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ABSTRACT As an important raw material supporting the development of society, wood lumber is widely
used in the construction and furniture industries. However, traditional methods for detecting surface defects
in wood face the challenges such as poor recognition, low efficiency and narrow applicability. To tackle
these challenges, this paper proposes a Wood Lumber Surface-defect Detection-YOLO (WLSD-YOLO)
model for the detection of surface defects in wood lumber. Firstly, this model introduces the squeeze-and-
excitation (SE) attention mechanism in the backbone feature network component, which enhances the ability
of capturing defects. Furthermore, a new GVC-neck layer structure is proposed to reduce the number of
parameters and improve the accuracy of detection. Lastly, the combination of NormalizedWeighted Distance
Loss (NWD) small target detection algorithm and theWise Intersection Over Union (WIOU) loss function is
used to replace the original loss function to enhance the small target detection capability. The experimental
results show thatWLSD-YOLO achieves an average recognition accuracy of 76.5% for wood lumber defects.
Compared with the original model YOLOv8, the mean average precision(mAP) is improved by 2.9% and the
frames per second (FPS) is improved by 3.8. Meanwhile, WLSD-YOLO reduces the number of parameters
to better detect several specific defects that are difficult to identify, which provides high application value
for wood lumber processing and manufacturing industry.

INDEX TERMS Deep learning, object detection, wood lumber surface defect detection, attention
mechanism, YOLO.

I. INTRODUCTION
Wood, a natural and renewable resource, offers benefits such
as easy processing, stability, and a high strength-to-weight
ratio, [1]. Furthermore, it possesses unique material prop-
erties and excellent environmental characteristics, making it
extensively utilized in both daily life and various production
processes, [2]. The processing of logs into wood products
involves several major steps, such as wood sorting, wood
cutting, wood drying, wood gluing, and wood processing.
After gluing the wood to form a man-made board, the ran-
domness of the raw material as well as the complexity of the
manufacturing process often lead to wood lumber producing
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unavoidable defects. These lumber defects will greatly affect
subsequent processing, [3], [4] so the detection and classi-
fication of lumber defects has become a major problem in
the timber industry. Initially, the detection of lumber defects
relied on manual visual inspection, which was not only
inefficient but also susceptible to subjective factors. In the
early 21st century, automated processing systems developed
rapidly, and intelligent technologies began to spread to the
lumber industry. Researchers have begun to utilize a variety
of technologies, such as vibration detection, [5], [6] ultrasonic
detection technology, [7], [8] stress wave technology [9], [10]
and X-ray technology [11], [12] to detect lumber defects.
However, these methods, which are based on physical equip-
ment to inspect the interior of wood lumber, are costly and
susceptible to environmental factors.
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With the development of computer technology, methods
utilizing deep learning for defect detection are beginning to
come into focus. Gu et al. [13] proposed a support vector
machine algorithm using a tree structure, which produces
an average pseudo-colored feature in each region through
an order statistical filter and extracts simple and effective
features to achieve accuracy improvement. The test was per-
formed on 400 images containing decayed knots, needle
knots, dead knots, live knots, and black knot defects, and
the recognition of these five defect types was significantly
improved compared with the original model. Zhang et al. [14]
used a back propagation (BP) neural network in conjunc-
tion with Local Binary Patterns (LBP), which is a simple
but useful theory for texture algorithms. The algorithm after
combination can improve the extraction accuracy of the BP
neural network for wood defect features. Huang et al. [15]
proposed a wavelet transform-based data fusion algorithm for
the previous wood defect edge detection algorithm for feature
extraction of one-sided and other defects. Edge detection
algorithms are used to solve the problem of segmentation and
identification of wood surface defects based on the texture
characteristics of wood surface defect images. Compared
with early methods of detecting internal problems in wood
through physical equipment, wood surface feature extraction
based on computer vision is more cost effective, and the
detection rate is higher too. However, tarditional or early
surface defect detection methods still suffer from problems of
low robustness, poor accuracy, and lack of universality, which
greatly limit their application in production under realistic
conditions.

Recently, there has been rapid advancement in deep learn-
ing technology. An increasing number of researchers are
utilizing deep learning in machine vision. Two notable meth-
ods include vision transformers (VIT) and target detection
algorithms based on convolutional neural networks (CNN).
The introduction of VIT provides another method for global
feature learning, and representative vision transformers, such
as Adavit [16], Crossvit [17], DETR [18], have achieved
good results in traffic sign recognition and medical image
classification [19], [20]. But such methods have long training
time and poor real-time performance, which are difficult to
be applied in the field of defect detection with real-time
requirements. The target detection algorithm based on CNN
convolutional neural network has become the mainstream
algorithm in the field of defect detection with continuous
progress. There are two most representative target detection
algorithms, one is a single-stage detection algorithm based
on regression, such as the YOLO series [21], SSD [22],
EfficientDet [23], and so on. The other is a two-stage detec-
tion algorithm based on candidate bounding boxes, such as
Fast R-CNN [24], Faster R-CNN [25], Cascade R-CNN [26],
Trident-Net [27], etc. Yang et al. [28] employed TensorFlow
to construct the network, substituting the visual geometry
group (VGG) component of the initial single shot multi-
box detector (SSD) network with a deep residual network.

This modification aims to enhance input feature optimization
for both regression and classification tasks associated with
predicting bounding boxes. The input features for the classi-
fication task were optimized to detect defects in more than
5000 solid wood lumbers, which improved both the detection
accuracy and detection speed, but it is still difficult tomeet the
real-time requirements in industry. Xia et al. [29] proposed
a detection algorithm for surface defects on wood lum-
ber, leveraging an improved Faster R-CNN. The algorithm
integrates a feature pyramid network with a variable con-
volutional Res-Net50 network to generate semantic feature
maps for detecting defects. Additionally, it incorporates
a cost benefit analysis method (CBAM) attention mech-
anism to enhance detection accuracy, despite achieving a
high level of accuracy, the issue of slow detection per-
sists. Wang et al. [30] To enhance the ability to recognize
small target defects in wood, content-based attention (CA)
is integrated with omni-dimensional dynamic convolution
(ODConv) to produce the dynamic attention mechanism
ODCA incorporated into YOLOv7, and an efficient feature
extraction network block called S-HorBlock is introduced
to achieve good detection results. Nonetheless, research on
quartzity, a prevalent defect, is lacking. Additionally, stud-
ies on the real-time capabilities of the suggested model
are scarce. Zheng et al. [31] proposed a high-precision,
lightweight method for real-time detection of wood surface
defects based on the YOLO model. This approach enhances
the accuracy and speed of identifying surface defects across
four typical wood lumbers. Yet, problems remain due to
the limited dataset size for training and inadequate cover-
age of defect types. Haonan et al. [32] constructed a target
detection framework for YOLOv5 wood lumber surface
defects using a focus, feature pyramid networks (FPN), and
path aggregation network (PAN) structure by introducing
the squeeze-and-excitation (SE) attention mechanism in the
backbone feature network, which provides reference ideas
for the detection of four common defects: live knots, dead
knots, cracks, and holes, athough the detection speed meets
the real-time requirements, there is a decline in overall accu-
racy and a lack of research on the remaining lumber surface
defects.

In conclusion, researchers have made significant progress
utilizing target detection algorithms for detecting surface
defects in wood lumbers. However, several problems remain:
1. Most of the existing datasets openly used for the detection
of surface defects in wood lumbers are small in size and
focus on a single or common types of defects, such as live
knots, dead knots, cracks, holes and so on, which are unable
to cover all the defects in the industrial production, and are
inevitably limited in practical applications. 2. In practical
applications, high real-time performance and high detection
rate are equally important, and most of the existing research
focuses on one of them, which makes it difficult to achieve
a balance between speed and accuracy. 3. Existing target
detection algorithms suffer from poor results in detecting
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FIGURE 1. WLSD-YOLO workflow.

small targets, and a low rate of identifying targets similar to
the background [33].

To solve the above problems and better meet the needs of
the industrial production of wood lumber, this study selects
a data set of wood lumber surface defects collected from
the assembly line of sawmills, from which 4000 images
are selected and 8 most common types of wood lumber
surface defects are covered. In addition, this paper pro-
poses a WLSD-YOLO model for the recognition of surface
defects of wood lumber. The workflow of WLSD-YOLO is
shown in Fig. 1. Firstly, adaptive image scaling, adaptive
anchor frame computation and data enhancement are per-
formed at the input. Then the extraction and enhancement
of defective features are performed using the WLSD-YOLO
model. Finally, the detection of surface defects on wood
lumber is completed. The contributions of this paper are as
follows:

(1) Due to the presence of some defects in wood lum-
ber that are not well differentiated from the background,
the SE Attention Mechanism module is introduced in the
backbone feature extraction layer, which performs adap-
tive feature refinement and reduces the background feature
training weights by multiplying the attention feature maps
obtained from the channel and spatial dimensions into the
input feature maps.

(2) For the purpose of improving the network’s ability to
identify different defects in wood lumbers, and at the same
time to improve the detection speed of the model, this paper
proposes a new kind of neck structure-GVC-neck, which
can achieve feature extraction at different scales, not only
improve the accuracy, but also reduce the number of param-
eters and the size of the model to a certain extent, so as to
achieve a balance between the accuracy and the detection
speed.

(3) With the aim of reducing the negative impact
of low-quality images on the model and improve the
recognition ability of small target defects, the WIOU
(Wise-IOU) loss function is introduced and combined with
the NWD (Normalised Wasserstein Distance) small tar-
get detection mechanism to further improve the overall

FIGURE 2. YOLOv8 specific structure diagram.

recognition ability of the model for surface defects of wood
lumber.

The subsequent contents of this paper are organised as
follows: the original model YOLOv8 and the WLSD-YOLO
model proposed in this paper are introduced in Section II.
Section III describes the experimental preparations and analy-
ses the experimental results to demonstrate the sophistication
of the WLSD-YOLO model. Finally, Section IV draws the
main conclusions as well as future directions.

II. PRINCIPLE AND METHOD IMPROVEMENT
A. YOLOV8 MODEL
YOLOv8 has achieved good results in the field of defect
detection, with higher accuracy as well as faster speed com-
pared to previous models, and is very easy to deploy, which is
very suitable for industrial application scenarios that require
online real-time processing. Therefore, YOLOv8 is chosen as
the original model in this paper, and the specific modules of
YOLOv8 are explained in this subsection. Similar to its pre-
decessor, YOLOv5, by adjusting the network scaling factor,
models of different sizes (N/S/M/L/X) can be chosen —to
satisfy diverse scene requirements [34].

As shown in Figure 2, YOLOv8 replaces the C3 module
with the C2f module on the basis of YOLOV5 and adjusts
the number of channels, and the C2f module was designed
with reference to the C3 module as well as the concept of
ELAN. The C2f module is designed with reference to the
C3 module and the idea of ELAN. Since the C2f structure
has more residual connections, it allows YOLOv8 to obtain
richer gradient flow information while keeping light weight.
In the backbone part, the SPP in v5 is replaced by Spatial
Pyramid Pooling-Faster (SPPF), which reduces the compu-
tation amount to a certain extent and increases the receptive
field, which can effectively improve the detection accuracy.
The head separates the Cls and Boxes for prediction and uses
the decoupling head, which is changed from anchor-based to
anchor-free. The loss aspect uses positive and negativematch-
ing of samples and introduces distribution focal loss instead
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FIGURE 3. WLSD-YOLO model.

of simple IOUmatching. TheYOLOv8 network structurewas
more streamlined, with a faster detection speed and higher
detection accuracy.

B. THE PROPOSED WLSD-YOLO
To solve the problem of poor detection effect of the
existing models for the detection of surface defects on
some wood lumbers, this paper proposes a YOLO model
(WLSD-YOLO) for detecting surface defects on wood
lumbers using YOLOv8 as the original model. The SE
attention mechanism is incorporated into the backbone to
enhance the model’s feature fusion capability. Additionally,
the GVC-neck structure is introduced to decrease the param-
eter count and size of the original model, leading to a dual
enhancement in both detection accuracy and speed. Finally,
the NWD small target detection mechanism is used in com-
bination with theWIOU loss function to improve the model’s
detection ability for small target defects. The structure of
WLSD-YOLO is shown in Fig. 3. Among them, Conv is a
convolution module and Concat layer is used to merge the
number of channels. Upsample is an upsampling module and
detection module is used to localise and classify the detected
targets. The parts of SE, VOV-GSCSP, GSconv and CPCA
will be explained in detail later.

1) SE-BACKBONE
While pursuing accuracy as the primary goal and at the same
time not increasing the computational burden of the model
as much as possible, this paper adopts the mechanism of
adding Squeeze-and-Excitation (SE) [35] channel attention

FIGURE 4. SE-Attention module structure.

to the main part to improve model performance. The core
function of the SE module is to assign different weights to
the image according to the different positions of the chan-
nel through the weighting matrix, so as to better capture
key feature information. As shown in Figure 4, the idea
of SE attention is to first perform global average pooling
(Avg_pool) on the input feature maps in order to compute
the average value of each channel, which will be used as the
initial weights reflecting the importance of the channel. Then,
passing through two fully connected layers sequentially, the
first fully connected layer (FC1) is used for dimensionality
reduction to reduce the number of input channels to smaller
dimensions in order to reduce the number of parameters and
computational complexity of the model. Then, after the Rec-
tified Linear Activation Function (ReLU) activation layer,
the dimensionality was kept constant. Next, a second fully
connected layer (FC2) is used for dimensionality upgrading
to map the downgraded vectors back to the dimensions of the
original number of channels in order to learn the importance
of the weights of each channel. The structure and parameters
of both fully connected layers can be trained and optimized
by backpropagation to maximize the model performance and
detection accuracy. Finally, a sigmoid function is used to limit
the output range to between (0 and 1), which is used as the
weight of the channel attention mechanism and multiplied
with the original feature maps to obtain the final feature
maps incorporating the attention mechanism. By establishing
feature mapping relationships between channels, SE makes
full use of global information to assign higher weights to
the channel feature information of small targets. This in turn
helps themodel to better adapt to the relevant feature informa-
tion between the channels of small targets while suppressing
and ignoring irrelevant information, so that the model is
more focused on training the class-specific task targeting the
detection of defects in wood lumber.

2) GVC-NECK
The original neck layer of YOLOv8 adopts the structure of
feature fusion, which is used to fuse features from differ-
ent layers; however, there are problems such as redundant
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information mixing and large computation amounts. In order
to solve these problems, this paper proposes a new type of
neck layer network, the GVC-neck, which introduces Group
Shuffle Convolution (GSConv) convolution and VoV-GSCSP
modules into the original neck layer structure, incorporates
the CPCA attention mechanism to optimize the number of
parameters and the model, and also greatly improves the
detection effect for the surface defects of wood lumber.

GSConv [36] reduces the computational cost of the model
by using a combination of grouped convolution and depth-
separable convolution, as shown in Figure 5 (A). First,
a normal convolutional (Conv) downsampling is performed
to change the number of channels in the input to half of the
original number, then a deep convolution (DWConv) is used
on it, and the outputs of the normal convolution (SC) and the
outputs of the deep convolution (DSC) are spliced together by
a concat operation. Finally, the SC-generated informationwas
infiltrated into each part of the DSC-generated information
using shuffle, a method that allows the information from the
SC to be completely blended into the output of the DSC.
The neck layer network using GSConv convolution not only
minimizes the negative impact of deep convolution on the
model but also makes effective use of its advantages of small
size and high speed.

The VoV-GSCSP module, which can simplify the network
structure and reduce the model computation, is introduced
in the neck layer, and the structure of the VoV-GSCSP [36]
module is shown in Figure 5 (B). The C2f module aggregates
intermediate features with different receptive field sizes by
means of dense connections, but it shows the disadvantages
of slow operation speed and inefficiency. The VoV-GSCSP
module uses a one-time The VoV-GSCSP module that uses a
one-time aggregation method to design the cross-level partial
network (GSCSP), which only aggregates the features of all
the previous layers in the last layer of the module, which
not only inherits the advantages of the dense connection with
multiple receptive fields to represent a variety of features but
also solves the inefficiency of the module. The VoV-GSCSP
also adopts the idea of GSConv convolution, the output of
ordinary convolution, and after two GSConv convolution
outputs through concatenation. Finally, in the case of the
number of unchanged channels, ordinary convolution is used
to further extract image features. The VoV-GSCSP module
not only simplifies the computation and network structure but
also preserves ample accuracy.

In order to further enhance the network’s ability to extract
wood defect features and to solve the impact of useless infor-
mation on the network’s detection performance, a lightweight
attention mechanism, Channel Prior Convolutional Attention
(CPCA), is added to the neck layer. CPCA [37] com-
bines spatial and channel attention mechanism modules, the
main purpose of which is to dynamically allocate attention
weights over channel and spatial dimensions to maxi-
mize the extraction of important feature information while
avoiding the number of parameters raised due to complex
computation.

FIGURE 5. Structure of GVC-neck specific modules.

As shown in Figure 5 (C), Channel Attention (CA) mecha-
nism, the input feature maps are passed through two parallel
Max_pool and Avg_pool layers to aggregate spatial informa-
tion from feature mapping and then fed into the shared MLP.
Similar to the SE Attention, the number of input channels is
also compressed before expanding here, aiming at improving
the network’s ability to express features and to be more spe-
cific to the current task. Subsequently, two activated results
are obtained after processing through the ReLU activation
function. Following this, the two outputs are element-wise
added, and then, after passing through the sigmoid activation
function, the output undergoes channel attention processing.
Ultimately, the output is restored to the original size of the
image. The specific expression for CA is as follows:

CA (F) = σ (MLP (AvgPool (F)) +MLP (MaxPool (F))

(1)

As shown in Figure 5 (D), the spatial attention mecha-
nism (SA) first adopts the idea of multi-scale structure to
separate the input feature map into multiple parts so that
the local features of the image can be described in a simple
form on different scales, and then utilizes depth separable
convolution for each part to capture the spatial relationship
between the features, which ensures the preservation of the
inter-channel relationship while simultaneously reducing the
computational complexity. Finally, a 1 × 1 convolution is
used for channel blending to fuse the results of each part
and realize information interaction between channels. The
specific expression for the SA is as follows:

SA (F) = Conv1×1

(
3∑
i=0

Branchi (DWConv (F))

)
(2)
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The GVC-neck layer network achieves more efficient and
representative feature extraction and classification of wood
defects by combining GSConv convolution, VoV-GSCSP
module, and CPCA attention mechanism. The combination
of the three can reduce the computational complexity and
number of parameters of the model, while improving its
performance and generalization ability.

3) WIOU-NWD
The original loss function CIOU lacks consideration for bal-
ancing difficult and easy samples. This oversight results in
geometric metrics like aspect ratio and distance amplifying
negative gradients from low-quality samples, thus com-
promising the model’s generalization capabilities. For this
reason, the WIOU loss function is used in the WLSD-YOLO
model as a replacement for the original loss function CIOU,
assuming that w, h denote the width and height of the pre-
diction frame, respectively, and that wgt , hgt are the width
and height of the real frame, b, bgt represent the center points
of the boundary between the predicted frame and the actual
frame, ρ represents the Euclidean distance between b and
bgt .wc and hc represent the width and height of the smallest
outer rectangle of both the prediction box and the real box,
while IOU denotes the intersection-over-union. The CIOU
expression can be obtained as follows:

LCIOU = 1 − IOU +
ρ2(b, bgt )

(wc)2 + (hc)2
+ αv (3)

Among them:

α =
v

(1 − IOU) + v
(4)

v =
4
π2 (arctan

wgt

hgt
− arctan

w
h
)2 (5)

Wise-IOU(WIOU) [38] evaluated the quality of anchor
frames by using a dynamic non-monotonic focusing mech-
anism and used a gradient gain that does not intervene in the
training too much to ensure high-quality anchor frames and
at the same time reduces the influence of harmful gradients,
which can improve the overall performance of the algorithm.
Overall performance of the algorithm, theWIOU constructs a
two-layer attention mechanism to accelerate the convergence
speed, improve the convergence accuracy, and enhance the
model generalization ability. Assuming that the correspond-
ing position of (x, y) in the target frame is (xgt , ygt ), RWIOU
denotes the loss of high-quality anchor frames, and WIOUv1
is expressed as

LWIOUV1 = RWIOULIOU (6)

Among them:

RWIOU = exp(
(x − xgt )2 − (y− ygt )2

((wc)2 + (hc)2)∗
) (7)

In order to prevent the low-quality samples from generat-
ing large and harmful gradients, WIOUv3 was constructed

using WIOUv1 to construct the WIOUv3 with the following
equation:

LWIOUV3 = rLWIOUV1 (8)

r =
β

δαβ−δ
(9)

β =
L∗
IOU

LIOU
(10)

Due to the existence of some small target defects in lumber
defects, the WLSD-YOLO model applies the NWD small
target detection algorithm [39] in the loss function and uses it
together with WIOUv3 to enhance the recognition accuracy
of small target defects in lumbers. IOU-based metrics are
highly sensitive to positional deviations in small objects,
posing a risk of substantial deterioration in detection perfor-
mance when applied in anchor-based detectors. In response to
this challenge, the NWD employs a novel metric termed the
normalized Wasserstein distance, defined by the following
expression:

NWD (Na,Nb) = exp(−

√
W 2

2 (Na,Nb)

C
) (11)

Application of NWD to the loss function:

LNWD = 1 − NWD
(
NP,Ng

)
(12)

NWD has more advantages in detecting tiny objects than
IOUs. Among them are the Gaussian distribution of the pre-
diction frame and the Gaussian distribution of the GT frame.
In the algorithm of this paper, the ratio coefficient of the use
of WIOUv3 and NWD is 1:1.

III. EXPERIMENTAL DETAILS AND COMPARISONS
A. TRAINING ENVIRONMENT AND PARAMETER SETTINGS
The training and testing hardware platform is a cloud server
GPU platform, and the main hardware configuration is shown
in Table 1.

TABLE 1. Experimental environment.

B. PERFORMANCE METRICS
The main evaluation indexes of target detection algorithms
fall into two categories: detection precision and model com-
plexity. The detection precision is mainly reflected by the
model’s accuracy precision (P), recall (R), and mean average
precision (mAP). Assuming that the number of positive and
negative samples are (True Positive) TP and (False Positive)
FP, respectively, and the number of positive samples is (False
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FIGURE 6. Comparison of before and after data enhancement.

Negative) FN, the formulas for precision P, recall R, andmean
average precision mAP are as follows:

precision =
TP

TP+ FP
(13)

Recall =
TP

TP+ FN
(14)

AP =
1
∫
0
P (R) dR (15)

mAP =
1
C

C∑
i=1

APi (16)

C. DATA SETS AND PRE-PROCESSING
In this study, we used a large image dataset of surface defects
in wood lumber collected from sawmill assembly lines after
gluing and splicing, which contained 10 defects. The image
size was 2800 × 1024 pixels. This paper excludes two rare
defects, blue stain and overgrown, and retains 4000 images
of wood with eight representative defects, including quartz-
ity, live_knot, marrow, resin, dead_knot, knot_with_crack,
knot_missing, and crack.

In order to solve the problem of an uneven number of types
in the original dataset and to ensure that the model has better
robustness and generalization ability, as well as to prevent
the generation of overfitting phenomena, this paper employs
a variety of methods, such as cropping, mirroring, panning,
rotating, adding noise, and altering the brightness, to carry
out data enhancement operations on the images with fewer
types of defects. The results of the comparison of the number
of defects of each type before and after data enhancement are
shown in Figure 6.

The dataset is divided into training set, validation set and
test set in the ratio of 8:1:1 and the number of samples in these
three sets are 3971, 497, 497.

D. DISCUSS
1) ABLATION EXPERIMENTS
To validate the effectiveness of each improvement in the
WLSD-YOLO model, this paper employed the YOLOv8

TABLE 2. Ablation experiments.

FIGURE 7. Comparison of PR curves.

FIGURE 8. Comparison of category accuracy.

model as a reference benchmark, and experiments were
conducted incrementally by introducing each improvement
point step by step, as shown in Table 2. First, adding the
SE attention mechanism to the backbone network improved
the accuracy by 0.7 percentage points, although the FPS
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FIGURE 9. Confidence level comparison chart.

was slightly reduced. Then, the original neck layer in
YOLOv8 was optimized using the GVC-neck. GVC-neck
greatly reduces the number of parameters in the original
model, which improves the accuracy while also increasing
the detection speed. Finally, by modifying the loss function,
the original CIOU was replaced by WIOU-NWD, which
improved the accuracy by 0.7 percentage points. Compared
to the original model, the WLSD-YOLO model achieved an
overall 2.9% accuracy improvement, a 19% decrease in the
number of parameters, a 3.8 improvement in the FPS, and a
39.9 reduction in the FLOPs. A comparison of the PR graphs
is shown in Figure 7. The accuracy of knot_with_crack, crack,
and quartzity, which are the categories of defects with poor
recognition results, was also substantially improved, and the
category accuracy comparison graph is shown in Figure 8.

The category confidence comparison plot is shown in
Figure 9, the confusion matrix serves as a concise summary

TABLE 3. Ablation experiments.

FIGURE 10. Grad-CAM Comparison Chart.

of the classification problem’s prediction outcomes. It encap-
sulates both correct and incorrect predictions through count
values, segmenting them by class. This matrix illustrates
how effectively the network model identifies each defect
type during the prediction process. As can be seen from
the figure, compared with the original model YOLOv8, the
WLSD-YOLO model has higher recognition and accuracy
for several surface defect categories of wood lumber such
as Quartzity, resin, knot_missing, knot_with_crack, Marrow,
etc., which significantly improves the classification ability of
the original model for different defects.

2) COMPARISON WITH OTHER MODELS
To further validate and evaluate the detection performance
of the proposed method, comparative tests are conducted on
YOLOv5, YOLOv7, YOLOX, and the traditional network
model Faster-Cnn, using the same hardware resources and
datasets. The results are shown in Table 3. It can be seen
that the traditional network model has a greater disadvantage
in wood lumber defect detection; both accuracy and speed
are far behind those of the newer YOLO series algorithms.
Although the WLSD-YOLO model lags behind YOLOv5
in terms of speed, its accuracy has been greatly improved,
and it is more suitable for the wood lumber manufacturing
industry, where accuracy is the first priority. For YOLOv7,
YOLOX, and YOLOv8, the WLSD-YOLOmodel has signif-
icant advantages in terms of accuracy, speed, and parameter
size, reflecting its excellent defect detection performance.

3) GRAD-CAM CHART EVALUATION
Grad-CAM is an attention heatmap technique for visualizing
deep neural networks that helps us analyze the image regions
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FIGURE 11. Visualization Comparison Chart.

to which the network pays attention for a given category,
depicting the distribution of the input image’s contribution
to the output prediction. As shown in Figure 10, the locations
circled in red in the original diagram are defects, the origi-
nal model yolov8 suffers from inaccurate localisation when
locating certain defects, whereas the WLSD-YOLO model
can alleviate these problems to a certain extent in terms of
locating regions associated with wood defects. It can be seen
that WLSD-YOLO covers the target object region better than
YOLOv8. This suggests that adding attention can be a good
way to learn and use the information in the target object
region and aggregate features from it.

4) COMPARISON OF VISUALIZATION EVALUATION
Figure 11 shows a visualized comparison graph between
the above models, where each picture contains at least one

FIGURE 12. Comparison of loss function curves.

surface defect of wood lumber. The visualization result graph
can more intuitively show the recognition ability of the mod-
els for different defects of wood lumber, and it is easier to
reflect the advantages and disadvantages between the models.
It can be seen that the advantages of the WLSD-YOLO
model in accurately locating and detecting surface defects
on all wood lumbers with higher accuracy are obvious, bet-
ter results in detecting most wood lumber surface defect
images.

5) LOSS FUNCTION PLOTS
The loss function is a measure of the distance between
the neural network’s predicted information and the expected
information (labels); the closer the predicted information is
to the expected information, the smaller the loss function
value is. The faster the convergence rate, the easier it is for
the model to converge to stability. Therefore, a faster conver-
gence of the loss function and a smaller total loss represent
superior performance. A comparison of the loss curves of the
original loss function and WIOU as well as the loss function
method of this paper on the dataset of this paper is shown
in Figure 12, where the horizontal axis epoch represents the
number of training rounds of the model, and the vertical axis
represents the loss value of the model. It can be seen that the
loss function in this paper converges faster and the total loss
is lower than the WIOU and the original CIOU loss function,
which proves the effectiveness of the loss function in this
paper.

IV. CONCLUSION
For the advancement of smart forestry, this paper intro-
duces the WLSD-YOLO model for detecting defects in
wood boards. WLSD-YOLO enhances feature extraction
and small-target defect detection capabilities by incorporat-
ing the GVC-neck layer structure, integrating SE attention
mechanisms into the backbone, and modifying the loss
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function. The test results on a dataset containing eight
types of surface defects on wood lumbers indicate that
WLSD-YOLO achieved a mAP of 76.5%, an improvement of
2.9% compared to the baseline model, the average detection
time is 0.019 seconds, fully meets the real-time require-
ments for detecting surface defects on wood lumbers in
industrial scenarios, This can enhance the detection accu-
racy of various wood lumber defects, showing a certain
advantage compared to other algorithms and demonstrating
stronger competitiveness in practical applications. Nonethe-
less, there is scope for enhancing this algorithm. While
overall detection accuracy has been enhanced, it remains inef-
ficient in identifying two defect types: ‘‘knot_with_crack’’
and ‘‘Quartzity.’’ Consequently, this study will persist in
refining the model’s recognition capabilities for specific
defects, aligning them more closely with the accuracy
demands of industrial scenarios. Going forward, efforts
will be made to further diminish the number of model
parameters and reduce model size to boost defect detection
speed and alleviate the cost demand associated with model
deployment.
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