanoma
risk. Predictions may be more accurate as a result of this
comprehensive approach. AI models that take environmental
aspects into account can offer individual recommendations
for sun protection and skin monitoring, enhancing preven-
tative actions for people. By identifying high-risk areas and
groups, environmental data, such as UV exposure history,
geographic location, and climate information, can aid in
early detection efforts. Environmental factors are incorpo-
rated using a variety of techniques into AI-based melanoma
detection and classification:

• Environmental information can be turned into use-
ful properties that AI models can utilize to make
predictions, such as UV index, latitude, and weather
conditions.

• To get a more complete dataset, environmental and
genetic data can be combined. Then, AI models can be
trained using this combined data.

• AI hybrid models can give a more comprehensive
picture of melanoma risk by combining genetic and
environmental factors. Both deep learning and conven-
tional machine learningmethodsmay be applied in these
models.

• Geographic information systems (GIS) and spatial anal-
ysis are able to pinpoint where melanoma instances are
concentrated geographically and their relationships to
environmental variables.

Adding environmental elements to AI-based melanoma
detection presents a number of difficulties. Reliable pro-
jections require accurate, current, and high-quality environ-
mental data. It is important to safeguard patient information
when using environmental data. To comply with data privacy
laws, strict steps must be taken. When environmental and
genetic data are combined, the complexity of AI models can
increase, making it difficult to maintain model interpretabil-
ity while preserving predictive ability. It takes sophisticated
modeling methods and interdisciplinary cooperation to fully
comprehend the complex interactions between genetics and
the environment.

Future success of AI-based melanoma detection depends
greatly on the incorporation of environmental factors. With
the help of this integration, more individualized preventative
and treatment plans based on a person’s genetic makeup and
environmental risk factors would be possible. AI is able to
pinpoint high-risk areas and populations, enabling tailored
public health campaigns and early detection initiatives. Ongo-
ing research will concentrate on creating more complicated
AI models that can handle intricate interactions between
genes and environments. To smoothly integrate environmen-
tal data into electronic health records (EHRs) and clinical
workflows, healthcare systems will need to change.
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FIGURE 7. Unveiling the spectrum of UV-induced DNA damage in melanoma and its AI-based analysis of environmental factors.

VI. DESIGN GOALS
Designing an artificial intelligence (AI) system for the
detection and categorization of melanoma in the context of
environmental factors necessitates careful consideration of a
number of aims to guarantee the performance and utility of
the system [27], [34], [43], [111]. Following are a few design
goals:

• Accuracy with variety of data: The main objective is
to detect and classify melanoma with high accuracy.
To ensure accurate diagnoses, the AI system require
reduce false positives and false negatives. This goal
can be achieved by adding the variety in dataset with
integration of environmental factors.

• Personalization with environmental information: It is
require to make the AI system relevant to each patient
by taking into account their particular contextual cir-
cumstances, genetic makeup, and skin features. Individ-
ualized risk analyses and recommendations can improve
early detection and prevention.

• Interpretability: It is require to design the AI system to
be able to be understood by dermatologists and other
healthcare experts so that they can comprehend the
elements driving its forecasts. It is important to use
explainable AI (XAI) tools to offer clear, comprehen-
sible explanations for diagnoses.

• Efficiencywith larger datasets: It is require to ensure that
the AI system uses resources and processes large data

in an effective manner. For prompt decision-making,
it should be able to handle massive datasets and deliver
findings in real-time or very near real-time.

• Scalability: Design the system to be scalable so that
it can be integrated into a variety of healthcare envi-
ronments, from small dermatology practices to big-
ger healthcare networks. As the system gains more
widespread adoption, it should be able to handle an
expanding amount of patient data.

• Data privacy: Implement strong data privacy and secu-
rity procedures to safeguard patient data and adhere to
data protection laws. Make sure that private medical and
environmental data is handled securely.

• Cross-Platform Compatibility: Make sure the AI system
can be easily connected with electronic health records
(EHRs) and other regularly used healthcare information
systems by healthcare providers.

• User-Friendly Interface: Create a user-friendly interface
so dermatologists and other healthcare professionals
can easily communicate with the AI system. Patient
information, predictions made by AI, and explanations
should all be accessible through the UI with ease.

• Continuous Learning: Allow the AI system to learn and
adapt continuously to changing environmental circum-
stances, fresh scientific discoveries, and advancements
in AI algorithms. An aspect of the system’s architecture
should include frequent updates and retraining.
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• Cost-Effectiveness: Consider aspects including instal-
lation costs, patient outcomes, and the use of health-
care resources when assessing the AI system’s cost-
effectiveness.

• Feedback Loop: Create a feedback loop so that health-
care professionals may give feedback on how well the
system is working, how easy it is to use, and where it
needs to be improved.

VII. OPEN RESEARCH CHALLENGES AND PROBLEMS
Improvements in melanoma detection and classification
using AI in conjunction with environmental factors show
significant potential, however, there are still a number of
research obstacles and problems. To further enhance the effi-
ciency and moral considerations of such systems, these issues
must be addressed. The following are some active research
problems and issues [34], [43], [112], [113], [114], [115],
[116], [117]:

• Data Quality and Diversity: Limited availability to
complete environmental and genetic information in
high-quality, diverse datasets continues to be a major
concern. To create reliable models, researchers must
address the problems of data imbalance and shortage.

• Interpretable AI: It might be difficult to strike a compro-
mise between high accuracy and model interpretability.
It is difficult to create AI models that are accurate
and give clear justifications for their choices, espe-
cially when dealing with complicated gene-environment
interactions.

• Generalization across populations: AI models must be
able to generalize over a variety of populations and
geographical areas. It is difficult to take into account
differences in the environment, genetic makeup, and
skin types.

• Overfitting and Bias: It is important to reduce overfitting
and bias in AI models. Unbalanced datasets can intro-
duce bias, and overfit models may not translate well to
fresh data. It is necessary to conduct more research on
methods to assure fairness and reduce bias.

• Healthcare system integration: Technical and interoper-
ability hurdles must be overcome in order to smoothly
integrate AI systems into the current healthcare infras-
tructure, including electronic health records (EHRs) and
clinical workflows.

• Cost-Effectiveness: More research is needed to evaluate
the cost-effectiveness of AI-based melanoma detection
and classification, including the financial impact on
healthcare systems and patients.

• Long-Term Monitoring: AI systems should be made to
be able to track the risk of melanoma over time and
change with the environment and a patient’s health.

VIII. CONCLUSION
A promising area in dermatology and healthcare is the
incorporation of environmental elements into AI-based
melanoma diagnosis and classification. The complex

interactions between genetics, environmental exposures, and
skin cancer risk are acknowledged by this holistic approach.
In this thorough examination, we have looked at the impor-
tance, approaches, difficulties, and potential outcomes of
this integration. Important discoveries have emphasized how
important it is to comprehend environmental factors—in
particular, ultraviolet (UV) radiation exposure, geographic
impacts, climate, and gene-environment interactions—affect
the development of melanoma. It is imperative to acknowl-
edge these factors in order to provide precise risk evaluation,
timely identification, and customized mitigation tactics. Sev-
eral important conclusions are reached after a thorough
investigation of melanoma detection and categorization in
conjunction with environmental factors:

• Melanoma risk is significantly influenced by envi-
ronmental factors, specifically UV radiation exposure,
geographic impacts, and climate conditions. These vari-
ables compound the hereditary propensity, adding to the
disease’s complexity.

• Personalizing melanoma risk assessments and recom-
mendations based on unique genetic and environmental
profiles should be the goal of AI-based solutions. One-
size-fits-all strategies might not work.

• One of the most important challenges in AI modeling
is striking a balance between interpretability and accu-
racy. Transparent justifications for AI system judgments
are crucial, particularly in intricate scenarios involving
gene-environment interactions.

• It is important to protect the quality and privacy of
data, particularly genetic and environmental data. It’s
still difficult to protect patient data while maintaining
its relevance and accuracy.

• Thorough clinical validation is necessary to prove
AI-driven melanoma detection systems’ practical effi-
cacy and safety. In this process, working together with
healthcare professionals is essential.

• Medical devices that use artificial intelligence (AI) and
incorporate environmental data are subject to shifting
regulatory regimes. Finding the ideal balance between
patient safety and innovation is a critical problem.

• Precision medicine is where melanoma treatment is
headed. Systems powered by AI will make it possible to
develop individualized preventative and treatment plans
based on each person’s particular risk factors.

• Artificial intelligence (AI) has the potential to transform
public health programs pertaining to melanoma preven-
tion and early diagnosis by identifying high-risk areas
and populations.

• In order to use and understand AI-driven melanoma
detection systems successfully, healthcare professionals
and AI practitioners must get education and training.

• Fairness, accountability, and openness are just a few of
the ethical factors that must influence the creation and
application of AI in the healthcare industry.

Design objectives for AI-driven systems have emphasized
the importance of precision, adaptability, comprehensibility,
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effectiveness, and moral implications. The intricacy of gene-
environment interactions, data quality, and privacymust all be
addressed in order to achieve these aims. Despite the possible
advantages, there are still a lot of problems and obstacles with
open research. Significant obstacles include data diversity
and quality, ethical issues, clinical validation, and regulatory
frameworks. Researcher collaboration, healthcare provider
collaboration, and policymaker collaboration will be neces-
sary to overcome these obstacles. Precision medicine will
be a major area of study in the future since AI-driven sys-
tems make it possible to create individualized treatment and
preventative plans based on patient risk factors. AI will be
used in public health projects to pinpoint high-risk areas
and demographics and enable focused treatments. This study
also aims to extend the role of artificial tanning instruments
in conjunction with demographic information being the risk
factors for skin cancer.
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