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ABSTRACT Fabric defect detection is a crucial step of quality control in textile enterprises. The use of
computer vision inspection technology in the textile industry is key to achieving intelligent manufacturing.
This study sought to determine the progress made and future research directions in intelligent fabric surface
defect detection by comprehensively reviewing published literature in terms of algorithms, datasets, and
detection systems. Initially, the detection methods are classified as traditional and learning-based methods.
The traditional methods are subdivided into model, spectral, statistical, and structural approaches. Learning-
based methods are categorized into classical machine learning methods and deep learning methods. The
principles, model performance, detection rate, real-time performance, and applicability of deep learning
methods are highlighted and compared. In addition, the strengths and weaknesses of all the approaches are
elaborated. The use of fabric defect datasets and deep learning frameworks is analyzed. Public datasets and
commonly used frameworks are collated and organized. The application of existing fabric inspection systems
on the market is outlined. Fabric defect types are systematically named and analyzed. Finally, future research
directions are discussed to provide guidance for researchers in related fields.

INDEX TERMS Computer vision inspection, deep learning, fabric defect detection, machine learning.

I. INTRODUCTION
Computer vision is crucial in quality control in the automa-
tion industry. It has been successfully applied to inspect
defects, such as the size, shape, and other characteristics of
industrial products. Textile manufacturing involves compli-
cated procedures including spinning, weaving, and finishing.
Textile product quality is influenced by some factors such as
rawmaterials, equipment, operating procedures, and environ-
mental conditions. These factors can lead to varying degrees
of damage or defects in the fabric, such as holes, broken
yarns, and incorrect patterns [1]. These defects not only
impact the quality and appearance of fabrics but also result
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in significant resource waste, increased production costs,
reduced market competitiveness, and substantial economic
losses.

Traditional fabric defect detection is mainly manual which
suffers from many problems. The accuracy of manual detec-
tion is only 60-75% [2]. Small defects are often overlooked,
resulting in significant product price reductions. In addition,
visual fatigue among workers can occur after extended peri-
ods of work. In contrast, computer vision-based inspection
addresses these problems and facilitates high-speed, efficient,
and precise detection of fabric defects [3].
With the rapid development and application of com-

puter vision technology, intelligent textile defect detection
has experienced the transformation from traditional manual
detection to automated detection. Using computer vision
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technology, textiles can be detected and classified with high
speed, high efficiency, and high precision, and this greatly
improves production efficiency and product quality. Com-
pared with manual defect detection, intelligent textile defect
detection has fewer errors and lower cost and improves the
safety and stability of the production line. However, despite
progress in intelligent fabric defect detection technology, sev-
eral challenges and issues remain, primarily in the following
aspects:

1) Insufficient datasets. Intelligent detection of fabric
defects requires a large number of labeled datasets for
model training. However, publicly available datasets
are limited in quality, which can restrict the accuracy
and the ability of models to generalize.

2) Complex defects. Fabrics can exhibit a wide range
of detects with complex morphologies. Some defects
such as yarn breakages, wrong yarns, and holes, are
challenging to distinguish.

3) Inadequate detection speed and efficiency. There is
a high demand for enhanced speed and efficiency in
automatic defect detection, particularly for high-speed
production line applications that require faster detec-
tion speed and higher efficiency.

4) Higher costs. Implementing intelligent fabric defect
detection requires substantial investments in hardware
and manpower, leading to increased costs. This may
present challenges for some companies in terms of
affordability.

To examine the above four challenges for the intelligent
detection of fabric defects and identify further directions
of research. Algorithms are suggested for researchers, and
deployment problems are addressed for practitioners. Below
is a summary of the main contributions of this article:

1) Provides a general overview of fabric defect detection
algorithms, with emphasis on the latest research find-
ings in deep learning approaches.

2) Compares the strengths, weaknesses, and applications
of existing deep learning methods, and a quantitative
comparison of detection effectiveness of deep learning
methods.

3) Summarizes and collates commonly used open datasets
of fabric defects and defect types.

4) Introduces the implementation of various detection
systems.

The rest of the article is structured as follows, Section II
specifies the methodology of the systematic review used.
Section III reviews the progress of research on fabric fault
detection algorithms using traditional methods. Section IV
focuses on recent research on fabric defect detection using
learning-based methods. Section V outlines relevant appli-
cations for fabric defect detection, including a collection of
12 commonly used open datasets of fabric defects and a
comparison of the strengths and weaknesses of commonly
used fabric inspection machines. Section VI summarizes and
discusses the strengths and weaknesses of the methods in the

literature. Finally, section VII presents a future outlook for
textile defect detection.

II. METHODOLOGY
To address the aforementioned challenges in intelligent fab-
ric defect detection and explore future research directions,
we followed the preferred reporting items for systematic
reviews and meta-analyses (PRISMA) guidelines to conduct
a comprehensive literature search and improve the rigor of
the review process. This allowed us to conduct a thorough
literature search and enhance the robustness of the review
process. Our study employed the systematic literature review
(SLR) approach as outlined by Kitchenham, which involves
collecting, critically evaluating, integrating, and presenting
the findings of multiple studies on a specific research ques-
tion or related topic. The steps of the SLR approach are
detailed below.

A. RESEARCH QUESTIONS
To clarify the scope and objectives of this paper, we first pose
the following questions for this review:

RQ1 What is the most frequently used defect type for
fabric detection?

RQ2 What are the most commonly used publicly avail-
able fabric defect datasets?

RQ3 In what ways are deep learning methods effective in
detection compared to traditional methods?

RQ4 What are the differences in detection perfor-
mance between supervised, unsupervised, and
semi-supervised learning methods?

RQ5 What are the strengths and weaknesses of two-stage
and one-stage object detection algorithms, respec-
tively?

B. SEARCH PROCESS
Establish the initial structure of the article and identify rel-
evant keywords. Based on the literature review conducted
by previous researchers, fabric defect detection algorithms
are classified into traditional and learning based methods,
with a focus on the topic of ‘‘fabric defect detection method
based on computer vision inspection’’. The literature on tradi-
tional methods is analyzed following the same organizational
structure as Hanbay et al. [4]. Relevant keywords include
‘‘model-based’’, ‘‘spectral-based’’, ‘‘statistical-based’’, and
‘‘structural-based’’. The keywords ‘‘machine learning’’ and
‘‘deep learning’’ were used for the literature on learning-
based methods. Initially, we searched for the topic ‘‘fabric
defect detection method based on computer vision inspec-
tion’’ and then refined the search results by manually
searching for the specified keywords.

C. ELIGIBILITY CRITERIA
Once the search strategy is established, the next step involves
defining inclusion and exclusion criteria for evaluating the
findings.
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FIGURE 1. PRISMA flowchart of the study selection process.

Inclusion criteria:

• Research articles on fabric surface defect detection uti-
lizing computer vision inspection techniques.

• Published scholarly journals, conference papers, and
conference proceedings.

• Journal impact factors and citation rates are relatively
significant.

• Papers retrieved with the keyword ‘‘deep learning’’ are
studies conducted from 2018 to 2023.

• Composed in the English language.
• Complete full-text access is provided.

Exclusion criteria:

• A study focused on applying computer vision to identify
flaws on non-textile surfaces.

• Reviewing survey articles.
• Studies that do not rely on image datasets.
• Conference papers containing only abstracts.

Deep learning methods are the focus of this paper.
We briefly summarize the main development history of tra-
ditional methods, including literature that initially used each

traditional method for fabric defect detection, literature with
outstanding contributions to the detection results, and lit-
erature that uses only traditional methods, excluding the
combination of traditional and deep learning methods. Rep-
resentative literature on classical machine learning methods
is also briefly overviewed. Deep learning methods are the
primary focus of this research, with a selection of papers pub-
lished within the last 6 years to reflect the current dominant
research techniques. This ensures the rigor and value of the
paper.

D. ELIGIBILITY CRITERIA
The study selection process for this review is shown in
Fig. 1. We used four scientific databases, Web of Science,
IEEE Xplore, ScienceDirect, and Springer Link, to identify
805 articles by entering subject terms, and the remaining
345 studies entered the screening stage after excluding dupli-
cate articles in each database, and 93 studies were eventually
selected in the review after screening and analysis according
to the developed inclusion and exclusion criteria.
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FIGURE 2. Traditional methods of fabric defect detection.

The following section of this review provides a detailed
analysis of the methods, underlying models, datasets, types
of defects, and evaluation metrics used in the relevant lit-
erature, based on the exclusion and inclusion criteria of
the reviewed papers. We discuss the underlying models,
enhanced algorithms, and their applications for both tradi-
tional and learning-based methods.

III. TRADITIONAL FABRIC DEFECT DETECTION METHODS
The key to the intelligent detection of textile defects online
lies in the detection algorithm. Numerous related industries
have enhanced the effectiveness of automated textile defect
detection by continuously designing and improving algo-
rithms in the past decades. Currently, available algorithms
for fabric defect detection can be classified into two main
categories namely traditional methods and learning-based
methods. Traditional methods based on image processing
have been developing since the 1980s [5]. Hanbay et al. [4]
classify traditional methods further into four categories:
model approach, spectral approach, statistical approach, and
structural approach. The traditional methods of textile defect
detection are illustrated in Fig. 2.

A. THE MODEL APPROACH
The model approach represents the fabric texture as a random
procedure and assumes that the texture can be considered
as a sample created by this procedure in the image space.
This approach identifies faults by modeling the typical fabric
texture and assessing whether the inspection image adheres to
themodel [6]. Notable approaches in this category include the
Autoregressive model [7] and the Gaussian Markov Random
Field model [8].
The Autoregressive (AR) model is a one-dimensional

model that captures the association between each pixel of the
fabric texture in the image. Alata and Ramananjarasoa [6]
proposed a 2-D Quarter Plane Autoregressive (2-D QP AR)
model based on four predictive supports. It focused on para-
metric modeling of the texture and probabilistic criterion

during parameter estimation. The designed model achieved
a segmentation error rate of 0.357% on images containing
natural textures from the Brodatz album. Based on the theory
that texture periodicity can be used as a fabric quality param-
eter, Vaddin and Subbaraman [9] utilized one-dimensional
DCSFSS data as a signal to conduct experiments on non-
parametric and parametric periodic modeling of plain fabrics.
It proved that the AR (32) models could simulate the fabric
periodicity for the u/v direction of DC Suppressed Fourier
Power Spectrum Sum (DCSFPSS) and finally distinguish
the defective fabrics from the normal plain fabrics. The AR
model has the advantage of low computational requirements,
low complexity, and high accuracy. However, this algorithm
has limitations in detecting a diverse range of defects and
extracting the features of fine defects.

The Gaussian Markov Random Field (GMRF) modeling
algorithmmeasures the density value of an image in a specific
local area by utilizing the dependency between each pixel
and every other pixel in a noiseless fabric image. In 1991,
Cohen et al. [10] used a GMRF model to capture the texture
content of different fabrics and designed a simple ring struc-
ture to compute sufficient statistics to classify it into defective
and non-defective windows by calculating the maximum
likelihood estimate (MLE) of the model parameters in each
window. The proposed means effectively extracts texture
information from a wide range of fabric images. Yang [11]
distinguished between normal fabric texture and statistically
characterized aberrant defective texture using distance statis-
tics constructed from parameters of the GMRF model for
automatic defective fabric detection. However, this algorithm
was not effective for defects with a relatively small area or
impurities that resemble scattering noise. Table 1 provides
a summary of the model-based approaches used for fabric
defect detection.

The model approaches are preferred for fabrics with noise
(such as protruding fibers and brushed surfaces) or fabrics
lacking regular texture and exhibiting randomness. However,
these approaches are more complex and computationally
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TABLE 1. A summary of model approaches.

intensive, making them unsuitable for real-time detection
requirements. In addition, the approaches are less capable of
detecting defects in smaller areas.

B. THE SPECTRAL APPROACH
Approaches based on spectral analysis take advantage of
the strong periodicity in fabric images. These approaches
involve transforming the spatial domain image to the fre-
quency domain image and using an energy criterion for fabric
defect detection [7]. The Fourier Transform [15], Wavelet
Transform [16], andGabor Transform [17] are widely applied
in spectral approaches.

The Fourier transform algorithm is useful for monitoring
the spatial spectrum of fabrics. Defects in fabric images cause
changes in the regular structure, which correspond to changes
in the spectrum at specific frequencies. In 2000, Chan and
Pang [18] proposed a model based on the Fourier spectrum to
understand the relationship between fabric structure (referred
to as the center spatial spectrum) and extracted seven char-
acteristic parameters. The results showed that these seven
parameters can be used to classify the different types of fabric
defects. To address the issue of real-time defect detection,
Pan et al. [19] designed a Fast Fourier Transform (FFT)
algorithm based on Computer Unified Device Architecture
(CUDA). This algorithm employed multithreaded parallel

implementation of the FFT algorithm to detect fabric defects,
which has a four times faster detection rate compared to
the CPU-based FFT algorithm. This algorithm can signifi-
cantly shorten the time of detection on the basis of ensuring
the correct detection rate. The Fourier Transform offers the
advantage of lower computation requirements, but it is con-
strained by the changes in fabric structure. It captures the
global fabric characteristics instead of the local texture. Over-
all, this algorithm is not ideal for detecting small local defects
either.

The Wavelet Transform, on the other hand, can analyze
fabric images at multiple scales and analyze the local infor-
mation of fabric images efficiently. In 1997, Lambert and
Bock [20] applied the multiscale wavelet algorithm to study
the problem of fabric defect localization. They divided the
fabric image into three layers and combined the wavelet coef-
ficients of each layer with a feature vector. This improved the
selectivity of extracting local features and thus enabled defect
detection. In addition, the fast dyadic Wavelet Transform had
low complexity and low computational cost. Combined with
previous research on Wavelet Transforms, Li et al. [21] pro-
posed an improved direct thresholding segmentation method
based on high-frequency coefficients. They utilized the
Wavelet Transform to denoise and reconstruct the image,
and then segmented the new image based on the Gaus-
sian mixture model of the expectation maximization (EM)

VOLUME 12, 2024 63781



P. Guo et al.: Intelligent Quality Control of Surface Defects in Fabrics

algorithm. This algorithm effectively detected and localized
fabric defects on the TILDA Dataset. To address the issue
of multichannel Gabor Wavelet data redundancy and low
arithmetic, Li and Zhou [22] proposed a Defect Direction
Projection Algorithm (DDPA) based on the characteristics
of Gabor Wavelets and Radon Transforms, their experiment
results achieved 96.97% detection accuracy with an average
detection speed of 0.2186s. The designed algorithm struck a
balance between detection accuracy and speed, outperform-
ing other algorithms in the process. The Wavelet Transform
overcomes the limitations of the Fourier Transform, which
relies on univariate representation of signals. It efficiently
acquires fabric image information, making it suitable for local
defect detection. However, the Wavelet Transform may fail
to detect defects in the presence of color changes and edge
smoothing. Furthermore, the choice of wavelet base affects
the detection effectiveness.

The Gabor filter directly segments defects in fabric images
from the filtered images without the need for feature extrac-
tion. In 2002, Kumar and Pang [23] proposed a fabric defect
detection algorithm based on multichannel filtering using
Bernoulli’s rule of combination to fuse different channel
images combinedwith low spatial sampling to perform super-
vised defect detection using optimized Gabor filters. Their
algorithm significantly improved detection performance and
validated a certain level of generalization. To address the
limitations of previous algorithms that could not completely
separate patterns, textures, and defects in fabrics, Zhang and
Tang [24] utilized frequency filtering, the distance match-
ing function and similarity coefficient to achieve automatic
detection to address the difficulty of defect detection in yarn-
dyed fabrics. This algorithm could quickly and accurately
detect different types of defects in different types of patterns.
Kim et al. [25] investigated the complexity and diversity
of fabric pattern defects by optimizing the parameters of
the 2D Gabor filter using a hybrid Beetle Antennae Search
Algorithm (BAS) and Gravitational Search Algorithm (GSA)
method. This created defect-free fabric images that were used
to train themodel in a semi-supervisedmanner. This proposed
algorithm provided a detection rate of 98% and was suitable
for industrial production. The Gabor filter is particularly
suitable for describing and analyzing the texture structure of
fabrics due to its strong practicality. However, selecting the
optimal filter parameters becomes more challenging with the
use of the Gabor Transform. Table 2 provides an overview
of the spectrum-based approaches utilized for fabric defect
detection.

Spectrum approaches effectively detect subtle defects such
as color changes and are not influenced by noise. However,
they can only be applied to fabrics with a high periodicity
in texture and cannot handle fabrics with random textures.
Moreover, the success of these approaches is strongly con-
tingent on the filter bank selection, and they may not
perform effectively when dealing with low-contrast situations
between defective and defect-free areas or when the defects
are very small.

C. THE STATISTICAL APPROACH
Statistical approaches involve the calculation of statistical
properties in both defect-free and defective areas of fabrics
to detect defects. These approaches are simple and easy to
implement, but their results can be influenced by the texture
pattern and shape of the defects, which may make them
unavailable for inspecting small defects [35]. Furthermore,
designing different statistical indicators for defects of varying
complexity can be expensive, and this limits the practical
usefulness of statistical approaches in fabric defect detec-
tion. The commonly used statistical approaches for fabric
defect detection include Histogram Statistics, Gray Level Co-
occurrence Matrix, and Mathematical Morphology.

Histogram Statistics compute gray values to distin-
guish statistical differences between the defective and
non-defective regions in a fabric image. Gao et al. [36] used
straight-line texture features of fabric images to generate
histograms. They extracted characteristic waveforms, and set
the detection threshold λ to identify and locate fabric defects.
Filtering results showed that the eigenvalues of abnormal tex-
ture structures with fabric defects were efficiently identified.
Since the low-rank decomposition method can decompose
an image into redundant parts (background) and sparse
parts (defects), Li et al. [37] developed an effective second-
order direction-aware descriptor called GHOG by combining
Gabor and histogram of gradient-oriented (HOG) features.
They incorporated a spatial pooling strategy based on human
vision mechanisms and constructed a low-rank decomposi-
tion model to accurately localize defects. Compared to other
optimal methods, this approach greatly improved detection
accuracy, detection speed, and adaptive capability. The His-
togram Statistics algorithm offers fast computation speed and
low cost, but it is sensitive to noise and prone to high false
detection rates. Therefore, it is better suited for detecting the
warp and weft defects.

The Gray Level Co-occurrence Matrix (GLCM) calculates
image texture features by analyzing the correlation proper-
ties between two pixels in the image space [38]. In order
to implement Fabric Defect Detection System (FDDS),
Raheja et al. [39] proposed an automatic implementation of
FDDS based on GLCM and compared it with the Gabor
filtering algorithm. The GLCM was utilized to extract the
statistical information of the texture and to map the sig-
nals based on the inter-pixel distance of the texture; on the
other hand, Gabor filters of different scales and orientations
were generated to filter the fabric images. Experimental
results in the same environment showed that the proposed
GLCM algorithm has higher defect detection accuracy and
computational efficiency, with the disadvantage that it only
worked under constant environmental conditions. Arnia and
Munadi [40] used only a limited number of Discrete Cosine
Transform (DCT) coefficients generated byDCT-based Com-
pressed Image (DCTb-I) to calculate energy and contrast.
They specifically selected images with high energy and low
contrast for defect detection. To reduce computational costs,
they substituted the frame grabber with the Moving Picture

63782 VOLUME 12, 2024



P. Guo et al.: Intelligent Quality Control of Surface Defects in Fabrics

TABLE 2. A summary of spectral approaches.

Experts Group (MPEG) encoder for real-time monitoring of
textile defects, including holes, stains, and missed stitches.
Sorting problems with Troso fabrics, Gustian et al. [41] used
the GLCM and the Principle Component Analysis (PCA)
algorithm for feature extraction. The multiclass Support Vec-
tor Machines (SVM) used are Ones Against All (OAA) and
Ones Against One (OAO) with the type of Gaussian kernel
or Radial Basis Function (RBF) as a classification method.
The results showed that the GLCM algorithm is superior
in extracting features for Troso fabrics, achieving accura-
cies of 90% and 86.7% for SVM OAA and SVM OAO
classifications, respectively. However, due to its significant

computational requirements, the GLCM algorithm is gener-
ally unsuitable for analyzing high-resolution fabric images.

Mathematical Morphology has been widely employed in
tasks such as image segmentation, edge extraction, and image
denoising. Zhang and Bresee [42] investigated and compared
the performance of grayscale statistics and morphological
algorithms for detecting and classifying knots and slubs. Both
algorithms utilized an autocorrelation function to identify
the presence of duplicate units in the fabric, which were
then statistically or morphologically computed. The results
showed that the proposed algorithm takes a longer time
to detect and has a high false alarm rate, but has better
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TABLE 3. A summary of statistical approaches.

detection accuracy for small defects and different types of
defects. Song et al. [43] combined the ideas of density map
of extreme points of an image and affiliation function to
construct the saliency mapping of regional features, adopting
threshold iteration and morphological algorithms. The pro-
posed method achieved higher than 92% detection accuracy
for different types of defects and satisfied the requirements
of online detection. In addition, it could suppress the inter-
ference of noise and background texture. The Mathematical
Morphology algorithm has lower requirements and better
efficiency compared to certain spectral analysis-based algo-
rithms. However, the Mathematical Morphology algorithm
cannot be applied to detect fabric images with periodic tex-
tures. Table 3 provides a summary of the statistical-based
approaches utilized for fabric defect detection.

Statistical approaches are effective in detecting large-size
defects. However, they face challenges in distinguishing
fuzzy and small defects because these defects may not alter
the average gray level of the fabric image significantly.
In addition, these approaches are less effective in detecting
fabrics with complex defect distributions.

D. THE STRUCTURAL APPROACH
The structural-based fabric defect detection approach views
texture as a composite of texture elements. The underly-
ing texture structure of the fabric is extracted from the
image using an S-extraction technique to obtain struc-
tural features [52]. This approach is reliable for recogniz-
ing fabric defects with highly regular patterns. In 2005,
Abouelela et al. [53] employed images captured by a camera
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TABLE 4. A summary of structural approaches.

FIGURE 3. The basic process of classical machine learning method.

and simple texture features (mean, variance, median) for
fault detection in an online real-time inspection system.
Experimental results demonstrated 91% accuracy in detect-
ing defects such as missing warp, knotting defects, and
cuts. To achieve high quality detection of surface defects
in patterned fabrics, Jia et al. [54] utilized Morphological
Component Analysis (MCA)-based automatic segmentation
of the mesh to calculate the distance between the yet-to-be-
determined dot matrix and the dot matrix template. When the
distance exceeded a specific threshold, the dot matrix was
classified as a defective area. The layout inference performed
on the fabric image was leveraged to differentiate between
textural primitives, resulting in an overall detection rate of
0.975. However, the Lattice Segmentation assisted with the
Gabor filter (LSG) algorithm exhibited optimal accuracy and
false detection rate only for samples with geometric shapes.
Combining the LSG with other methods may help compen-
sate for its limitations. Table 4 provides a summary of the
structural-based approaches for fabric defect detection.

The structural approach is computationally simple and
reliable in identifying fabric defects with highly regular and
simple textures. However, the effectiveness of the detection
is determined by the size of the defects since it is difficult to
maintain a stable underlying texture structure during indus-
trial production. Detecting small and tiny defects using the
structural approach poses difficulties.

IV. THE LEARNING-BASED APPROACH TO FABRIC
DEFECT DETECTION
A. CLASSICAL MACHINE LEARNING METHODS
The classical machine learning methods automatically ana-
lyze data to obtain a model, which is then used to make

predictions about unknown data [58]. This approach allows
computers to learn from data and experience, and to discover
an optimal ‘‘function’’ or ‘‘model’’ that fits the applica-
tion scenario. By simulating the relationship between inputs
and outputs, classical machine learning enables prediction,
judgment, grouping, and problem solving. As the amount
of data samples increases, the ‘‘function’’ or ‘‘model’’ can
further self-improve. However, this improvement is heav-
ily dependent on the available data. The basic process of
classical machine learning method is depicted in Fig. 3.
The most frequently used algorithms for fabric defect detec-
tion include Principal Component Analysis (PCA) [59],
Dictionary Learning [60], Canny operator [61], K-Nearest
Neighbor (KNN) [62], Support Vector Machine (SVM) [63],
[64], Low-Rank Decomposition [65], and Plain Bayes [66].
Table 5 provides an overview of the traditional machine
learning-based methods used for fabric defect detection.

The strengths of classical machine learning algorithms are
as follows: 1) Theoretical and mathematical foundations of
the algorithms are mature and easily explainable. 2) Compu-
tational speed is faster, yielding better performance for small
datasets. 3) Unique advantage in exploring high-dimensional
data and feature spaces. On the other hand, the weaknesses of
classical machine learning algorithms include: 1) Limitations
in processing large-scale data. 2) Limited ability to model
complex relationships, leading to inadequate performance at
times. 3) Difficulty in modeling nonlinear problems.

B. DEEP LEARNING METHODS
Deep learning methods are popular in the textile industry for
texture analysis and defect detection because they compen-
sate for the limitations of traditional methods in handling
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TABLE 5. A summary of classical machine learning methods.

complex texture variations and small-sized defects [79].
Detecting fabric defects in the textile industry using deep
learning methods usually starts with extracting the fabric
defect region and then processing the defect image.

The deep learning methods can be categorized into three
subgroups including supervised learning, unsupervised learn-
ing [80], [81], and a small number of semi-supervised
learning [82], [83] approaches for fabric defect detection.
The term ‘‘supervised or not’’ refers to the presence or
absence of labeled data. If the input data is labeled, it falls
under supervised learning; otherwise, it is classified as unsu-
pervised learning. Supervised learning is used to tackle
classification and regression problems, whereas unsupervised
learning addresses clustering and dimensionality reduction

problems. Semi-supervised learning combines supervised
and unsupervised learning. Fig. 4 illustrates the different deep
learning-based methods for fabric defect detection.

1) SUPERVISED LEARNING APPROACH
Supervised learning is the process of training an optimal
model by having the network structure learn a large amount of
sample data with labels. The model can generate a function
that belongs to the set of functions through the correspon-
dence between a portion of the input data and the output
data that already exists, and then use this model to map
all the inputs to the corresponding outputs and make sim-
ple judgments on the outputs to achieve the purpose of
classification.
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FIGURE 4. Deep learning methods of fabric defect detection.

Object detection is a typical application for this domain,
it involves both object localization and image classification
for multiple objects. The object detection algorithm falls into
two categories: one-stage algorithm based on regression, and
two-stage algorithm based on candidate frame generation
and classification. The one-stage algorithm uses a single
CNN to simultaneously classify and regress proposal frames,
whereas the two-stage algorithm employs traditional image
algorithms or trained CNNs to generate proposal frames,
which are subsequently subject to classification operations
and region adjustment. The one-stage algorithm generates
one fewer proposal frame than the two-stage algorithm. The
model frameworks for both algorithms are shown in Fig. 5.

a: TWO-STAGE OBJECT DETECTION ALGORITHMS
We present the process of proposing or improving the 6 basic
models in the order in which the two-stage object detection
models were proposed (R-CNN → Fast R-CNN → Faster R-
CNN → R-FCN → R-CNN → FPN → Cascade R-CNN).
Currently, the best and most widely used two-stage object
detection models for fabric defect detection are Faster R-
CNN [84], FPN [85], and Cascade R-CNN [86]. The Faster
R-CNN model is a representative model that has inspired the
development of numerous object detection and segmentation
models. R-CNN [87] recognizes objects by labeling regions
of interest in an image based on the basic structure of CNNs.
However, since all candidate object regions in R-CNNs need
to be extracted beforehand, this process is time-consuming
and labor-intensive. In addition, the traditional CNNs require
the input image to be normalized or resized to a fixed size,
which can result in object stretching or information loss.
To address these issues, a region of interest (RoI) pooling
layer was introduced, leading to the development of Fast
R-CNN [88]. In 2016, Ren et al. [84] proposed the Faster

R-CNN model, which improved computational efficiency
in region extraction by introducing a Region Proposal Net-
work (RPN). Faster R-CNN utilizes shared convolutional
layers to extract feature maps from the input image. These
feature maps are then used as input to the RPN, which
autonomously generates candidate regions. These candidate
regions, along with the feature maps extracted from the con-
volutional neural network, are inputted into Fast R-CNN.
The Fast R-CNNperforms candidate region classification and
boundary regression, resulting in a complete end-to-end CNN
object detection model. The basic model framework of Faster
R-CNN is depicted in Fig. 6.
To detect tiny fabric defects with extreme aspect ratios,

Peng et al. [89] proposed the Priori Anchor Convolutional
Neural Network (PRAN-Net). The PRAN-Net incorporated
a Feature Pyramid Network (FPN) to maintain specific infor-
mation about tiny defects. In addition, the authors devised a
technique to generate sparse a priori anchors that effectively
matched extreme aspect ratio defects, thereby reducing the
number of redundant anchors and improving the accuracy
and efficiency of detecting extreme defects. The defects were
classified and refined using a classification network. When
compared to one-stage algorithms, this method achieved a
7.2% and 7.4% improvement in detection accuracy on the
denim dataset and plain fabric dataset, respectively, with a
decrease in detection speed of less than 0.7 f/s. Compared
to two-stage algorithms, the mean average precision (mAP)
on both datasets was improved by at least 2.1% and 2.4%,
leading to enhanced accuracy in detecting and localizing
tiny and extreme fabric defects, while satisfying real-time
detection requirements.

Fabric defect detection algorithms need to maintain a low
computational cost while ensuring high detection accuracy,
for which Wu et al. [90] proposed a wide-and-light network
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FIGURE 5. Modeling framework underlying two-stage and one-stage object detection algorithms.

FIGURE 6. Basic modeling framework for Faster R-CNN.

(Walnet) structure based on Faster R-CNN. This struc-
ture incorporated multiscale convolutional kernels, dilatation
convolution, and feature fusion to learn object features. Con-
volution, kernel decomposition, and bottleneckmethods were
employed to simplify feature extraction. Furthermore, a series
of candidate frames with different sizes were designed to
improve detection accuracy. Experimental results demon-
strated that the proposed model achieved over 97% detection
accuracy on white-gray fabrics, dark-red fabrics from the
TILDA dataset, and mesh fabrics created in the laboratory.
The model accurately detected common defects in fabrics
while having a smaller network size compared to the Walnet
model.

To address the interference problem caused by com-
plex background textures in fabric defect detection,
Chen et al. [91] proposed a genetic algorithm known as the
Gabor Faster R-CNN (Faster GG R-CNN). This approach
integrated the Gabor kernel into the Faster R-CNN for fre-
quency analysis. They designed a two-phase training method

based on the genetic algorithm (GA) and backpropagation
to train the new Faster GG R-CNN model. The model had
a strong detection ability for the four defects of the created
complex texture dataset, with an average detection accuracy
of 94.57%. The model effectively identified fabric defects
of various backgrounds, locations, and sizes, including tiny
defects or unevenly creased fabrics. However, for some fabric
defects with larger sizes, the detection effect of Faster GG
R-CNN was not as good as other methods. The model could
be improved by multiscale feature extraction, however, the
proposed method could not identify the color change region,
which would be mistaken for stains.

Previous object detection algorithms, such as the
Fast/Faster R-CNN models were divided into two parts: (1) a
fully convolutional network consisting of shared parameters,
and (2) a fully connected network with two branches after
the RoI pooling layer. They did not share parameters, so each
region needed to repeat the calculation, which would take a
lot of time. To improve the detection speed, Dai et al. [92]
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FIGURE 7. Basic modeling framework for FPN.

introduced the region-based fully convolutional neural net-
work known as R-FCN, which adopts the latest ResNet neural
architecture. They added a special convolutional layer at the
end of the RPN network to construct a set of score maps
sensitive to the location for each ROI, and at the same time,
therewas no further connection of other convolutional or fully
connected layers after the pooling layer of the network, which
shares the parameters. This further improved the accuracy and
speed of the detection network. The basic model framework
of R-FCN is shown in Fig. 7.

The high-level features have strong semantic informa-
tion, and in the object detection problem, if the size of
the object varies greatly, the receptive field of the high-
est feature layer is too large to recognize the small-sized
object. To enhance the multiscale prediction performance
of R-CNN, Lin et al. [85] first proposed the FPN structure
as the neck. The FPN adds the multiscale feature fusion
design to SSD, which utilizes the high-level feature map-
ping with rich semantic information. This gradually enhances
the low-level feature mapping with rich geometrical details,
facilitating the complementary nature of the multiscale fea-
tures, also through the top-down process and the horizontal
connection, to address the issue of low-level features lack-
ing semantic information. This enhanced the detection of
tiny objects and improved the detection accuracy of the
model. The basic model framework of FPN is depicted in
Fig. 8.

Zhou et al. [93] selected the lightweight framework of
EfficientNets to enhance computational efficiency, and they
proposed the L-FPN strategy to efficiently fuse multiscale
features. In addition, they adopted the R-Compound Scaling
to adjust the depth, width, and input resolution, to real-
ize a range of detectors under various resource restrictions.
By using the above strategies, the Efficient Defect detectors
(EDDs) proposed in this article were experimented on the
AliCloud Tianchi fabric defect dataset, and higher mAP was
obtained with fewer parameters. Whereas the efficiency of
the EDDs was high, it should be noted that EfficientNet was
initially developed for natural images. As a result, there was
room for further improvement in the design of the backbone.
Furthermore, the accurate labeling of defect images was a
labor-intensive and commercially costly task. The trend was

to complete the training process with fewer labeled defect
images.

Lu et al. [94] developed the channel-space adaptive aug-
mented feature pyramid network CA-FPN, which performed
an adaptive fusion of multiscale features by extracting intrin-
sic relationships between features at different scales. This
approach enhanced the semantic information of defects while
minimizing background interference. When combined with
the anchorless detection strategy AutoAssign, the models
achieved improved detection accuracy for nine types of
defects on the AliCloud Tianchi fabric defect dataset, includ-
ing small and large aspect ratio defects. These improvements
were achieved without affecting detection time or increasing
the model complexity. The model also exhibited strong gen-
eralization ability. Future research will focus on the structural
optimization of the Swin transformer and the development of
the semi-supervised learning approach.

In object detection, the definition of positivity and nega-
tivity relies on an intersection over union (IoU) threshold.
When object detectors are trained with low IoU thresholds
(e.g., 0.5), they often produce noisy detections, and their
performance tends to degrade as the IoU thresholds increase.
In 2018, Cai and Vasconcelos [86] introduced the Cascade
R-CNN algorithm, which employs a multistage approach
to train a series of detectors with gradually increasing IoU
thresholds. Each detector utilizes the output of the previ-
ous detector to generate higher quality predictions. This
architecture ensures a balanced distribution of positive and
high-quality training samples for each network by defin-
ing high-quality intersection IoU thresholds. It also avoids
false detections by reducing nonmaximum scores rather than
suppressing the nonmaximum values directly, resulting in
improved detection accuracy without the need for network
modification or retraining. Refer to Fig. 9 for the basic model
framework of Cascade R-CNN.

Li and Li [95] proposed three techniques to improve
the accuracy of the Cascade R-CNN model. Firstly, they
employed multiscale training to enable the input image to
adapt to the box distribution of different scales. Secondly,
a dimensional clustering method was used to cluster the
widths and heights of defects dimensionally. Finally, soft
nonmaximum suppression was implemented to prevent the
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FIGURE 8. Basic modeling framework for R-FCN.

FIGURE 9. Basic modeling framework for Cascade R-CNN.

elimination of overlapping defect categories during repeated
detection in the dataset. Experimental results demonstrated
that these techniques effectively enhanced the accuracy of the
detection algorithm on fabric datasets with highly unbalanced
defect counts. Specifically, AP@.5 improved by 13.5%.
Due to the limited availability of fabric defect datasets, the

experiments were only conducted on defect datasets of unpat-
terned fabrics.

Despite some progress in deep learning-based fabric defect
detection, most studies have focused on small-sized and
simple fabric background images. Detecting fabric defects
in complex backgrounds and large-sized images remains
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TABLE 6. A summary of two-stage detection algorithms.

a considerable challenge. In light of this, Xue et al. [96]
selected the Cascade R-CNN as the baseline model, divided
large fabric images into smaller chunks for training and detec-
tion, proposed a novel polymorphic data expansion method to
augment the dataset size, enhanced the feature pyramid net-
work module, and introduced the PAFPN model to improve
defect detection accuracy. The proposed method achieved
a detection accuracy of 78.93% on high-resolution fabric
images, effectively addressing the detection of oversized
defects, tiny defects, small defects, and dense defects. Future
work can aim to further enhance the detection accuracy of
small objects. Table 6 provides an overview of the meth-
ods utilized for two-stage object detection in fabric defect
detection.

b: ONE-STAGE OBJECT DETECTION ALGORITHMS
In recent years, the YOLOv5 algorithm [102] and the SSD
algorithm [103] have emerged as popular one-stage object
detection algorithms in the field of fabric defect detec-
tion. You Only Look Once (YOLO) [104] serves as the
classical model for one-stage object detection, extracting

global information from the feature map directly. In 2020,
Glenn et al. [102] proposed the YOLOv5model, an improved
version of YOLO. The YOLOv5 model is available in four
different versions: YOLOv5s, YOLOv5m, YOLOv5l, and
YOLOv5 × 4. The YOLOv5 model consists of four compo-
nents: Input sides, Backbone, Neck, and Prediction. The Input
side incorporates Mosaic data enhancement, adaptive anchor
frame computation, and adaptive image scaling. The Back-
bone module includes the Focus, Conv structure, CSP layer,
and SPP. The Neck part adopts the FPN+PAN structure.
The detection side performs the final detection of three-scale
feature maps based on the number of categories in the dataset.
YOLOv5 strikes a balance between detection accuracy and
speed. Fig. 10 illustrates the basic model framework of
YOLOv5s.

Jin et al. [105] used a teacher-student framework to deal
with the problem of insufficient images of fabric blemishes.
The deep teacher network accurately identified fabric blem-
ishes, while the shallow student network achieved real-time
detection with minor performance degradation. In addition,
multitask learning was implemented to detect prevalent and
specific defects. The model was further improved by the
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FIGURE 10. Basic modeling framework for YOLOv5s.

inclusion of a focal loss function and central constraints,
enhancing recognition performance. They experimented with
the proposed method on two publicly available datasets,
Xuelang Tianchi AI and TILDA. The results demonstrated
that although the student network was outperformed by other
methods in detecting textile defects in collected images, the
teacher network achieved the best detection performance. The
student network provided an innovative approach for accu-
rately detecting textile defects on embedded devices while
minimizing time overhead.

To address the challenges posed by tiny flaws, defects with
extreme length-to-width ratios, and long inspection times,
Lin et al. [106] proposed a novel approach. They introduced a
sliding windowmultihead self-attention regime, and replaced
the original FPN with BiFPN to effectively detect small
objects. They also integrated the Swin Transformer mod-
ule into the original YOLOv5 algorithm. Furthermore, they
introduced a generalized focal-loss function to enhance the
learning of positive samples and reduce the false detection
rate. Experimental results demonstrated that the improved
algorithm achieved a detection accuracy of 85.6% on the
fabric dataset, with a mAP value increased of 4.2% to
reach 76.5%. These results satisfied the real-time detec-
tion request of embedded devices. However, it should be
noted that the improved algorithm required a larger num-
ber of model computation parameters and longer training
time.

Yu et al. [107] proposed CS-YOLO, a progressively refined
redistribution pyramid network with supervised attention,
based on the YOLOv5 model. This network was designed
for defect detection in complex scenarios. CS-YOLO aligned
a dense feature pyramid network (AD-FPN) to refine scale
differences, introduced a phased feature redistribution mod-
ule (PFRM) to enhance the interactions between cross-layer
features, and utilized adaptive semantic self-redistribution
of global information. In addition, the Adaptive Feature
Purification Module (AFPM) enhanced the network’s ability
to discriminate flaws from complex contexts. Experimental
results on the Tianchi fabric dataset show that CS-YOLO
achieved a mAP value of 80.8%, surpassing other methods
by 4.1% compared to the baseline YOLOv5. The network
achieved a detection speed of 87 f/s and demonstrated strong
model generalization capability.

Numerous model variations were introduced to enhance
the candidate region selection method when Faster R-CNN
was initially proposed. In 2016, Liu et al. [103] presented
an alternative network called Single Shot MultiBox Detector
(SSD), which selects the default box through the construction
of a multiscale feature map. The base model for SSD is
VGG16. To enhance the detection capability, an additional
convolutional layer is added on top of VGG16 to obtain more
feature maps. The architecture consists of a basic feature
layer, an additional feature layer, a convolutional predictor
for detection, and non-maximum suppression (NMS). The

63792 VOLUME 12, 2024



P. Guo et al.: Intelligent Quality Control of Surface Defects in Fabrics

FIGURE 11. Basic modeling framework for SSD.

convolutional predictor is a subnetwork that consists of two
parallel convolutional layers for regression and classification.
Fig. 11 illustrates the framework of the base model of SSD.

Liu et al. [108] first used an object detection algorithm
to detect fabric defects. They improved the existing SSD
model by adding a third feature layer and utilizing the feature
information from the underlying feature layer to enable small
object detection. This enhancement made the improved SSD
modelmore suitable for fabric defect detection. The improved
model outperformed the classical SSD object detectionmodel
in terms of object retrieval capability and detection accuracy
in the fabric domain. With the addition of training datasets
and data types, the model could be further improved to
enhance its sharing mechanism and real-time performance.

To address the challenges posed by complex and vari-
able defect shapes, He et al. [109] proposed an adaptive
fabric defect detection method based on the DenseNet-SSD
algorithm. Instead of using the VGG16 backbone network
in the SSD algorithm, they utilized the DenseNet network.
This choice enhanced the transfer between feature mappings,
mitigated the issue of vanishing gradients, and reduced the
number of network parameters. Through experiments, they
achieved an accuracy of 78.6% mAP and a detection speed
of 61 f/s on a test set that included untextured fabrics, striped
fabrics, and lattice fabrics.

Whereas the SSD-based model offers fast detection speed,
it lacks sufficient detection accuracy. To strike a balance
between speed and accuracy, Xie et al. [110] incorporated the
full convolutional squeezing excitation block (FCSE) into the
traditional SSD. This adjustment allowed for the adaptation
of the number of default frames, enabling the detection of
long defects on fabric surfaces. Experimental results on the
TILDA and Xuelang datasets confirm that their SSD-based
detection method improved detection accuracy by 3.6% and
F1-measure (F1) by 5.3% compared to the original SSD
algorithm. In addition, it could accurately and rapidly detect
a wide range of defects on periodical and patterned fabric
surfaces. However, the detection accuracy of the improved

model was only 47.1% when it came to detecting defects in
the solid-color texture background. Future work can focus on
defect segmentation at the pixel level.

To effectively detect small defects and defects in colored
fabrics, Zhao and Zhang [111] proposed an adaptive multi-
scale fabric defect detection model called SE-SSDNet. The
model combined the Squeeze-and-Excitation (SE) module
with the SSD network to enhance its detection capability. The
model improved the network’s attention mechanism by incor-
porating SE modules into the SSD detection network. This
enhancement improved detection efficiency and adaptability.
It also utilized large-scale feature maps for detecting smaller
defects and small-scale feature maps for detecting larger
defects, effectively addressing the asymmetry. Test results
demonstrated that the model could successfully detect flaws
in textures of varying complexity. Compared with the three
methods S_MobileNet, S_EfficientNet, and SSD, it achieved
an average accuracy of 81.7%, significantly improving the
accuracy and efficiency of fabric defect detection. The
SE-SSDNet performed well in detecting monochromatic fab-
rics, however, it struggled to detect blemishes in brightly
colored fabrics. Furthermore, the model’s accuracy does not
meet the requirements of practical detection, which can be
improved by adjusting the fabric parameters. Table 7 provides
a summary of the one-stage object detection algorithms used
for fabric defect detection.

2) UNSUPERVISED LEARNING APPROACH
Due to the difficulty in obtaining and labeling data,
researchers have started to explore unsupervised learning
approaches for solving fabric defect detection problems.
Unsupervised learning involves training general-purpose net-
works with a small amount of unlabeled data, with the main
objective of pre-training models (such as discriminators or
encoders) that can be used for other tasks, achieving clas-
sification. In unsupervised learning, an algorithm is used to
process a series of unlabeled training data, aiming to discover
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TABLE 7. A summary of one-stage detection algorithms.

underlying structures or distributions in order to gain more
insights about the data.

Popular unsupervised learning approaches for fabric defect
detection in this field are Autoencoder (AE) [113], [114] and
Generative Adversarial Networks (GAN) [115]. An Autoen-
coder is a typical unsupervised learning algorithm that
consists of three neural networks: an encoder, a decoder, and
an implicit layer. It is designed to extract hierarchical fea-
tures from high-dimensional complex input data and obtain
a distributed feature representation of the original data using
unlabeled data. The encoder compresses the image informa-
tion into lower dimensions and then reproduces the image in
a way that similar images will have similar encodings. On the
other hand, the decoder reconstructs the original image from
the encoded vector.

The Generative Adversarial Network is an unsupervised
learning framework that includes both the generator and dis-
criminator models. It aims to learn a generative model that
accurately represents the distribution of training data through
the competition between the discriminator and the generator.
Taking noisy samples as input, the generator outputs new
data, while the discriminator is trained to distinguish between
real data samples and generated samples. The training pro-
cess involves optimizing the discriminator to maximize the
log-likelihood of correctly assigning labels to both true train-
ing samples and false generated samples, while the generator
is trained to minimize the objective function to prevent
the discriminator from incorrectly labeling the generated
samples. This adversarial process allows the generator to
synthesize more realistic samples.

To improve the discriminatory nature of fabric defect
detection, Li et al. [116] conducted a study in which they
trained a Fisher’s criterion-based stacked denoising autoen-
coder (FCSDA) using fabric image patches of equal size.
They classified the patches in the test set as either defective
or nondefective, computed the residuals between the recon-
structed image and defective patches, and used a thresholding
method to localize the defects. The FCSDA method out-
performed the image decomposition method (ID) and SDA
in terms of localization accuracy and overall detection rate
(ODR) on both periodic pattern fabrics and complex jacquard
pattern warp knit fabrics. However, this method required both
examples of defective patches and labeling of the data for
model training.

Mei et al. [117] utilized a convolutional noise reduction
self-encoder network to reconstruct image blocks at multiple
levels of the Gaussian pyramid. They used the reconstructed
residuals of each image block as a metric for direct pixel pre-
diction. To generate final detection results, they segmented
and synthesized the reconstructed residual maps, which high-
lighted the defective regions at each level of resolution using
a CDAE network. The approach demonstrated the ability
to train a model with a limited number of defect-free sam-
ples and achieve intelligent detection for multiple types of
textile fabrics and defects on two public datasets and one
created dataset. However, further improvements are needed to
enhance the accuracy and stability of the model, particularly,
for more complex patterned fabric textures.

Aiming to address the problem of defect detection in
fabrics with periodic patterns and solid color textures,
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TABLE 8. A summary of unsupervised learning approaches.

Xie et al. [118] proposed a defect detection algorithm based
on directional templates and image pyramids to localize
the candidate defective image blocks by using the trained
SDCAE model for image reconstruction. The algorithm
achieved an average F-Measure of 69.58% for localization
accuracy on FID Dataset and an F-Measure of 80.65%
on solid-color fabrics in the TILDA Dataset. However, the
algorithm only achieved defect localization at the block-level
and could be further improved to achieve pixel-level defect
detection.

The concept of the GAN was originally introduced by
Goodfellow et al. [119]. Hu et al. [120] proposed an
approach based on the deep convolutional generative adver-
sarial network (DCGAN), which incorporated a new encoder
component to reconstruct images without defects. In addi-
tion, it highlighted potentially defective regions by creating
residual mappings and then generated binarized segmentation
results by thresholding the residual mappings and likeli-
hood mappings. This algorithm demonstrated insensitivity to
illumination variations and image blurring, along with high
detection accuracy and efficiency for both simple uniform
textured fabrics and complex patterned fabrics. However, the
algorithm did not consider the spatial dependency between
pixels during detection, which may result in noisy segmenta-
tion. Therefore, future improvements can include introducing
a Conditional Random Field (CRF) model to enhance accu-
racy and to integrate the method into an automatic defect
detection system.

To address the complex diversity of fabric textures and
defects, Liu et al. [121] proposed a method to synthesize
reasonable defects in a defect-free fabric texture through
a multilevel GAN, which utilized adversarial loss to train
a defect fusion network to fuse the generated defects into
defect-free samples, and the trained multilevel GAN contin-
uously updated the existing fabric defect dataset to fine-tune
the pre-trained semantic segmentation network for better
detection of defects under different conditions. The network
could detect defects of different types and sizes in both

simple and complex background textures, achieving an aver-
age F-measure value of 96.2%, a defect recall rate of more
than 96.8%, and 98.5% detection accuracy for all defects
except knots on the simple texture dataset, and an average
detection accuracy of 97.0% on the complex texture dataset.
Table 8 provides a summary of the unsupervised learning
approaches for fabric defect detection. Table 9 compares the
unsupervised learning approaches commonly used for fabric
defect detection. It describes the strengths and weaknesses of
each approach considered.

3) SEMI-SUPERVISED LEARNING APPROACH
Semi-supervised learning is the process of incorporating
unlabeled samples into supervised classification algorithms
to achieve semi-supervised classification and defect detec-
tion tasks with a minimum amount of labeled data and a
large amount of unlabeled data. In this scenario, two sets of
samples are involved: Labeled and Unlabeled, with a much
smaller quantity of labeled samples (L) compared to unla-
beled ones (U) (L ≪ U). Initially, a limited set of labeled
samples is employed to train a network and produce a ‘‘par-
tially trained’’ model. Subsequently, this partially trained
model is utilized to label the unlabeled data, thereby gen-
erating ‘‘pseudo-labeled’’ data. A semi-supervised learning
approach is created by combining the labeled data set with the
pseudo-labeled data set, integrating the descriptive and pre-
dictive aspects of both supervised and unsupervised learning.

Zheng et al. [123] followed theMixMatch rule for complex
data expansion. They introduced a new loss function compu-
tation method with a cropping technique for data expansion
and proposed a convolutional neural network based on a
residual structure for accurate defect detection. The algorithm
was experimented on the DAGM texture dataset and achieved
better performance with a small number of labeled samples.

To accurately construct the defective region boundary
and locate the defects computationally, Zhou et al. [124]
performed hybrid detection of fabric defects based on the

VOLUME 12, 2024 63795



P. Guo et al.: Intelligent Quality Control of Surface Defects in Fabrics

TABLE 9. Comparison Of fabric defect detection using unsupervised learning approaches.

TABLE 10. A summary about semi-supervised learning approaches.

variational autocoder (VAE) and the Gaussian mixture model
(GMM). The VAE model was initially trained to extract
features and reconstruct images of the positive samples. Sub-
sequently, a GMM was integrated into the VAE to extract
the encoder’s feature vectors, and density estimation was
conducted. The proposed algorithm was validated using the
AITEX andDAGM2007 public datasets, resulting in anAUC
value of 0.982. The hybrid detection algorithm addressed
the limitations of single detection methods and demonstrated
strong performance in defect detection. Future research can
focus on exploring approaches to handle variations in lighting
conditions.

To solve the problem of data imbalance in actual pro-
duction, Huang et al. [125] presented a two-part network
model for defect segmentation and detection: a segmentation
network and a decision network. Firstly, an untrained fabric
dataset was fed into the segmentation network, and its out-
put was used to train the decision network. Subsequently,
the trained network was employed to localize defects. The
method learned the potential features of defects using a small
number of defect samples. Experimental evaluations were
performed on three datasets encompassing various fabric
textures and defect types. Remarkably, accurate segmentation
results could be achieved with approximately 50 defect sam-
ples. This significantly reduced the need for extensive manual
annotations and enabled real-time detection at a speed of up to
25 frames per second. Unsupervised learning can be explored
further in the future research.

For the diversity of fabric defects and the low contrast
between the defects and the background, Shao et al. [126]
introduced a pixel-based semi-supervised fabric defect

detection approach that incorporated a multitask mean trainer
(MT). They proposed a multitask student and teacher net-
work (ST-CNN) to incorporate defect contour and defect
DM information as structural a priori into the fabric defect
detection network. This enabled joint learning on labeled and
unlabeled data. The ST-CNN utilized a multitask supervised
loss for labeled data and a multitask consistency loss for
unlabeled data. They conducted experiments on three pub-
licly available fabric defect detection datasets and found that
the approach was highly effective in detecting various defect
types, including multiple defects, fine defects, and similari-
ties between defects and background texture. It outperformed
the current dominant MT-based pixel-by-pixel segmentation
algorithms. However, the network’s unit detection time was
longer. Table 10 provides a summary of the semi-supervised
approaches for fabric defect detection.

Additional deep learning approaches for fabric defect
detection are presented in Table 11.

V. APPLICATION
A. PUBLIC DATASET OF FABRIC DEFECTS
Fabric defect detection remains challenging due to the
scarcity of fabric defect samples. A limited number of sam-
ples can lead to low model accuracy and poor generative
ability. Fig. 12 illustrates the percentage representation of
defect datasets utilized in the references cited in this article.
The widely used open dataset for fabric defects in the ref-
erences is TILDA Dataset with a usage percentage of 18%.
In addition, five other well-known fabric defect datasets, such
as FID Dataset and Alibaba Cloud Tianchi Fabric Dataset
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TABLE 11. Other deep learning algorithms used in fabric defect applications.

are referenced. While some datasets contain a substantial
number of fabric images, creating exhaustive fabric datasets
remains unfeasible due to the wide variety of fabric defects,
morphological variations, and challenges in observation and
recognition. Furthermore, collected fabric images often suffer
from noise interference, such as external objects, flashes of
light, fold marks, and blurring, among others. Consequently,
the number of usable images is limited. There is currently
no standardized dataset available encompassing all types
of fabric defects. It is worth noting that 40% and 13% of
the researchers opted to create their own datasets for their
respective studies and went to textile mills to collect defect
images for use in studying the effectiveness of the proposed
algorithms. Recently, researchers have made efforts to create
fabric image datasets, however, only a few of these datasets
are publicly accessible. To support research in textile inspec-
tion automation, this article compiles a list of 12 commonly
used open-source fabric image datasets as reference. The
brief details and links of the datasets are shown in Table 12.
Below are a few examples of some of the datasets.

1) TILDA DATASET
The TILDA dataset is widely used in the references and is
openly accessible in the public domain [133]. TILDA obtains
8 representative textiles such as solid color fabrics, periodic
patterned fabrics, and patterned fabrics, among others. A total
of 800 different images are generated, each of which has a
size of 768×512 pixels. The dataset includes typical defects
including hole, float, wire, and dark thread [134].

2) FID DATASET
A fabric cycle pattern dataset provided by the Industrial
Automation Research Laboratory of the Department of elec-
trical and electronic engineering, University of Hong Kong,
contains 156 fabric images of three types of fabrics: dot, star,
and box. Each fabric contains 5-6 types of defects such as

broken ends, holes, reticular multiple, thick rods, thin rods,
and nodules. Specifically, the knot is a blemish unique to the
dot pattern [93].

3) ALIBABA CLOUD TIANCHI FABRIC DATASET
Alibaba Cloud Tianchi Fabric Dataset provides 9,576
(2446×1000) images for training, including 5,913 defect
images and 3,663 normal images, each of which is labeled
in detail. The annotated data are detailed with the specific
location of the defects and the defect categories. The dataset
consists of two types of fabrics, solid color fabrics and fancy
fabrics, and covers 15 types of important defects such as
flaws, color shade, and miss print in the textile industry, and
each image contains one or more types of defects [56].

B. DEEP LEARNING FRAMEWORK
Before applying deep learning algorithms to detect fab-
ric defects, it is crucial to select a suitable framework
for developing the algorithm. A deep learning framework
encompasses tools, libraries, and resources necessary for
deep learning development, including pre-trainedmodels that
facilitate automatic derivation, differentiation, and gradient
mechanisms, thereby simplifying neural network imple-
mentation. In addition, these frameworks contain built-in
components such as fully convolutional networks, convolu-
tional networks, and other basic network components, which
streamline coding tasks. Consequently, complex deep learn-
ing model development is greatly simplified using these
frameworks.

In this article, we analyze the percentage of deep learning
framework usage in fabric defect detection (Fig. 13). Tensor-
Flow and PyTorch are the two most commonly used frame-
works, with 57% employing TensorFlow and 43% utilizing
PyTorch. These frameworks are highly popular in the field
of deep learning due to their superior performance, coding
convenience, visualization features, supportive communities,
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FIGURE 12. Percentage of use of defective datasets addressed in the references.

TABLE 12. Fabric defects public dataset.

and language support. To better understand the differences
between the two frameworks, Table 13 presents a summary
of their unique features.

C. FABRIC DEFECT DETECTION SYSTEM
Since the 1980s, computer vision technology has made sig-
nificant advancements, enabling its application in various
aspects of fabric quality control. Fabric defect detection

systems can be categorized as online and offline detection
systems. Online detection occurs during fabric production,
allowing for timely adjustments based on defect detection;
whereas offline detection in the fabric is completed after
the finishing process. Currently, there are not many intel-
ligent automatic fabric detection systems on the market,
and there is no one solution for all types of fabrics and
defects.
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TABLE 13. Deep learning framework.

FIGURE 13. Percentage of use of deep learning framework in the
references.

1) OFFLINE DETECTION SYSTEMS
A highly mature fabric inspection system available in the
market is the Fabriscan defects automatic fabric inspection
machine developed by the Swiss company Uster. This offline
inspection system utilizes high-resolution cameras and neural
network technology to detect a wide range of objects. The
system operates in two main phases: first, the neural net-
work is trained, and then the detection phase begins, during
which the system categorizes identified abnormal areas and
assesses the fabric’s surface quality. The system is applicable
to all kinds of complex fabrics, achieving a detection rate of
approximately 90% and an inspection speed of 120 m/min,
however, it is costly [135].

The FS220 photoelectric automatic fabric inspection
machine developed by Shaanxi Changling Textile Electrome-
chanical Technology Co. Ltd. in China is suitable for offline
inspection of any visible defects. It utilizes machine vision
and image processing technology and consists of a fabric
hauling system, vision system, image processing system,
control system, andmarking system.With four CCD cameras,
this machine captures fabric images and sends the image
information to the industrial control machine. The fabric
inspection speed is categorized into four grades: 15 m/min,
30 m/min, 60m/min, and 1200 m/min. The false judgment
rate of this fabric inspection machine is under 15%, and it

can inspect fabric with a width of 2200 mm, including the
recognition of small defects [136].
The Uster Q-Bar 2 Fabric Inspector, also developed by

Uster, is a fabric monitoring system that offers various algo-
rithms for identifying specific defects and determining their
causes. It is suitable for both online and offline inspection
of visible defects. When a defect occurs in the fabric, the
inspection system promptly responds to prevent widespread
or recurring defects. This system can be applied from the
loom to the entire roll, with a maximumwidth of work quality
control reaching 2250 mm [137].

2) ONLINE DETECTION SYSTEMS
Belgium Barco has developed a loom online real-time moni-
toring system named Cyclops. By installing mobile cameras
on the loom, the system can detect warp and fabric defects.
Upon detecting defects, the system issues an alarm or shuts
down the loom, while recording the defect location and char-
acteristics. Additionally, the system categorizes the detected
defects, stores them in a fabric quality dataset, and generates
distribution maps and various quality reports. Cyclops has a
simple hardware structure and is easy to maintain. However,
it cannot detect weft defects and incurs high computational
costs [138].

The IQ-TEX4 blank fabric automatic inspection system
from Israel’s EVS uses high-resolution color line scanning
technology and an enhanced defect classification algorithm.
It can simulate human vision to distinguish between defects
and deformation, while offering real-time monitoring. For
plain fabrics, this system achieves an online detection speed
of 1000 m/min and can detect defects as small as 0.1 mm.
One disadvantage is that the product’s software update speed
is sluggish and it lacks strong adaptability [139].

Germany’s Opdix photoelectric technology company has
developed an online textile inspection system that combines
neural networks and sensors. This system is based on image
processing and pattern recognition algorithms, with sensors
placed on the surface of the fabric to detect defects such
as oil, broken warp, holes, weft break, and jumping. It has
high adaptability and can detect defects in fabric with a
width of up to 2-3 meters, with a minimum resolution of
0.25 mm×0.25 mm.
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FIGURE 14. The number of more applied defects is addressed in the references.

The Web Ranger surface inspection system, produced by
WINTRISS Engineering Technologies Inc. in the United
States, utilizes hundreds of extracted images and unique
image processing technology to accurately categorize differ-
ent defects based on subtle differences in their characteristics.
The system allows for modular settings that can be adjusted
according to the width of the material being inspected, the
production speed, and the size (resolution) of the defects. This
comprehensive solution ensures fast and accurate detection of
all defects during the online production process [140].

Although the above-mentioned automatic fabric inspec-
tion machines are mature and represent the most advanced
products on the market, these systems are stable and their
processing algorithms are more accurate and provide results
in real-time, they have several drawbacks. These include
high price and cost, and due to technical constraints, the
effectiveness of problem solving is not enough, the system
on the different fabric products of the general type.

VI. DISCUSSION
Further to the above discussion, it is evident that computer
vision inspection for textiles is a growing trend. The follow-
ing results are derived by summarizing the references studied
in this review:

A. NOMENCLATURE AND ANALYSIS OF FABRIC DEFECTS
Fabric defects are defects presented on fabrics that may
weaken their intended properties and affect the appearance
of the finished product, these defects are manifested as color
abnormalities, surface damage, irregular shapes, and tex-
ture changes. Most defects occur in or perpendicular to the
direction of motion. Fabric defects can arise due to various
reasons within each stage from spinning to the finished fabric.
As spinning technologies evolve and fabric types become

more diverse, fabric patterns also become increasingly intri-
cate. Consequently, the types of fabric defects continue to
expand, and the same defect may exhibit different character-
istics in different fabrics. Furthermore, different people often
use distinct terms to describe these defects, further compli-
cating the categorization process. In this article, we categorize
the defect types found in 93 related references on fabric defect
detection, ultimately identifying 70 different types of fabric
defects. Fig. 14 provides an overview of the defect types
covered in these references, revealing that 16 types of defects
appear in five or more references and the Holes, Stains,
Floats, and Broken yarns are the most frequently encountered
defects. Fig.15 illustrates the samples of the four types of
defects. Hole (Fig. 15(a)) is a hole formed by the breakage of
two ormore adjacent yarns in a fabric, which can be caused by
a variety of reasons, such as careless handling of the fabric,
failure of machine parts, chemical corrosion, insect infesta-
tion, and control errors in the finishing process (burnishing,
shearing, etc.) Stain (Fig. 15(b)) refers to discontinuous areas
of off-color in the fabric, which is caused by contamination
by foreign matter, such as dust, oil, or metal rust. Stain
(Fig. 15(b)) refers to a discontinuous area in the fabric that is
of a different color and is caused by contamination by foreign
matter, such as dust, oil or rust, etc. Float (Fig. 15(c)) refers to
a continuous section of yarn that spans two or more warps or
wefts, and is caused by slackness in the warp yarns or faulty
chaining of the yarns. Broken yarn (Fig. 15(d)) usually refers
to the absence of a yarn in a section of the fabric. In addition,
solid-color fabrics have smooth surfaces, no color changes,
and fewer types of common defects, but the characteristic
differences of each defect are small, making it difficult to per-
form accurate detection and classification. While multi-color
fabrics have more color changes, complex patterns, and many
types of defects, it is difficult to distinguish between the fabric
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FIGURE 15. The samples of the four types of defects.

FIGURE 16. Comparison of detection rates of deep learning methods.

background and defects, and the detection is more difficult,
requiring strong image processing capabilities.

B. REVIEW OF METHODOLOGIES
Hanbay et al. [4] conducted a comprehensive analysis of
various traditional methods, highlighting their respective
strengths and weaknesses. Many of these approaches are
limited in terms of effectiveness for specific defect cate-
gories, fabric types, or defect locations within the fabric.
Meeradevi et al. [141] reviewed six different approaches
for fabric defect detection using computer vision: structural,
statistical, spectral, learning, hybrid, and others. Among these
approaches, the deep learning model achieved the highest
accuracy of 99.4%, demonstrating robustness against natu-
ral variations in raw data. The traditional defect detection
methods rely heavily on external factors such as lighting con-
ditions and background, leading to decreased accuracy when
faced with environmental changes. Deep learning methods,
on the other hand, can learn complex nonlinear input-output
relationships, allowing for a wider range of applications.
They also demonstrate strengths in robustness, adaptability
to the environment, and accuracy, making them effective for
industrial applications.

Deep learning methods have become the mainstream
approach in fabric defect detection. Therefore, this arti-
cle focuses solely on investigating deep learning methods.
The retrieved references are categorized into three classi-
fications: supervised learning, unsupervised learning, and
semi-supervised learning. However, comparing the perfor-
mance of these approaches based on deep learning is

challenging due to the lack of fully harmonized evalua-
tion metrics. To facilitate a fair comparison, this article
selects several representative references from the widely used
TILDA Dataset. Fig. 16 provides a general comparison of
the detection results of supervised learning, unsupervised
learning, and semi-supervised learning approaches on the
TILDA Dataset. Although the evaluation metrics used are
not exactly the same, they all measure the detection rate.
Among the reviewed references, three papers are based on
supervised learning, with reference [90] achieving the highest
detection rate of 99.40%. There are two references and one
reference based on unsupervised and semi-supervised learn-
ing approaches, respectively, with detection rates of 93.45%
and 87.77%.

The supervised learning approach is widely adopted and
characterized by high detection accuracy but necessitates
an extensive amount of labeled sample data for model
training. Obtaining fabric image samples is challenging in
actual factory production, making this approach impractical.
In comparison, the unsupervised learning approach does not
rely on labeled samples or require laborious data labeling,
making it suitable for more complex tasks. However, the
convergence of detection models is difficult, and the accuracy
does not match that of the supervised learning approach.
In addition, evaluating the performance effectiveness of the
unsupervised learning approach often mandates additional
time for training and optimization. Semi-supervised learning
offers an effective means of improving performance by uti-
lizing unlabeled data but employs a more intricate approach,
entails higher training costs, and results in reduced detection
accuracy compared to using all labeled data.
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FIGURE 17. Comparison of mAP for supervised learning object detection algorithms.

The performances of object detection algorithms based
on supervised learning are comparatively evaluated in the
charts shown in Figures 15 and 16. These charts compare
the best detection results of the algorithms proposed in the
cited references using mAP and Frames Per Second (FPS)
as evaluation metrics. mAP and FPS are the most commonly
used indicators in object detection to assess algorithm effec-
tiveness and guide algorithm adjustments. In Fig. 17, the
Walnet model, based on Faster R-CNN and proposed in refer-
ence [90], achieved the highest mAP of 99.4% on white-grey
fabrics from the TILDA Dataset, with over 97% mAP on
the other two fabrics. In this article, we collate improved
algorithms, building upon the Faster R-CNN model as the
baseline, that achieved the best detection results with more
than 92% mAP. On the other hand, Fig. 18 compares the FPS
of the reference object detection algorithms. The considered
references demonstrate one-stage object detection algorithms
that excel in detection speed. Reference [107] proposed CS-
YOLO, which exhibited the fastest detection speed of up to
87 f/s on the Alibaba Cloud Tianchi Fabric Dataset. In addi-
tion, reference [109] introduced the DenseNet-SSD model,
and reference [106] presented the improved YOLOv5 model,
achieving FPSs of 61 f/s and 58.8 f/s respectively, meeting
the requirement for real-time detection.

Further analysis shows that the two-stage object detec-
tion algorithm provides deep semantic features of the
object, resulting in higher accuracy and improved localiza-
tion in fabric defect detection. It is particularly effective
in detecting small defects and can further enhance detec-
tion accuracy through optimization techniques. However,
this algorithm involves generating a large number of candi-
date regions, resulting in increased computation complexity.
Consequently, it is slow, falling short of real-time detec-
tion requirements. In contrast, the one-stage object detection
algorithm eliminates the need for candidate box generation,
simplifying the detection process. It strikes a balance between

speed and accuracy, exhibiting faster detection speed and
meeting the demands of online detection. However, the detec-
tion accuracy of the one-stage object detection algorithm
is relatively low, making it less suitable for detecting
small-sized fabric defects and more susceptible to misde-
tection and missed detection. By improving the YOLOv5
model, as demonstrated in reference [112], the mAP of 94.6%
was achieved on the fabric dataset. This significant improve-
ment enhanced the detection accuracy of the one-stage object
detection algorithm, bringing it closer to the performance
of the two-stage object detection algorithm. Table 14 pro-
vides a comparison of supervised learning object detection
algorithms, encompassing all commonly used deep learning
methods for fabric defect detection. The table presents an
overview of the strengths and weaknesses associated with
each algorithm considered.

C. RESEARCH QUESTIONS
Through the above discussion, we answer the research ques-
tions that guided the review and provide a concise summary
of the main findings of the review as a means of obtaining
conclusions and trends in the detection of fabric surface
defects in recent years.

RQ1 What is the most frequently used defect type for
fabric detection? Holes, Stains, Floats, and Broken
yarns are the most frequently encountered defects.

RQ2 What are the most commonly used publicly avail-
able fabric defect datasets? The most widely
used datasets in the literature are researcher-
built datasets, which are usually constructed
using images from publicly available datasets,
and the most commonly used publicly avail-
able dataset is the TILDA database. Addition-
ally, numerous researchers have opted to gather
defect images directly from factories, demonstrating
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FIGURE 18. Comparison of FPS for supervised learning object detection algorithms.

TABLE 14. Comparison of fabric defect detection using object detecting algorithms.

their dedication to implementing intelligent fabric
inspection in real-world settings.

RQ3 In what ways are deep learning methods effec-
tive in detection compared to traditional methods?
Deep learning methods can handle complex tasks
with less interference from the background, leading
to stable detection effects, high accuracy, flexible
modeling, and elimination of the tedious parame-
ter adjustment step, allowing for broader algorithm
expansion.

RQ4 What are the differences in detection perfor-
mance between supervised, unsupervised, and
semi-supervised learning methods? Current CNN-
based supervised learning approaches for fab-
ric defect detection can achieve high-precision

detection when provided with abundant training
data. The main drawback of these approaches is
their heavy reliance on human labor for collecting
and labeling training samples, which poses chal-
lenges in the context of large-scale industrial textile
production. Unsupervised or semi-supervised learn-
ing approaches can help address the scarcity of
labeled samples. However, unsupervised learning
often lacks reliability and accuracy in detection
compared to supervised learning. It makes them
very useful for handling large amounts of unlabeled
data, but they perform poorly in tasks such as clas-
sification. Semi-supervised learning offers a frame-
work that combines supervised and unsupervised
learning, enhancing the algorithm’s generalization
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ability by utilizing unlabeled data and simulta-
neously ensuring the accuracy of learning using
labeled data. Allowing for similar or even enhanced
accuracy using a smaller number of labeled sam-
ples. Despite this potential, there is a scarcity of
research and practical applications exploring auto-
matic fabric defect detection approaches based on
semi-supervised learning.

RQ5 What are the strengths and weaknesses of two-stage
and one-stage object detection algorithms, respec-
tively? The two-stage algorithm exhibits higher
accuracy, a lower false detection rate, and superior
detection performance in large objects and complex
scenes, albeit at a slower speed. Conversely, the
one-stage object detection algorithm boasts a faster
detection speed but is susceptible to higher false
detection rates when localizing and detecting small
objects.

VII. CONCLUSION
This article categorizes the retrieved literature on fabric
defect detection into twomain categories: traditional methods
and learning-based methods. It focuses primarily on deep
learning methods and introduces the fundamental principles
of supervised learning, unsupervised learning, and semi-
supervised learning. The article also outlines the basic model
framework of commonly used object detection algorithms
for fabric defect detection, surveys and reviews recent deep
learning methods, and analyzes their strengths, weaknesses,
and scope of application. In addition, it organizes 12 com-
monly used public datasets for fabric defects, summarizes
commonly used deep learning frameworks, and elaborates on
the progress of fabric inspection systems worldwide.

The continuous development and application of computer
vision technology results in improved detection accuracy,
enabling the identification and categorization of even minute
defects. Moreover, the use of high-speed image processing
technology and parallel computing technology enhances the
detection speed, facilitating real-time detection and classifi-
cation of fabrics in high-speed production lines. the detection
algorithms are being continuously optimized to improve
accuracy and speed across various types of fabric and defects.

Future work in fabric defect detection encompasses the
following areas:

1) For the defect detection task, the dataset is key. Estab-
lishing a larger and more public dataset of fabric defects to
expand the dataset. Consider using existing publicly available
datasets to build more generalized datasets.

2) Defect image capture is also an important part of
the impact of fabric defect detection, image acquisition of
equipment information, lighting conditions, and acquisition
methods may have an impact on the detection results, how
to capture high-resolution, low-noise, high-quality defective
sample images can be used as one of the directions for future
consideration.

3) Addressing the scarcity of publicly available data
resources, the high cost of manual dataset labeling, variety of
fabric defects, and sample imbalance by focusing on training
networks without labeling, aiming for unsupervised or small
sample learning.

4) Increasing research on hybrid methods, combining the
strengths and weaknesses of different methods, the char-
acteristics of different fabrics and their defect types, and
the requirements of different industrial production, includ-
ing both deep learning and traditional methods or classical
machine learning methods, increase detection accuracy, and
real-time performance by improving and optimizing models.

5) Enhancing the robustness of defect detection algorithms
and then putting proven detection algorithms into practical
production to meet the evolving needs of the textile industry,
as most existing methods are only suitable for specific defect
types or datasets.

6) There is a current trend of applying algorithms devel-
oped for detecting other surface defect types to fabric defect
detection. Similarly, algorithms designed for detecting fabric
defects could also be extended to detect other types of defects,
thereby advancing the field of intelligent defect detection.

In conclusion, fabric defect detection technology has made
significant progress. However, challenges remain, particu-
larly regarding adaptability to different fabric types and the
detection of complex defects. Moving forward, the con-
tinuous development and application of computer vision
technology will contribute to further advancements and prac-
tical applications of fabric defect detection technology.
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