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ABSTRACT In this paper, we propose iterative interference cancellation schemes with access points
selection (APs-Sel) for cell-free massive multiple-input multiple-output (CF-mMIMO) systems. Closed-
form expressions for centralized and decentralized linear minimum mean square error (LMMSE) receive
filters with APs-Sel are derived assuming imperfect channel state information (CSI). Based on the derived
expressions, insights are drawn and general expressions are devised for several cases, namely: firstly,MMSE-
SIC filter for the non-scalable CF-mMIMO that uses all APs. Secondly, an MMSE-SIC filter assuming
perfect channel state information. Thirdly, in this case we assume no interference cancellation and the
linear MMSE filter is obtained. Additionally, we formulate a new Gaussian approximation of the likelihood
function by deriving new closed-form expressions for the second order statistics (mean and variance) of
the detected signal parameters in presence of channel estimation errors, APs-Sel matrix and multi-user
interference (MUI). Since the MMSE-SIC filter experiences error propagation due to erroneous decisions
from the previous stages, we develop a list-based detector based on LMMSE receive filters for CF-mMIMO
systems that exploits interference cancellation and the constellation points to mitigate the error propagation
that occurs in conventional MMSE-SIC receivers. An iterative detection and decoding (IDD) scheme that
employs low-density parity-check codes is then developed. Moreover, log-likelihood ratio (LLR) refinement
strategies based on censoring and a linear combination of local LLRs are proposed to improve the network
performance.We assess the proposed centralized and decentralized IDD schemes against existing approaches
in terms of bit error rate performance, complexity, and signaling under perfect CSI and imperfect CSI and
verify the superiority of the distributed IDD architecture with LLR refinements.

INDEX TERMS Cell-free massive MIMO systems, centralized processing, decentralized processing,
iterative detection and decoding, list-based detectors.

I. INTRODUCTION
Cell-free massive multiple-input multiple-output
(CF-mMIMO) networks exploit the distributed nature of
large-scale multiple-antenna systems to improve the quality
of service, yielding very high throughput [1]. In such
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networks, a user equipment (UE) is served by a large
number of access points (APs), which are equipped
with either a single antenna or multiple antennas [2],
[3]. Also, the distributed nature of the network with
extra spatial degrees of freedom makes the channel
between UEs and APs almost orthogonal, which reduces
the level of interference compared to standard cellular
systems [4].
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A. PRIOR AND RELATED WORKS
In the traditional CF-mMIMO systems, all APs serve users
in the entire service area [1], [2], [4], [5]. However, such a
setting is highly impractical and non-scalable since it requires
increased front-haul link connections between the APs and
the central processing unit (CPU). Moreover, the hardware
complexity of the network grows exponentially with the
increase in radio frequency units and signaling [6], [7],
[8], [9]. Recently, APs selection (APs-Sel) techniques have
been proposed to reduce signaling and the number of front-
haul connections, whose performance is close to that of the
traditional CF-mMIMO system [1], [5], [6]. For example, the
work in [5] proposed a sort and connect algorithm between
UEs and APs based on the effective channel gain (ECG)
and channel quality. A joint power allocation algorithm is
proposed to minimize the total energy consumption and
reduce overhead signaling for APs-Sel [6]. This approach is
compared with other APs-Sel algorithms based on the largest
large-scale fading (LLSF) coefficients [2].
Moreover, another factor that influences the performance

of CF-mMIMO systems is multi-user interference (MUI)
due to their broadcast nature, pilot contamination, and
overlapping of the uplink transmitted signals [2]. To address
this issue, an efficient receiver design is necessary [1], [9],
[11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21],
[22]. Prior works on receiver design for CF-mMIMO [1], [2],
[9], [10] have studied linear receivers such as receivematched
filter (RMF) and minimum mean square error (MMSE)
receivers for uncoded systems. However, the MUI remains
constant even in high SNR regimes. To further reduce the
MUI, channel codes with iterative detection and decoding
(IDD) schemes have been reported in [11], [12], [13], [15],
[21], [22], [27]. In which channel codes with IDD can correct
unreliable detection decisions as the number of iterations
increases. Moreover, using long code words yields improved
performance at the expense of increased complexity in terms
of time and computing power [29], [30]. IDD techniques
use the message-passing principle by exchanging the soft
beliefs in the form of log-likelihood ratios (LLRs) between
the detector and the decoder [11], [12], [22], [23], [24], [26].
In IDD schemes, soft interference cancellation (soft-IC)

detectors are generally used due to their low complexity. For
example, the list-based detection techniques that are capable
of eliminating error propagation are presented in [22], [23].
In [24], a local partial marginalization detector based on turbo
iterations was proposed for uplink CF-mMIMO systems.
The proposed detector was compared with other baseline
schemes, such as MMSE and MMSE with SIC (MMSE-SIC)
detectors. The authors in [25] proposed a distributed expec-
tation detector for CF-mMIMO systems, where the CPU is
equipped with a non-linear module and the APs are equipped
with a linear module. Before sending the posterior mean and
variance to the CPU, the APs first detect the symbols using
local CSI. The extrinsic data for each AP is then generated
and integrated at the CPU using maximum-ratio combining
(MRC). Shaik et al. [28] performed a theoretical analysis on

the distributed computation of LLRs based on the optimal
maximum a posterior (MAP) detector for the sequential
architecture of CF-mMIMO. However, the complexity of
such an optimal filter grows exponentially with the increase
in the number of UEs and antennas, which is prevalent in
CF-mMIMO networks.

B. MOTIVATION AND CONTRIBUTIONS
In the literature, few works are devoted to the bit error
rate (BER) performance analysis for coded CF-mMIMO
networks using message passing for various implementation
architectures and cooperation levels [32], [33], [34]. There
is still a need for low-complexity LLR processing schemes
for decentralized processing in CF-mMIMO networks to
facilitate BER performance close to that of the centralized
schemes. Furthermore, list-based detection methods like
MF-SIC have not been investigated for CF-mMIMO systems,
despite the fact that they have the potential to improve
performance by eliminating the error propagation that occurs
in traditional MMSE-SIC schemes. Additionally, the use
of MMSE receivers with soft-IC (MMSE-soft-IC) detectors
and LPDC codes can produce a very simple, efficient, and
practical implementation compared to optimal detectors.
Therefore, this work develops iterative centralized and
decentralized CF-mMIMO architectures, which is different
from the work in [24] that considers non-iterative process-
ing. We also propose three LLR processing strategies for
low-complexity detection schemes. The main contributions
of this paper can be summarized as follows:
• IDD schemes with LDPC channel codes for scalable and
non-scalable centralized and decentralized CF-mMIMO
schemes are developed.

• New closed-form expressions for the MMSE-Soft-
IC detectors are derived for the case with APs-Sel
while taking the channel estimation errors into account.
Based on the derived equations, general expressions are
devised for a system that uses all the APs (All-APs).
Furthermore, we draw insights and derive the uplink
MMSE receive filters based on the a priori information
of transmitted bits.

• A new Gaussian approximation of the likelihood
function is formulated by deriving novel closed-form
expressions for the mean and variance of the detected
signal parameters in the presence of channel estimation
errors, APs selection matrix, and MUI.

• A List-MMSE-Soft-IC detector to reduce the error
propagation in the IC step is proposed. The List-MMSE-
Soft-IC performance is compared with other baseline
detectors, such as LMMSE-Soft-IC and soft LMMSE.

• Three novel LLR processing schemes are proposed for
decentralized CF-mMIMO: a) one based on decoding
the LLRs at each AP (Standard LLR processing);
b) another based on censoring the LLRs by decoding
each user equipment (UE) information at the AP, where
it achieves the largest mean absolute value of LLRs
(LLR Censoring). This censoring of LLRs helps to
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reduce redundant processing at the CPU,and c) the last
that provides refinements in the LLRs by performing a
linear combination of LLRs from the different APs by
assuming statistical independence of the APs.

• The proposed local LLR processing strategies are
compared with the traditional network, which is based
on centralized processing schemes. The impact of
different IDD iterations is also examined. Furthermore,
the performance of the decentralized and centralized
schemes is compared in terms of computational cost
and the amount of required signaling between the APs
and CPU.

C. PAPER ORGANIZATION AND NOTATION
The rest of this paper is organized as follows: Section II
presents the proposed signal model, the channel estimation
procedure, the received signal statistics, and the APs selection
scheme. It also presents the proposed centralized IDD scheme
and receiver design. The decentralized IDD processing
scheme and receiver designs are presented in Section IV.
The proposed List-based detector is presented in section V.
The iterative processing, LLR statistics, refinement, com-
putational complexity, signaling loads, and the decoding
algorithm are presented in Section VI. Numerical results,
network setup, assumptions, and remarks are presented in
Section VII. Finally, Section VIII gives the conclusions.
Notation: Lower and upper bold case symbols repre-

sent vectors and matrices, respectively. The operator (·)T ,
(·)H denote the transpose and the Hermitian transpose,
respectively.

II. PROPOSED SYSTEM AND SIGNAL MODEL
In this section, we consider the uplink of a CF-mMIMO sys-
tem with L APs and K single-antenna user equipment (UE),
where each AP is equipped with N receive antennas. The
system is assumed to have imperfect channel estimates. The
received signal statistics and channel estimation procedures
are given below.

A. UPLINK PILOT TRANSMISSION AND CHANNEL
ESTIMATION
We assume that τp mutually orthogonal pilot sequences
ψ1,. . . , ψτp

with ||ψ t ||
2
= τp are used to estimate the

channel. Furthermore, K > τp is such that more than one
UE can be assigned per pilot. The index of UE k that uses
the same pilot is denoted as tk ∈

{
1, . . . , τp

}
with ϑk ⊂

{1, . . . ,K } as the subset of UEs that use the same pilot as
UE k inclusive. The complex received signal at the l-th AP
after the UE transmission, [1], [2], [33] Yl , with dimensions
N × τp, is given by

Yl =

K∑
j=1

√
ηjgjlψT

tj + Nl, (1)

where ηj is the transmit power from UE j, Nl is the received
noise signal with independent NC ∼

(
0, σ 2

)
entries and

noise power σ 2, gjl ∼ NC
(
0,�jl

)
, and �jl ∈ CN×N is the

spatial correlation matrix that describes the channel’s spatial
properties between the k-th UE and the l-th AP, βk,l ≜
tr(�jl)
N is the large-scale (LS) fading coefficient. The first AP

correlates the received signal with the associated normalized
pilot signal ψ tk /

√
τp to ytkl ≜ 1

√
τp
Ylψ

∗
tk ∈ CN to estimate

the channel gjl given by

ytkl =
∑
j∈ϑk

√
ηjτpgjl + ntkl , (2)

where ntkl ≜ 1
√

τp
Nlψ

∗
tk ∼ Nc

(
0, σ 2IN

)
is the obtained noise

sample after estimation. From [1], the MMSE estimate of gkl
is given by

ĝkl =
√

ηkτp�kl9
−1
tkl ytkl , (3)

where 9tkl = E
{
ytkly

H
tkl

}
=

∑
j∈ϑk ηjτp�jl + IN is

the received signal vector correlation matrix. The channel
estimate ĝkl and the estimation error g̃kl = gkl − ĝkl are inde-
pendent with distributions ĝkl ∼ Nc

(
0, ηkτp�kl9

−1�kl
)

and g̃kl ∼ Nc (0,Ckl), where the matrix Ckl is given by

Ckl = E
{
g̃kl g̃Hkl

}
= �kl − ηkτp�kl9

−1�kl . (4)

It should be noted that the pilot contamination is caused by
the mutual interference made by UEs using the same pilot
signals in (2), which lowers the system’s performance [1].
From (1), the received signal vector after stacking the

channel vectors from all the APs is given by

y = Gs+ n, (5)

where the channel matrix G ∈ CNL×K has both small
scale and LS fading coefficients. Vector s = [s1, .., sK ]T is
the transmitted symbols with E

{
sks∗k

}
= ρk , the average

transmit power is given by ρ = [ρ1, .., ρK ]T , n is the additive
white Gaussian noise (AWGN).

In CF-mMIMO networks, there are limitations on the
complexity and amount of signaling the APs and CPU must
exchange. Both of these issues make system modeling and
design almost impracticable. To solve this problem, we adopt
a scalable CF-mMIMO setup that takes the selection of APs
into account. This is accomplished using the APs-selection
technique described as follows:

B. ACCESS POINT SELECTION PROCEDURE
The dynamic cooperative clustering (DCC) approach
described in [2], [33] is considered when selecting the
APs. Unlike existing approaches for APs-Sel, the proposed
approach incorporates the APs-Sel in the receive filter
expression, which facilitates its computation. By letting
Mk ⊂ {1, . . . ,L} be the subset of APs in service of UE k ,
the matrix Dkl is defined as

Dkl =

{
IN if l ∈Mk

0N if l ̸∈Mk .
(6)
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The APs that provide service to a specific UE are determined
by the block diagonal matrix Dk = diag (Dk1, ..,DkL) ∈

CNL×NL . Specifically, when Dk = INL , all APs serve all the
UEs. However, using all APs is not scalable and practical, and
thus clustering approaches such as user-centric techniques
can be adopted. Then, the set of UEs that are served by AP l
is

Dl =

{
k : tr (Dkl) ≥ 1, k ∈ {1, ..,K }

}
. (7)

It is important to note that the DCC does not alter the received
signal statistics since all APs receive the broadcast signal.
An essential feature of such a selection process is limiting
the number of APs that take part in signal detection. The
joint APs selection criterion described in [2] determines
which APs will provide service to a specific UE. In this
scenario, the UE designates a master AP to coordinate uplink
(UL) detection and decoding based on the LLSF. The CPU
then establishes a threshold value βth for non-master APs
to provide service to a certain UE. A detailed explanation
of the operation of the DCC approach can be found in [2].
There is a need to demodulate the transmitted symbols at
the receiver. Thus, the proposed centralized IDD receiver
structure is detailed in the following section.

FIGURE 1. Block diagram for IDD scheme with centralized processing.

III. PROPOSED CENTRALIZED IDD SCHEME
In this section, we present the proposed centralized pro-
cessing architecture for coded CF-mMIMO systems. The
block diagram of the proposed centralized IDD scheme is
depicted in Figure 1. The codeword sequence ck is created
by first encoding the message sequence mk for UE k by an
LDPC encoder (Enc) with a code rate of R. This encoded
sequence is then modulated (Mod) to form complex symbols
with a complex constellation of 2Mc possible signal points.
The K UEs then send the modulated symbols to the APs.
The APs serve as relays during data reception and transfer
the information to the CPU, which has a joint detector
(Det), an LLR computing module, and an LDPC decoder
(Dec). Then, the detector forwards the data to a module that
computes the LLRs 3i. These computed LLRs are then sent
to the decoder. By providing extrinsic data 3e to the joint
detector, the decoder uses an iterative technique presented in
Section VI that enhances the detection performance of the
receiver.

A. PROPOSED CENTRALIZED RECEIVER DESIGN
The proposed receiver configuration aims to cancel the MUI
caused by the other K − 1 UEs in the network. The receiver
consists of an MMSE filter followed by a soft interference
cancellation scheme, which may use either a successive or
a list-based successive interference cancellation technique.
The receiver first creates soft estimates of the transmitted
symbols by computing the jth UE symbol mean s̄j based on
the soft beliefs from the LDPC decoder [13], [32], [33] given
E
{
sj
}
= s̄j as described by

s̄j =
∑
s∈A

sP(sj = s), (8)

where A is the set of complex constellations. The a priori
probability of the extrinsic LLRs is given by [32], [33]

P(sj = s) =
Mc∏
l=1

[1+ exp(−sbl3i(b(j−1)Mc+l))]
−1, (9)

where 3i(bi) is the extrinsic LLR of the i-th bit calculated
by the LDPC decoder from the previous iteration, and sbl ∈
(+1,−1) denotes the l-th bit of symbol s. The variance of the
j-th UE symbol is calculated as [32], [33]

σ 2
j =

∑
s∈A
|s− s̄j|2P(sj = s). (10)

After decomposition of (5) and usingG = Ĝ+G̃, the received
signal at the CPU is given by

y = ĝksk + Ĝis̄i +
K∑
m=1

g̃msm + n, (11)

where the first term on the right-hand side (RHS) is the
desired signal, ĝk and sk are the approximate channel
estimation vector and transmitted symbol for the desired
signal, respectively. The second term is the interference from
the other K − 1 users; s̄i is the vector with the interfering
symbols except the k-th symbol, and Ĝi is the matrix with
channel estimates of the other K − 1 users. The third term
denotes the interference due to channel estimation errors, and
the fourth is the phase-rotated noise. After the estimatedMUI
has been removed and APs have been selected, the received
symbol estimate of the k-th UE data stream at the CPU is
given by

s̃k = wH
k Dk

(
y− Ĝis̄i

)
, (12)

The optimization of the receive combining filter wk is
achieved by minimizing the mean square error (MSE)
between the symbol estimate and the transmitted symbol
conditioned on Ĝ. The formulation of the optimization
problem is given by

wk = argmin
(wk )

E
{
||s̃k − sk ||2 | Ĝ

}
. (13)
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Differentiating the objective function on the RHS of (13) with
respect to (w.r.t.) wH

k , the optimal MMSE receive filter wk
should satisfy the following relation:

DkE{yRyHR }D
H
k wk − DkE{yRs∗k} = 0, (14)

where yR = y− Ĝis̄i. The solution to the filter is obtained by
making wk the subject of (14) as

wk =

(
DkE{yRyHR }D

H
k

)−1
DkE{yRs∗k}. (15)

By using the orthogonality principle in [35] and assuming
statistical independence of each term in the received signal
y, the terms E{yRs∗k} and E{yRyHR } are given by

E{yRs∗k} = ρk ĝk , (16)

and

E{yRyHR } = ρk ĝk ĝHk + Ĝi1iĜH
i

+

K∑
m=1

(
| sm |2 +σ 2

m

)
Cm + σ 2INL . (17)

The matrix 1i = diag
[
σ 2
1 , . . . , σ 2

k−1, σ
2
k+1, . . . , σ

2
K

]
denotes the covariance matrix that consists of the entries
computed in (10). By substituting (16) and (17) into (15), the
centralized MMSE filter is given by

wk

= ρk

(
Dk

(
ρk ĝk ĝHk + Ĝi1iĜH

i

)
DH
k

+ Dk

(
σ 2INL +

K∑
m=1

(
| sm |2 +σ 2

m

)
Cm

)
DH
k

)−1
Dk ĝk .

(18)

A detailed derivation of (18) can be found in Appendix A.

B. INSIGHTS INTO THE CENTRALIZED MMSE FILTER
The major parameters that affect the performance of the
derived receiver in (18) can be explained as follows.
• The channel estimation error, a high channel estimation
error which results into imperfect channel side informa-
tion (ICSI). This yields poor channel coefficients which
results into wrong detection decisions, thus degrading
the performance. This can be reduced by using longer
pilots to estimate the channel but at the expense of
increasing complexity in terms of training time. On the
other hand if there is no channel estimation error the
performance of the network improves and this is the case
with perfect channel estimates (PCSI). For the case with
PCSI, the channel estimation error g̃m is 0, which makes
Cm = 0. This yields ĝk = gk . Thus, the third term in (18)
vanishes to zero, and we obtain

wk = ρk

(
Dk

(
ρkgkgHk +Gi1iGH

i + σ 2INL

)
DH
k

)−1
× Dkgk . (19)

• The number of APs and APs-Sel matrix Dk . Increasing
the number of APs in the network improves the detector
performancewhich yields lower BERs. For the case with
all APs, the selection matrix Dk = INL . Thus, the filter
in (18) is given by

wk =

(
ρk ĝk ĝHk + Ĝi1iĜH

i +

K∑
m=1

(
| sm |2 +σ 2

m

)
Cm

+ σ 2INL

)−1
ρk ĝk . (20)

Note that Dk = 0, implies that wH
k Dk = 0, where

wH
k is the receive vector. This means that only APs

with Dk ̸= 0 will apply receive combining in the uplink
detection.

• The number of IDD iterations and interference can-
cellation matrix 1i. Increasing the number of itera-
tions improves the performance. This is because more
information is exchanged between the decoder and
detector with improves on the interference cancellation
capability of the receiver. Mathematically, this can be
explained as: In the first iteration it is considered that
s̄i = 0 in (8). In this case, we have a linear MMSE filter
and the estimated signal in (12) is

s̃k

= ρk ĝHk D
H
k

(
ρkDk ĝk ĝHk D

H
k + DkĜi diag

(
ρi
)
ĜH

i D
H
k

+ Dk

(
σ 2INL +

K∑
m=1

ρmCm

)
DH
k

)−1
y. (21)

The vector ρi denotes the average transmit power vector
for the other K − 1 UEs. As the number of iterations
increases, there is more a posterior information about
the transmitted bit. This implies that mean of the
interference symbol s̄i ≈ si in (8). Thus, the filter
becomes a perfect interference canceler, and (12) yields

s̃k = ρk ĝHk D
H
k

(
ρkDk ĝk ĝHk D

H
k

+ Dk

(
σ 2INL +

K∑
m=1

| sm |2 Cm

)
DH
k

)−1
×

(
y− DkĜisi

)
. (22)

The centralized detection schemes experience high levels
of complexity as the number of UEs, APs, and antennas at
the APs increases. This makes the design of receivers more
complicated, and the amount of required signaling between
APs and the CPU increases. To alleviate the above problem,
the decentralized IDD scheme is proposed as follows:

IV. PROPOSED DECENTRALIZED IDD SCHEME
The proposed decentralized IDD scheme is shown in
Figure 2. The transmitter operates in the same way as that
of the centralized processor in Section III. At the receiver,
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FIGURE 2. Block diagram for IDD scheme with decentralized processing.

each AP is equipped with a local detector, an LLR computing
module, and an LDPC decoder. The APs use their local
channel estimates to perform IDD on the received signals.
The detector sends its symbol estimates to a module that
computes the local soft information λi in the form of
LLRs. The computed LLRs are then sent to the decoder,
which performs iterative processing by exchanging extrinsic
information λe with the local detector. In the decentralized
operation, the APs act as compute-and-forward relays by
sending their soft beliefs to the CPU for further processing.
The challenge at the CPU is to design an intelligent way
of processing these LLRs. We devised three techniques for
processing these LLRs. The first scheme (standard LLR
processing) is based on individual decisions from each AP,
and an average BER is then computed based on these
decisions from each AP. The second scheme considers
censoring the LLRs (LLR censoring) and decoding each UE
data at the AP, where it achieves the largest mean absolute
value of LLRs. The third scheme is based on the linear
combination of the LLRs (LLR Ref). A detailed explanation,
operation, and analysis of the proposed LLR processing
schemes are given in Section VI.

A. PROPOSED DECENTRALIZED RECEIVER DESIGN
The channel statistics, estimation, and received signals follow
the model introduced in Section II-A. The received signal at
the l-th AP is given by

yl =
K∑
i=1

gilsi + nl ∈ CN×1, (23)

which can further be decomposed as

yl = ĝklsk + Ĝilsi +
K∑
m=1

g̃mlsm + nl, (24)

where the first term on the RHS is the desired signal, the
second term is the interference from the otherK−1 users, the
third term denotes the interference due to channel estimation
errors, and the fourth term is the phase-rotated noise. The
received local symbol estimate of the k-th UE data stream
at the l-th AP after removing the MUI is given by

s̃kl = wH
klDkl

(
yl − Ĝil s̄i

)
, (25)

where the notation Dkl implies that the l-th AP is among
the selected APs. Here, the optimization of the received
combining filter wkl is obtained by minimizing the error
between the estimated detected symbol and the transmitted
symbol. The optimization problem is formulated as

wkl = arg min
(wkl )

E
{
||s̃kl − sk ||2 | Ĝl

}
. (26)

The derivation is similar to the centralized approach, and,
for completeness, it is described in detail in Appendix B.
The optimal receive filter wkl should satisfy the following
relation:

DklE{yRlyHRl}D
H
klwkl − DklE{yRls∗k} = 0. (27)

Thus, the solution to the receive filter is given by

wkl =

(
DklE{yRlyHRl}D

H
kl

)−1
DklE{yRls∗k}. (28)

The terms E{yRls∗k} and E{yRlyHRl} are respectively, given by

E{yRls∗k} = ρk ĝkl, (29)

E{yRlyHRl} = ρk ĝkl ĝHkl + Ĝil1ilĜH
il

+

K∑
m=1

(
| sm |2 +σ 2

m

)
Cml + σ 2IN , (30)

where 1il denotes the covariance matrix that consists of the
entries computed in (10), locally computed at the l-th AP.
By substituting (29) and (30) into (28), the solution of the
local receive filter w∗kl is given by

wkl = ρk

(
Dkl

(
ρk ĝkl ĝHkl + Ĝil1ilĜH

il + σ 2IN

+

K∑
m=1

(
| sm |2 +σ 2

m

)
Cml

)
DH
kl

)−1
Dkl ĝkl . (31)

B. INSIGHTS INTO THE DECENTRALIZED MMSE FILTER
In what follows, we draw insights into the derived local
MMSE filter expression to study the impact of the major
parameters and scenarios that affect the receiver’s perfor-
mance for the cases with a selected AP, PCSI, and different
number of iterations. When the local AP is selected with all
its antennas, the selection matrix Dkl = IN . The local filter
in (31) is

wkl = ρk

(
ρk ĝkl ĝHkl + Ĝil1ilĜH

il

+

(
K∑
m=1

(
| sm |2 +σ 2

m

)
Cml + σ 2IN

))−1
ĝkl .

(32)

Assuming PCSI, the fourth term in (31) vanishes to zero, and
we obtain the filter given by

wkl = ρk

(
ρkDklgklgHklD

H
kl + DklGil1ilGH

il D
H
kl

+ σ 2DklIN D̃H
kl

)−1
gklDkl . (33)
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In the first iteration, s̄i = 0 in (8), which yields the linear
MMSE filter and the estimated signal in (25) given by

s̃kl = ρk ĝHklD
H
kl

(
Dkl

(
ρk ĝkl ĝHkl + Ĝildiag (ρ) ĜH

il

+

K∑
m=1

(
| s̄m |2 +σ 2

m

)
Cml + σ 2IN

)
DH
kl

)−1
yl,

(34)

where the parameter ρ denotes the average transmit power
vector for the other K − 1 UEs. The mean symbol s̄i ≈ si
in (8) increases as the number of iterations increases. Thus,
the filter becomes a perfect interference canceler. (25) yields

s̃kl = ρk ĝHklD
H
kl

(
Dkl

(
ρk ĝkl ĝHkl +

K∑
m=1

| sm |2 Cml

+ σ 2IN

)
DH
kl

)−1 (
yl − DklĜilsi

)
. (35)

The derived MMSE-SIC filters in (18) and (31) experience
error propagation at each sequential step. In what follows,
we describe the proposed list-based detector that is capable
of suppressing the error propagation that occurs at each
cancellation step.

V. PROPOSED LIST-BASED DETECTOR
In this section, we detail the proposed list-based detection
scheme shown in Figure 3, which is similar to the one adopted
in our previous papers [32], [33].

FIGURE 3. Block diagram of the proposed list-based detector.

The design takes advantage of list feedback (LF) diversity
by selecting a list of constellation candidates if there is the
unreliability of the previously detected symbols [32], [33].
A shadow area constraint (SAC) is employed to obtain an

optimal feedback candidate. The SAC is capable of reducing
the search space from exponentially growing as well as
reducing computational complexity. The key idea of such
a selection criterion is to avoid redundant processing when
there is a reliable decision. The procedure for obtaining the
detected symbol ŝk of the k-th user is analogous to the steps
presented in [22], [32], [33]. The k-th user soft estimate is
obtained by uk = wH

k Dk y̌k . The filter wk is the receive
MMSE filter described in (15) and later in (28). The residual
signal y̌k = y −

∑k−1
t=1 ĝt ŝt is the received vector following

the soft cancellation of the k−1 symbols that were previously
detected. The SAC assesses the reliability of this decision
using the soft estimate uk for each layer according to

dk = |uk − νf |, (36)

where νf = argminνf∈A
{
|uk − νf |

}
denotes the closest

constellation point to the k-th user soft estimate uk . If dk >

dth, the chosen constellation point gets dumped into the
shadow area of the constellation map since the choice is
deemed to be unreliable. The parameter dth is the predefined
threshold on the Euclidean distance to ensure the reliability
of the selected symbol [32], [33]. The list-based algorithm
performs hard slicing for UE k as in the soft-IC if the soft
estimate uk is reliable. In this case, ŝk = Q(uk ) is the
estimated symbol, where Q(·) is the quantization notation
which maps to the constellation symbol closest to uk .

Otherwise, the decision is deemed unreliable, and a
candidate list L = {c1, c2, . . . , cm, . . . , cM } ⊆ A is
generated, which is made up of the M constellation points
that are closest to uk , where M ≤ 2Mc . The algorithm
selects an optimal candidate cm,opt from a list ofL candidates.
Thus, the unreliable choice Q(uk ) is replaced by a hard
decision, and ŝk = cm,opt is obtained. The list-based detector
first defines the selection vectors φ1,φ2, . . . ,φm, . . .φM

whose size is equal to the number of the constellation
candidates that are used every time a decision is considered
unreliable. For example, for the k-th layer, a K × 1 vector

φm =
[
ŝ1, . . . , ŝk−1, cm, φmk+1, . . . , φ

m
q , . . . , φmK

]T
which

is a potential choice corresponding to cm in the k-th
user, comprises the following items: (a) the previously
estimated symbols ŝ1, ŝ2, . . . , ŝk−1; (b) the candidate symbol
cm obtained from the constellation for subtracting a decision
that was considered unreliable Q(uk ) of the k-th user; (c)
using (a) and (b) as the previous decisions, detection of the
next user data k+1, . . . , q, . . . ,K -th is performed by the soft-
IC approach. Mathematically, the choice φm is given by [33]

φmq = Q(wH
q ŷ

m
q ), (37)

where the index q denotes a UE between the k + 1-th and
the K -th UE, ŷmq = y̌k − Dk ĝkcm − Dk

∑q−1
p=k+1 ĝpφ

m
p .

A key attribute of the list-based detector is that the same
MMSE filter wk is used for all the constellation candidates.
Therefore, it has a computational cost that is close to that
of the conventional soft-IC. The optimal candidate mopt is
selected according to the local maximum likelihood (ML)
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rule given by

mopt = arg min
1≤m≤M

∥∥∥Dky− DkĜφm
∥∥∥2
2
. (38)

The derived centralized and decentralized filters suffer from
interference due to the other K − 1 users, channel estimation
errors, and AWGN noise. This makes the derived filters
non-Gaussian because the output of a Gaussian filter should
be Gaussian for a Gaussian input. In the next section,
we approximate the filters to be Gaussian by computing the
mean and variances, present the LLR processing schemes,
perform signaling and computational complexity analysis,
and explain the considered decoding algorithm.

VI. ITERATIVE PROCESSING AND REFINEMENT
This section presents the iterative processing of the IDD
schemes for the studied MMSE-based detectors, which
employ a detector and an LDPC decoder, and the proposed
LLR refinement techniques. The received signal at the output
of the receive filter contains the desired symbol, MUI, and
noise. The parameter uk in Figure 3 is assumed to be an output
of an AWGN channel [24], [32] given by

uk = ωksk + zk , (39)

where E{s∗kuk} = ρkwH
k D̃k ĝk and E{s∗kukl} = ρkwH

kl D̃kl ĝkl
are for the centralized and decentralized schemes, respec-
tively. The parameter zk is a zero-mean AWGN variable.
Using similar procedures as in [24], [32], the variance κ2 of
zk is computed by κ2

= E
{
| uk − ωksk |2

}
:

κ2
= wH

k Dk

(
Ĝi1iĜH

i +

K∑
m=1

ρmCm + σ 2INL

)
DH
k wk ,

(40)

and

κ2
l = wH

klDkl

(
Ĝil1iĜH

il +

K∑
m=1

ρmCml + σ 2IN

)
DH
klwkl,

(41)

are for the centralized and decentralized schemes, respec-
tively.
Detailed derivations of (40) and (41) are presented in

Appendices C and D for centralized and decentralized pro-
cessing schemes, respectively. The extrinsic LLR computed
by the detector for the l-th bit l ∈ {1, 2, . . . ,Mc} of the
symbol sk [32], [33] is given by

3e
(
b(k−1)Mc+l

)
=

logP
(
b(k−1)Mc+l = +1|uk

)
logP

(
b(k−1)Mc+l = −1|uk

) − logP
(
b(k−1)Mc+1 = +1

)
logP

(
b(k−1)Mc+1 = −1

)
= log

∑
s∈A+1l

f (uk |s)P (s)∑
s∈A−1l

f (uk |s)P (s)
−3i

(
b(k−1)Mc+l

)
, (42)

where the last equality of (42) follows from Bayesian rule.
The parameter A+1l is the set of 2Mc−1 hypotheses for which

the l-th bit is +1. The a-priori probability P(s) is given
by (9). The approximation of the likelihood function [32],
[33] f (uk |s) is given by

f (uk |s) ≃
1

πκ2 exp
(
−

1
κ2 |uk − ωks|2

)
. (43)

After local processing, the CPU has to perform final
decisions by using the LLRs from the different APs. This is
accomplished by proposing three LLR processing strategies
presented as follows:

A. STANDARD LLR PROCESSING
In this strategy, each AP computes the BER based on
decisions from its LLRs. After obtaining the BER from each
AP, an average BER is calculated for the entire network.
However, such an approach yields poor results, as some
APs have very unreliable LLRs for particular UEs. We then
discuss two proposed strategies to improve the performance
of local detectors.

B. LLR CENSORING
In this subsection, we present an LLR censoring technique
that helps to reduce the redundant processing of LLRs at the
CPU. First, the independent streams of LLRs are sent from
the APs to the CPU with dimensions KCleng. At each AP,
we compute the mean absolute value of the LLRs, which is
given by

µ3kl,e =
1

Cleng

Cleng∑
c=1

|3l,e|. (44)

Based on µ3kl,e , the UE is decoded at the AP when this
parameter is highest and the other LLRs are discarded. This
is done for all APs, and a new matrix3new

k,e with the censored
LLRs is formed and used in performing final decoding. The
LLR censoring strategy is summarized in Algorithm 1.

Algorithm 1 Algorithm for Censoring Local LLRs

3e ∈ CKClengL , 3new
k,e = 0KCleng

for l=1 to L do
for k=1 to K do

if µ3kl,e ≥ max
(
µ3k,e

)
then

3new
k,e = 3kl,e

else
Continue

end if
k ← k + 1

end for
l ← l + 1

end for
Output 3new

k,e

C. LLR REFINEMENT
We propose an LLR refinement strategy that computes
the linear summation of the multiple streams of LLRs
obtained from the locally computed joint IDD detectors.
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Mathematically, the refined combination of LLRs at the CPU
is given by

3avg,e
(
b(k−1)Mc+l

)
=

L∑
l=1

3l,e
(
b(k−1)Mc+l

)
. (45)

The idea of combining multiple streams of LLRs creates
some diversity benefits from the LLRs and yields some
performance improvement in the network. Another key
advantage of decentralized processing is that each AP has
accurate channel estimates; thus, it is better to perform the
detection locally than at the CPU. The mean of the refined
LLRs is given by

E[3avg,e
(
b(k−1)Mc+l

)
] =

L∑
l=1

E[3l,e
(
b(k−1)Mc+l

)
], (46)

= µ3avg,e , (47)

where E[3l,e
(
b(k−1)Mc+l

)
]→ 0 since

E[3l,e
(
b(k−1)Mc+l

)
] = log

∫
3l,e

(
b(k−1)Mc+l

)
× p3l,e|H0d3l,e,

= log
∫

p3l,e|H1

p3l,e|H0

p3l,e|H0d3l,e = 0,

where p3l,e|H1 is the conditional probability density function
(pdf) of the LLR of stream l given bit 1 and p3l,e|H0 is the
conditional pdf of the LLR given bit 0. The variance of the
refined LLRs is given by

σ 2
3avg,e

= E[
(
3avg,e

(
b(k−1)Mc+l

)
− µ3avg,e

)2]
=

1
L

L∑
l=1

(
(3avg,e

(
b(k−1)Mc+l

)2
−

L∑
n=1

3n,e
(
b(k−1)Mc+l)

)
.

This suggests that the refinement benefits come from
enhancing the quality of the LLRs through their variance
reduction, which shifts the LLRswith small values away from
the origin.

D. COMPUTATIONAL COMPLEXITY
We consider the worst-case with all APs to assess the
computational complexity of obtaining the studied detection
schemes. A key observation from the derived expressions is
that decentralized detection reduces the complexity at the
CPU in terms of computations since each AP locally detects
its signal based on the available channel estimates, i.e., local
detection only requires N × N matrix inversions. On the
other hand, NL × NL matrix inversions are required for the
centralized processing scenario since all the combined signal
is detected as a whole at the CPU, which increases the com-
plexity of the detectors. However, the CPU is designed to have
high processing power to handle such complexity [1], [2].
A detailed complexity analysis for the considered detectors

TABLE 1. Computational complexity per detector.

can be found in Table 1. It can be observed that the
computational complexity of the decentralized and central-
ized detectors is of the order O(N 2LK ) and O(N 2L2K ),
respectively. Where O(·) is the big O notation.

E. SIGNALING ANALYSIS
In CF-mMIMO, the APs detect the signals locally or delegate
the task fully or partially to the CPU. However, there should
be a tradeoff between the required front-haul signaling
amount and detection performance [1]. Both the centralized
and the decentralized processing require

(
τc − τp

)
N scalars

for the uplink received data and τpN complex scalars for
the pilot sequences. Additionally, the centralized processing
requires the KLN 2

2 -dimensional spatial correlation matrix�kl .
For decentralized processing, the CPU does not require any
statistical parameters for the spatial correlation matrix since
the local channel estimates exist at the APs. However, the
CPU should know the KClengL-dimensional matrix of the
LLRs in (45) to compute the average, where Cleng is the code
word length. Thus, the signaling is summarized in Table 2 and
is analogous to the one in [1], with additional knowledge of
the dimension of the LLR matrix for the final decoding of the
LLRs received from local processors.

TABLE 2. Number of complex sequences to share via fronthaul
connections, from APs to CPU.

F. DECODING ALGORITHM
The proposed detectors and the decoder iteratively exchange
soft beliefs. The tangent function degrades the performance
of the conventional sum-product algorithm (SPA), especially
in the error-rate region [33]. Since the box-plus SPA produces
less complex approximations, we use it in this paper [32],
[33]. The single parity check (SPC) stage and the repetition
stage are two steps that make up the decoder. The LLR sent
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from check node (CN )J to variable node (VN )i is computed
as

3j−→i = ⊞i′∈N (j)⧹i3i′−→j , (48)

where ⊞ denotes the pairwise ‘‘box-plus’’ operator given by

31 ⊞ 32 = log
(
1+ e31+32

e31 + e32

)
, (49)

= sign(31)sign(32) min(|31| , |32|)

+ log
(
1+ e−|31+32|

)
− log

(
1+ e−|31−32|

)
.

(50)

The LLR from VNi to CNj is given by

3i−→j = 3i +
∑

j′∈N (i)\j

3j′−→i, (51)

where the parameter 3i denotes the LLR at VNi, j′ ∈ N (i)\j
means that all CNs connected to VNi except CNj

VII. SIMULATION RESULTS
In this section, the bit error rate (BER) performance of the
proposed soft detectors is presented for the CF-mMIMO
settings. The CF-mMIMO channel exhibits high PL values
due to LS fading coefficients. Thus, the SNR is expressed by

SNR =

∑L
l=1(Gl diag (ρ)GH

l )

σ 2
wNLK

. (52)

The simulation parameters are varied according to Table 3,
unless stated otherwise.

TABLE 3. Simulation parameters.

Network Setup, Assumptions and Remarks: We con-
sider a cell-free environment with a square of dimensions
D × D. The spatial correlation matrices �jl are assumed

to be locally available at the APs, and their entries are
generated using the Gaussian local scattering model [2], [36]
with an angular standard deviation defined in Table 3. The
modulation scheme used is QPSK. The LS fading coefficients
are obtained according to the 3rd Generation Partnership
Project (3GPP) Urban Microcell model in [2] given by

βk,l [dB] = −30.5− 36.7 log10

(
dkl
1m

)
+ ϒkl, (53)

where dkl is the distance between the k-th UE and l-th AP,
ϒkl ∼ N

(
0, 42

)
is the shadow fading. We believe that the

considered propagation channel model is sufficiently general
to allow simple changes and assessments of line of sight
(LoS), pathloss, and shadowing distributions for evaluating
CF-mMIMO networks, as recommended in the literature for
microcell scenarios [2]. The simulation results are based on
single antenna UEs for simplicity of analysis, the test of
ideas, and to allow a shorter simulation time. However, this
can be extended to multiple antenna UEs to fully address
the most practical systems. Note should also be taken that
the considered scenarios and network settings in terms of
codeword length, number of APs, and antennas provide rea-
sonably acceptable performances in terms of BER. However,
improvements in the BER can be obtained by using longer
channel codes and increasing the number of APs and antennas
in the network at the expense of increased complexity.

In Table 4, we provide numerical values for the number
of multiplications that should be done per iteration for each
detector for different numbers of UEs K , APs L and APs
antennas N . It can be seen that the linear MMSE-based
receivers have low complexity values as compared to the SIC
and list-based receivers. Also, it is noteworthy that decentral-
ized receivers have lower complexity values as compared to
centralized receivers. Nevertheless, the proposed list-based
receivers achieve costs that are slightly higher than those of
the SIC-based receivers. However, using list-based detection
improves performance, as shown in the numerical results.

TABLE 4. Cost in number of multiplications for the detectors.

Figure 4 presents the BER versus the SNR for the cases
(a) before LLR refinement (w/o-LLR-Ref) and (b) after LLR
refinement (w-LLR-Ref) for the studied detectors. It can be
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FIGURE 4. BER versus SNR while comparing detectors for decentralized
processing for L = 4, N = 4, K = 4: (a) Before LLR Refinement and
(b) After LLR Refinement.

noticed that there is a significant reduction in the BER for
the case with LLR refinement as compared to the scenario
without LLR refinement. This performance improvement is
attributed to the linear combination of the multiple streams
of LLRs from the different APs, which improves their
reliability by shifting the LLRs with small values away
from the origin. Secondly, some benefits arise due to the
diversity of LLRs, which improves the system performance,
whereas in the w/o-LLR-Ref case, the hard decisions are
made based on the individual APs LLRs, and later an average
BER is obtained. This naive approach leads to performance
degradation as some APs have very unreliable estimates
and hence poor LLRs. Thus, hard decisions made on LLRs
from such APs compromise the entire network performance.
Additionally, the figure compares the case with perfect CSI
(PCSI) and imperfect CSI (ICSI). It can be observed that
the detection based on the PCSI achieves lower BERs as
compared to the case with the ICSI. This is because the
channel estimation error and pilot contamination degrade the
network performance, resulting in high BERs. Another key
observation is that the proposed list-based detector achieves
lower BER values than the SIC detector. This is because the
convention SIC experiences error propagation that occurs due
to erroneous decisions in the previous cancellation stages.
To overcome this issue and improve performance, list-based
detection provides multi-feedback (MF) diversity that helps
to correct this error propagation as the number of iterations
increases. Note also that the linear MMSE receiver has the
worst performance among the studied detectors since it does
not have the 1i matrix used for interference cancellation.

A comparison of the centralized and decentralized pro-
cessing schemes in terms of BER versus SNR is presented
in Figure 5. The results show that the case with centralized
processing achieves lower BER values than the case with
decentralized processing. This is because centralized pro-
cessing takes the joint detection of all the received signals
into account. Also, the case w/o-LLR-Ref achieves the worst
performance since each AP performs its hard decisions
locally based on the available LLRs and an average BER
is obtained for the entire network, which yields a huge
performance gap and degradation. The case w-LLR-Ref

FIGURE 5. BER versus SNR for All APs comparing decentralized and
centralized processing for the case with imperfect CSI with L = 4,
K = 4, N = 4, IDD = 2.

FIGURE 6. BER versus SNR for All APs comparing LLR Censoring and LLR
Refinement for decentralized processing for the case with imperfect CSI
with L = 4, K = 4, N = 4, IDD = 2.

outperforms the standard processing scheme since it takes
advantage of LLR combining. This yields more reliable
LLRs around the mean, which improves performance. This
performance improvement is significant for CF-mMIMO
architectures as it can yield less complex solutions in uplink
detection schemes, i.e., for the decentralized processing, there
is a substantial reduction in the computation complexity and
the fronthaul signaling load in the network, as shown in
Tables 1 and 2, respectively.

Figure 6 shows the BER versus SNR for the decentralized
processing cases using w-LLR-Ref and LLR-Censoring. It is
clear that the case using LLR refinement has a lower BER
than the one using LLR censoring. The UE can only be
decoded at the AP, achieving the highest mean absolute value
when LLR censoring is used. In contrast, LLR refinement
enhances performance by performing a linear combination
of the LLRs from all APs. Nonetheless, censoring LLRs
prevents the redundant processing of the LLRs. The only
difficulty that might arise is a slight increase in the hardware
complexity of the receiver design since the CPU must
constantly scan all the APs to identify the one that offers the
largest absolute value of LLRs to a specific UE. However,
the CPU is usually designed with strong computing power,
so it can handle such complexity. One could interpret the
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FIGURE 7. BER versus SNR for a case that uses All APs and a case that
uses APs-Sel for L = 4, N = 4, K = 4: (a) Centralized Processing and
(b) Decentralized Processing.

FIGURE 8. BER versus SNR while varying number of IDD iterations for
L = 4, N = 4, K = 4: (a) SIC and (b) List-SIC.

proposed LLR censoring and refinement as analogous to
the selection combining and maximal ratio combining used
in diversity analysis. However, the former leverages the
distributed computation of LLRs from each AP, and therefore
it should not be confused with the latter schemes.

Figure 7 plots the BER versus SNR for the case that
the detectors use all APs (All-APs) and the case that
uses APs selection (APs-Sel) with (a) centralized and (b)
decentralized processing schemes. It can be observed that for
both processing levels, the system that uses All-APs achieves
lower BER values as compared to the one that selects the APs.
This is because selecting APs reduces the number of antennas
in the network, distorting the performance. However, APs-
Sel reduces the signaling load, making the network more
scalable and practical. Moreover, the distributed location, the
delay spread of theAPs, and the associated signal propagation
latency will limit the APs involved in cell-free MIMO
systems. Therefore, APs-Sel techniques are key to reducing
fronthaul signaling, computational costs, and latency.

The BER versus SNR of the detectors while varying the
number of outer iterations for the detectors is presented in
Figure 8. From the curves, it can be noticed that increasing the
number of iterations reduces the BER. Specifically, for both
centralized and decentralized (a) SIC and (b) List-SIC, there
is a significant performance improvement when the number
of iterations is increased from 1 to 2 iterations for both

FIGURE 9. Number of multiplications versus number of UE K and number
of APs L (a) Computational complexity for L = 50, Mc = 2, N = 4 and
(b) Signaling load for K = 4, N = 8.

detectors. However, after the third iteration, the performance
benefits are marginal.

Figure 9 (a) plots the computational complexity versus the
number of UEs K while considering the studied detectors for
centralized and decentralized processing. It can be observed
that the linear MMSE detectors have the lowest computation
complexity for both cases. The list-based detectors have
slightly higher computation complexity than the SIC-based
detectors. It is worth mentioning that the differences in
computational complexity between SIC and List-SIC are
marginal, whereas centralized detectors have a higher com-
putation cost than decentralized detectors. The signaling load
is given by the number of complex scalars that must be
exchanged in the network, which is shown in Figure 9 (b) for
the centralized and decentralized CF-mMIMO setups. From
the curves, it can be noticed that decentralized processing
requires less signaling between the APs and CPU than
the centralized setup. The decentralized processing requires
knowledge of the KClengL-dimensional matrix of the LLRs
from all APs to perform the final processing. Nevertheless,
decentralized schemes greatly reduce the required signaling
in the network and can achieve close performance to that of
centralized processing while using LLR refinement.

VIII. CONCLUSION
In this paper, an IDD scheme using LDPC codes has been
devised with AP selection for centralized and decentralized
CF-mMIMO architectures. In particular, we have proposed
low-complexity interferencemitigation techniques, including
a list-based detector that uses an MMSE receive filter
to improve performance. New closed-form expressions for
the MMSE-soft-IC detectors have been derived for both
the centralized and decentralized implementations, taking
channel estimation errors and AP selection into account. The
performance of the proposed list-based detector is compared
with other baseline detectors, such as the soft linear MMSE
and MMSE-SIC, and the results show that the list-based
detector yields low BER values compared to the other
detectors. We also proposed LLR refinement strategies based
on combining and censoring LLRs. The results have shown
that LLR refinement strategies obtained lower BER values
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than standard processing. The proposed scalable APs-Sel
scheme based on LLSF coefficients can reduce the signaling
load between APs and the CPU, resulting in a trade-off
between performance, signaling load, and network feasibility.

APPENDIX A
DERIVATION OF THE PROPOSED CENTRALIZED
DETECTOR
We start our analysis by expressing the conditional expecta-
tion on the RHS of (13) as

F = E
{
||s̃k − sk ||2 | Ĝ

}
= E

{
(s̃k − sk) (s̃k − sk)

∗
| Ĝ
}
.

(54)

Substituting (12) into (54) yields

F = wH
k DkE

{(
y− Ĝis̄i

) (
yH − s̄Hi Ĝ

H
i

)}
DH
k wk

− wH
k DkE

{(
y− Ĝis̄i

)
s∗k
}
− E

{
sk
(
yH − ¯sHi Ĝ

H
i

)}
× DH

k wk + E
{
sks∗k

}
. (55)

Further simplification of (55) can be done by letting yR =
y− Ĝis̄i. Thus, (55) can be re-written as

F = wH
k DkE

{
yRyHR

}
DH
k wk − wH

k DkE
{
yRs∗k

}
− E

{
skyHR

}
DH
k wk + E

{
sks∗k

}
. (56)

Differentiating (56) with respect to w.r.t wH
k we obtain

∂F

∂wH
k

= DkE
{
yRyHR

}
DH
k wk − DkE

{
yRs∗k

}
. (57)

The optimal MMSE filter is obtained by equating (57) to 0.
Thus, the optimal MMSE filter wk is given by

DkE
{
yRyHR

}
DH
k wk − DkE

{
yRs∗k

}
= 0. (58)

The reader can confirm that (58) is the same as (14).
By making wk the subject of (58), we obtain (15). The terms
E{yRs∗k} and E{yRyHR } are given by (16) and (17), where
E
{
sms∗m

}
= |sm|2 + σ 2

m, E
{
g̃mg̃Hm

}
= Cm, E

{
nnH

}
=

σ 2INL , E
{
sksHk

}
= ρk , obtained after assuming statistical

independence between each term in the RHS of (11) and
using the orthogonality principle [35]. By substituting (16)
and (17) into (15), we arrive at the centralized MMSE filter
given by (18).

APPENDIX B
DERIVATION OF THE PROPOSED DECENTRALIZED
DETECTOR
The derivation of the proposed local MMSE filter is similar
to that of Appendix A. The expectation on the R.H.S of (26)
can be expressed as

F2 = E
{
||s̃kl − sk ||2 | Ĝl

}
= E

{
(s̃kl − sk) (s̃kl − sk)

∗
| Ĝl

}
. (59)

By substituting (25) into (59) we obtain

F2 = E
{(

wH
klDklyRl − sk

) (
wH
klDklyRl − sk

)∗}
. (60)

The term yRl is the residue signal obtained after soft-IC and
substituting for yl in the term in brackets of (25), we get

yRl = ĝklsk + Ĝil (si − s̄i)+
K∑
m=1

g̃mlsm + nl . (61)

After some mathematical and algebraic manipulations, (60)
can be re-written as

F2 = wH
klDklE

{
yRlyHRl

}
DH
klwkl − wH

klDklE
{
yRls∗k

}
− E

{
skyHRl

}
DH
klwkl + E

{
sks∗k

}
(62)

We take the first derivative of (62) w.r.t wH
kl to arrive at

∂F2
∂wH

kl

= DklE
{
yRlyHRl

}
DH
klwkl − DklE

{
yRls∗k

}
. (63)

After equating the resulting expression in (63) to 0, we obtain

DklE
{
yRlyHRl

}
DH
klwkl − DklE

{
yRls∗k

}
= 0. (64)

The optimal local MMSE filter wkl can be obtained
from (64). The terms E

{
yRlyHRl

}
and E

{
yRls∗k

}
can be

obtained from (29) and (30), respectively, where the terms
E
{
g̃ml g̃Hml

}
= Cml and E

{
nlnHl

}
= σ 2IN , by taking

assumptions similar to those in Subsection A.

APPENDIX C
DERIVATION OF THE SOFT DEMAPPER PARAMETERS FOR
CENTRALIZED PROCESSING
We start the proof by making some assumptions on the output
of the MMSE filter to be a Gaussian approximation. The
optimal soft bit metric which takes into account the channel
estimation error and APs-Sel can be derived as below. Let k
denote the desiredUEwhichminimizes themean square error
(MSE). Then, (12) can be expressed as

s̃k = wH
k Dky− wH

k DkĜis̄i. (65)

By substituting (11) into (65) we obtain

s̃k = wH
k Dk ĝksk + wH

k DkĜi (si − s̄i)+ wH
k Dk

K∑
m=1

g̃msm

+ wH
k Dkn. (66)

By comparing (66) with (39), it can be observed that

ωk = wH
k D̃k ĝk ,

(67)

and the interference-plus-noise term is given by

zk = wH
k DkĜi (si − s̄i)+ wH

k Dk

K∑
m=1

g̃msm + wH
k Dkn.

(68)
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By assuming that zk is a Gaussian random variable [13] and
assuming statistical independence of each term of (68), the
variance κ2

= E
{
| uk − ωksk |2

}
= E

{
zkz∗k

}
of zk is given

by

κ2
= wH

k Dk

(
Ĝi1iĜH

i +

K∑
m=1

ρmCm + σ 2INL

)
DH
k wk .

(69)

By substituting (67) and (69) into (43), the soft beliefs for
the centralized processor can be obtained in each subsequent
iteration.

APPENDIX D
DERIVATION OF THE SOFT DEMAPPER PARAMETER FOR
DECENTRALIZED PROCESSING
We also start by assuming that the output of the MMSE-SIC
filter is a Gaussian random variable. We then derive the local
optimal soft bit metric which takes the APs-Sel matrix, and
channel estimation error as follow Let k denote the desired
UE which minimizes the mean square error (MSE). Then,
(12) can be expressed as

s̃k = wH
klDklyl − wH

klDklĜil s̄i. (70)

By substituting (24) into (70) we obtain

s̃k = wH
klDkl ĝklsk + wH

klDklĜil (si − s̄i)+ wH
klDkl

K∑
m=1

g̃mlsm

+ wH
klDklnl . (71)

By comparing (71) with (39), it can be observed that

ωkl = wH
kl D̃kl ĝkl, (72)

and the interference-plus-noise term is given by

zkl = wH
klDklĜil (si − s̄i)+ wH

klDkl

K∑
m=1

g̃mlsm + wH
klDklnl .

(73)

By assuming that zkl is a Gaussian random variable [13] and
assuming statistical independence of each term of (73), the
variance κ2

l = E
{
| ukl − ωklsk |2

}
= E

{
zklz∗kl

}
of zkl is

given by

κ2
l = wH

klDkl

(
Ĝil1ilĜH

il +

K∑
m=1

ρmCml + σ 2IN

)
DH
klwkl .

(74)

By substituting (72) and (74) into (43), the soft beliefs for the
lcoal processors can be obtained in each subsequent iteration
at each AP.
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